七年級數(shù)學(xué)教案
作為一無名無私奉獻的教育工作者,通常會被要求編寫教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么什么樣的教案才是好的呢?下面是小編為大家整理的七年級數(shù)學(xué)教案,歡迎閱讀與收藏。
七年級數(shù)學(xué)教案1
教材分析:
本節(jié)課是新教材幾何教學(xué)的第一節(jié)課,通過學(xué)生身邊的現(xiàn)實生活中的實物,讓學(xué)生感覺圖形世界豐富多彩。經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程.激發(fā)學(xué)生學(xué)習(xí)幾何的熱情.。無需對具體定義的深刻理解,只要學(xué)生能用自己的語言描述它們的某些特征。
教學(xué)目標(biāo):
知識目標(biāo):
在具體情境中認識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進一步認識點、線、面、體,初步感受點、線、面、體之間的關(guān)系。
能力目標(biāo):
讓學(xué)生經(jīng)歷“幾何模形---圖形---文字”這個抽象過程,培養(yǎng)學(xué)生抽象、辨別能力。
情感目標(biāo):
感受圖形世界的豐富多彩,激發(fā)學(xué)習(xí)幾何的熱情。
教學(xué)重點:
經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關(guān)系。
教學(xué)難點:
抽象能力的培養(yǎng),學(xué)習(xí)熱情的激發(fā)。
教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)、師生互動。
教學(xué)準(zhǔn)備:
多媒體課件、學(xué)生身邊的實物等。
教學(xué)過程:
合作學(xué)習(xí)
問題1:
我們已學(xué)過的或認得的存有哪些幾何體?
。▽W(xué)生討論、交流)
問題2:
你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?
。▽W(xué)生討論、舉例)
課本中P162中的合作學(xué)習(xí)
。ń處熆啥嗯e一些平面與曲面的實例讓學(xué)生感受、辨別)
特別指出:
數(shù)學(xué)中的平面是可以無限伸展的`
議一論
P163課內(nèi)練習(xí)1
P163課內(nèi)練習(xí)2
師生討論指出:
線與線相交成點,面與面相交成線。
想一想:
觀察下圖,你發(fā)現(xiàn)什么?
師生討論
議一議:
日常生活中的哪些事物給人以點、線的形象。
指出:
日常生活中點與面只是相對的一個感念。如:
在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。
活動探究:
P164課內(nèi)練習(xí)3
應(yīng)用拓展:
請以給定的圖形“〇〇、△△、═”(兩個圓、兩個三角形、兩條平行線)為構(gòu)件,盡可能多地構(gòu)思獨特且有意義的圖形,并寫上一句貼切、詼諧的解說詞。如圖就是符合要求的一個圖形。你還能構(gòu)思出其他的圖形嗎?比一比,看誰想得多。
議一議:
本節(jié)課有什么收獲?
布置作業(yè)
七年級數(shù)學(xué)教案2
一、教學(xué)目標(biāo)
1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。
二、教學(xué)重難點
教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。
三、教法
主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境激活思維
1.學(xué)生觀看鐘祥二中相關(guān)背景視頻
意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。
2.聯(lián)系實際,提出問題。
問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。
學(xué)生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關(guān)地點用什么代表?(直線上的點)
3.學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?
師生活動:
學(xué)生思考后回答解決方法,學(xué)生代表畫圖。
學(xué)生畫圖后提問:
1.0代表什么?
2.數(shù)的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。
問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?
設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導(dǎo)學(xué)生用三要素表達,為定義數(shù)軸的概念提供直觀基礎(chǔ)。
問題4:你能說說上述2個實例的共同點嗎?
設(shè)計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。
(二)自主學(xué)習(xí)探究新知
學(xué)生活動:帶著以下問題自學(xué)課本第8頁:
1.什么樣的直線叫數(shù)軸?它具備什么條件。
2.如何畫數(shù)軸?
3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
師生活動:
學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。
至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)
、贁(shù)軸的定義。
、跀(shù)軸三要素。
練習(xí):(媒體展示)
1.判斷下列圖形是否是數(shù)軸。
2.口答:數(shù)軸上各點表示的數(shù)。
3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和-a的點進行同樣的討論。
設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。
(四)歸納總結(jié)反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:
1.什么是數(shù)軸?
2.數(shù)軸的“三要素”各指什么?
3.數(shù)軸的畫法。
設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
(五)目標(biāo)檢測設(shè)計
1.下列命題正確的是()
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
五、板書
1.數(shù)軸的定義。
2.數(shù)軸的`三要素(圖)。
3.數(shù)軸的畫法。
4.性質(zhì)。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數(shù)軸?
定義:規(guī)定了_______、_______、_______的直線叫數(shù)軸。
數(shù)軸的三要素:_______、_______、_______。
2.畫數(shù)軸的步驟是什么?
3.“原點”起什么作用?_______
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
練習(xí):
1.畫一條數(shù)軸
2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的_______邊,與原點的距離是_______個單位長度;表示數(shù)-a的點在原點的_______邊,與原點的距離是_______個單位長度.
練習(xí):
1.數(shù)軸上表示-3的點在原點的_______側(cè),距原點的距離是_______;表示6的點在原點的_______側(cè),距原點的距離是_______;兩點之間的距離為_______個單位長度。
2.距離原點距離為5個單位的點表示的數(shù)是_______。
3.在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是_______。
附:目標(biāo)檢測
1.下列命題正確的是( )
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
七年級數(shù)學(xué)教案3
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力.
2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學(xué)習(xí)重點:
直線平行的條件的應(yīng)用.
學(xué)習(xí)難點:
選取適當(dāng)判定直線平行的方法進行說理是重點也是難點.
一、學(xué)習(xí)過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習(xí):
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題)(第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是()
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則()
A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的.四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
七年級數(shù)學(xué)教案4
教學(xué)過程:
一、復(fù)習(xí)
1、一輛汽車行駛的速度不變,行駛的時間和路程。
2、一輛汽車從甲地開往乙地,行駛的時間和速度。
看上面的題,回答下面的問題:
。1)各有哪三種量?
。2)其中哪一種量是固定不變的?
。3)哪兩種量是變化的?這兩種量是按怎樣的規(guī)律變化的?他們成是什么關(guān)系?
3、這節(jié)課,我們就應(yīng)用比例的知識解決一些實際問題。
二、新授
1、教學(xué)例5
。1)出示例5:張大媽家上個月用了8噸水,水費是2。8元。李奶奶家上個月用了10噸水,李奶奶家上個月的水費是多少錢?
(2)學(xué)生讀題后,思考和討論下面的問題:
①問題中有哪兩種量?
、谒鼈兂墒裁幢壤P(guān)系?你是根據(jù)什么判斷的?
、鄹鶕(jù)這樣的比例關(guān)系,你能列出等式嗎?
。3)根據(jù)上面三個問題,概括:因為水價一定,所以水費和用水的噸數(shù)成正比例。也就是說,兩家的.水費和用水的噸數(shù)的比值是相等的。
。4)根據(jù)正比例的意義列出方程:
解:設(shè)李奶奶家上個月的水費是χ元。
12。8/8=χ/10
8χ= 12。8×10
χ=128÷8
χ= 16答:李奶奶家上個月的水費是16元。
。5)將答案代入到比例式中進行檢驗。
2、修改題目:王大爺上個月的水費是19。2元,他們家上個月用多少噸水?(學(xué)生獨立應(yīng)用比例的知識來解答,并交流訂正,使學(xué)生明確例5的條件和問題改變后,題目中水費和用水的噸數(shù)的正比例關(guān)系沒變,只是未知量變了)
3、教學(xué)例6
(1)出示例6:書店運來一批書,如果每包20本,要捆18包。如果每包30本,要捆多少包?
。2)學(xué)生根據(jù)例5的解題思路,思考:題中已知兩個量?什么是一定的?已知的兩個量成什么關(guān)系?思考后獨立解答。
。3)指名板演,全班評講。
4、做一做:教科書P59“做一做”1、2題,讓學(xué)生先判斷兩個量的關(guān)系,再進行解答。
三、鞏固練習(xí)
1、教科書P61練習(xí)九第3、4題。學(xué)生讀題后,先說說題中哪個量是一定的,再獨立進行解答。
2、完成練習(xí)九第5、6、7題。
四、總結(jié)
用比例知識解決問題的步驟是什么?
教學(xué)目標(biāo):
1、使學(xué)生掌握用比例知識解答以前學(xué)過的用歸一、歸總方法解答的應(yīng)用題的解題思路,能進一步熟練地判斷成正、反比例的量,加深對正、反比例概念的理解,溝通知識間的聯(lián)系。
2、提高學(xué)生對應(yīng)用題數(shù)量關(guān)系的分析能力和對正、反比例的判斷能力。
3、培養(yǎng)學(xué)生良好的解答應(yīng)用題的習(xí)慣。
教學(xué)重點:
用比例知識解答比較容易的歸一、歸總應(yīng)用題。
教學(xué)難點:
正分析題中的比例關(guān)系,列出方程。
七年級數(shù)學(xué)教案5
[教學(xué)目標(biāo)]
1. 通過動手、操作、推斷、交流等活動,進一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達能力
2. 在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
[教學(xué)重點與難點]
重點:鄰補角與對頂角的概念.對頂角性質(zhì)與應(yīng)用
難點:理解對頂角相等的性質(zhì)的探索
[教學(xué)設(shè)計]
一.創(chuàng)設(shè)情境 激發(fā)好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的.特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學(xué)生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構(gòu)造看作是兩條相交的直線,以上就關(guān)系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質(zhì)
1.學(xué)生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據(jù)不同的位置怎么將它們分類?
學(xué)生思考并在小組內(nèi)交流,全班交流。
當(dāng)學(xué)生直觀地感知角有“相鄰”、“對頂”關(guān)系時,教師引導(dǎo)學(xué)生用
幾何語言準(zhǔn)確表達;
有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線
2.學(xué)生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關(guān)系?
(學(xué)生得出結(jié)論:相鄰關(guān)系的兩個角互補,對頂?shù)膬蓚角相等)
3學(xué)生根據(jù)觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關(guān)系 數(shù)量關(guān)系
教師提問:如果改變 的大小,會改變它與其它角的位置關(guān)系和數(shù)量關(guān)系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質(zhì)
三.初步應(yīng)用
練習(xí):
下列說法對不對
(1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3) 對頂角相等,相等的兩個角是對頂角
學(xué)生利用對頂角相等的性質(zhì)解釋剪刀剪布過程中所看到的現(xiàn)象
四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數(shù)。
[鞏固練習(xí)](教科書5頁練習(xí))已知,如圖, ,求: 的度數(shù)
[小結(jié)]
鄰補角、對頂角.
[作業(yè)]課本P9-1,2P10-7,8
七年級數(shù)學(xué)教案6
一元一次不等式組
教學(xué)目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;
3、體驗數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實際問題中的價值。
教學(xué)難點
正確分析實際問題中的不等關(guān)系,列出不等式組。
知識重點
建立不等式組解實際問題的數(shù)學(xué)模型。
探究實際問題
出示教科書第145頁例2(略)
問:(1)你是怎樣理解“不能完成任務(wù)”的`數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
七年級數(shù)學(xué)教案7
【學(xué)習(xí)目標(biāo)】:
1、掌握正數(shù)和負數(shù)概念;
2、會區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);
3、體驗數(shù)學(xué)發(fā)展是生活實際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點難點】:正數(shù)和負數(shù)概念
【教學(xué)過程】:
一、知識鏈接:
1、小學(xué)里學(xué)過哪些數(shù)請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數(shù)和分數(shù)夠用了嗎?有沒有比0小的數(shù)?如果有,那叫做什么數(shù)?
二、自主學(xué)習(xí)
1、正數(shù)與負數(shù)的產(chǎn)生
。1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子: 。
。2)負數(shù)的產(chǎn)生同樣是生活和生產(chǎn)的需要
2、正數(shù)和負數(shù)的表示方法
(1)一般地,我們把上升、運進、零上、收入、前進、高出等規(guī)定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規(guī)定為負的。正的量就用小學(xué)里學(xué)過的數(shù)表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學(xué)學(xué)過的`數(shù)前面放上“—”(讀作負)號來表示,如上面的—3、—8、—47。
。2)活動: 兩個同學(xué)為一組,一同學(xué)任意說意義相反的兩個量,另一個同學(xué)用正負數(shù)表示.
。3)閱讀P2的內(nèi)容
3、正數(shù)、負數(shù)的概念
1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。
【課堂練習(xí)】:
1. P3第1,2題(直接做在課本上)。
2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應(yīng)記作_______,-4萬元表示________________。
3.已知下列各數(shù):?13,?2,3.14,+3065,0,-239; 54
則正數(shù)有_____________________;負數(shù)有____________________。
4.下列結(jié)論中正確的是 ????????????????( )
A.0既是正數(shù),又是負數(shù)
C.0是最大的負數(shù)
【要點歸納】:
正數(shù)、負數(shù)的概念:
。1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
(2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。
【拓展訓(xùn)練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標(biāo)有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數(shù)分別表示潛水艇和鯊魚的高度。
【課后作業(yè)】P5第1、2題
七年級數(shù)學(xué)教案8
1.1 生活中的立體圖形
〖教學(xué)過程:〗
一、看一看:(情境創(chuàng)設(shè))
教師(導(dǎo)語):在我們的生活中,充滿著各種各樣的圖形,其優(yōu)美的結(jié)構(gòu)值得我們鑒賞,其奇妙的性質(zhì)等著我們?nèi)ヌ骄俊U埪爜碜允澜鐖D形的對話吧。
設(shè)計:(1)卡通A(代表平面圖形):“我是平面圖形,是大家的老朋友,我家的家庭成員一定比你家多!
。2)卡通B(代表立體圖形):“我是立體圖形,是大家的新朋友,大家知道的并不一定比你少!
教師(問):卡通A、B身體各部分是什么圖形?
通過卡通A、B 的對話,組織學(xué)生討論,派代表指著屏幕上圖形說明自己的觀念,讓學(xué)生主動參與,激起他們的.興趣。培養(yǎng)集體意識,增強團隊精神。
教師(導(dǎo)語):看來同學(xué)們非常善于觀察圖形,不知你們能否用數(shù)學(xué)的眼光觀察生活中的圖形?請看來自生活中的立體圖形。
。ǔ鍪菊n題):生活中的立體圖形
音樂響起,屏幕播放錄象。
二、議一議(課堂討論)
問題1:你發(fā)現(xiàn)錄象中的這些物體與哪些立體圖形相類似,你能找出與這些立體圖形相類似的物體嗎?
組織學(xué)生圍繞以上問題四人一小組討論,說明自己的觀念,其他小組積極點評,補充,得出常見的立體圖形:圓柱、圓錐、正方體、球、棱錐。
問題2:比較這些立體圖形,看看相互之間有什么相同點和不同點?
電腦演示:(1)球體 (2)圓柱 (3)圓錐
并通過實物展示,引導(dǎo)學(xué)生觀察、討論、歸納,得出常見的立體圖形的分類:球體、柱體、椎體。
電腦演示:由圓柱變成棱柱(三棱柱、四棱柱、五棱柱┉┉),
問題3 以三棱柱為例,說出一個棱柱的棱數(shù)與底面的邊數(shù),側(cè)面的平面的個數(shù)之間的關(guān)系?
誘導(dǎo)學(xué)生思考:當(dāng)棱柱的棱柱的棱數(shù)越來越多時,棱柱就越來越趨向于什么立體圖形?
。ㄓ妙愃频姆椒ǎ,電腦演示:將圓錐演變成棱椎(三棱錐、四棱錐、五棱椎┉),再由棱錐演變成圓錐。
通過一連串的活動,讓學(xué)生掌握從特殊到一般,再有一般到特殊的的認知思想,了解圖形之間的相互聯(lián)系。通過對比,確立分類思想。并用類比的方法,自主的討論、歸納,突出重點、化解難點,在輕松的氛圍中學(xué)習(xí)。
三、練一練(評價)
遵循“由淺入深,循序漸進,由感性到理性”的認知規(guī)律,依據(jù)“主體參與,分層優(yōu)化,及時反饋,激勵評價”的原則,我設(shè)計了以下訓(xùn)練題:
1、發(fā)給學(xué)生一些圖片或?qū)嵨铮f說手中的圖形,是什么立體圖形?沒有發(fā)到的學(xué)生,舉出立體圖形的實例。
盡量讓每個學(xué)生都發(fā)言,注意培養(yǎng)學(xué)生的語言表達能力。
七年級數(shù)學(xué)教案9
教學(xué)設(shè)計思路
以小組討論的形式在教師的指導(dǎo)下通過回顧與反思前三章所學(xué)內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系,總結(jié)知識結(jié)構(gòu)及主要知識點,側(cè)重對重點知識內(nèi)容、數(shù)學(xué)思想和方法、思維策略的'總結(jié)與反思,再通過練習(xí)鞏固這些知識點。
教學(xué)目標(biāo)
知識與技能
對前三章所學(xué)知識作一次系統(tǒng)整理,系統(tǒng)地把握這三章的知識要點;
通過回顧與反思這三章所學(xué)內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系;
通過練習(xí),對所學(xué)知識的認識深化一步,以有利于掌握;
發(fā)展觀察問題、分析問題、解決問題的能力;
提高對所學(xué)知識的概括整理能力;
進一步發(fā)展有條理地思考和表達的能力。
過程與方法
在老師的引導(dǎo)下逐張復(fù)習(xí)每張的知識要點,通過練習(xí)來鞏固這些知識點。
情感態(tài)度價值觀
進一步體會知識點之間的聯(lián)系;
進一步感受數(shù)形結(jié)合的思想。
教學(xué)重點和難點
重點是這三章的重點內(nèi)容;
難點是能靈活利用這三章的知識來解決問題。
教學(xué)方法
引導(dǎo)、小組討論
課時安排
3課時
教具學(xué)具準(zhǔn)備
多媒體
教學(xué)過程設(shè)計
通過每一章的知識結(jié)構(gòu)及一些相關(guān)問題引導(dǎo)學(xué)生總結(jié)出每一章的知識點。
七年級數(shù)學(xué)教案10
教學(xué)目的:
(一)知識點目標(biāo):
1.了解正數(shù)和負數(shù)是怎樣產(chǎn)生的。
2.知道什么是正數(shù)和負數(shù)。
3.理解數(shù)0表示的量的意義。
(二)能力訓(xùn)練目標(biāo):
1.體會數(shù)學(xué)符號與對應(yīng)的思想,用正、負數(shù)表示具有相反意義的量的符號化方法。
2.會用正、負數(shù)表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯(lián)系實際,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。
教學(xué)重點:
知道什么是正數(shù)和負數(shù),理解數(shù)0表示的量的意義。
教學(xué)難點:
理解負數(shù),數(shù)0表示的量的意義。
教學(xué)方法:
師生互動與教師講解相結(jié)合。
教具準(zhǔn)備:
地圖冊(中國地形圖)。
教學(xué)過程:
引入新課:
1.活動:由兩組各派兩名同學(xué)進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?
內(nèi)容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學(xué)生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節(jié)課,我們就來學(xué)習(xí)這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負數(shù)。
講授新課:
1.自然數(shù)的產(chǎn)生、分數(shù)的產(chǎn)生。
2.章頭圖。問題見教材。讓學(xué)生思考-3~3℃、凈勝球數(shù)與排名順序、±0.5、-9的意義。
3、正數(shù)、負數(shù)的.定義:我們把以前學(xué)過的0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。
舉例說明:3、2、0.5、等是正數(shù)(也可加上“十”)
-3、-2、-0.5、-等是負數(shù)。
4、數(shù)0既不是正,也不是負數(shù),0是正數(shù)和負數(shù)的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學(xué)生舉例說明正、負數(shù)在實際中的應(yīng)用。展示圖片(又見教材P5圖1.1-2-3)讓學(xué)生觀察地形圖上的標(biāo)注和記錄支出、存入信息的本地X銀行的存折,說出你知道的信息。
鞏固提高:練習(xí):課本P5練習(xí)
課時小結(jié):這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?
課后作業(yè):課本P7習(xí)題1.1的第1、2、4、5題。
活動與探究:在一次數(shù)學(xué)測驗中,X班的平均分為85分,把高于平均分的高出部分記為正數(shù)。
(1)美美得95分,應(yīng)記為多少?
(2)多多被記作一12分,他實際得分是多少?
七年級數(shù)學(xué)教案11
教學(xué)目標(biāo):
1、使學(xué)生在現(xiàn)實情境中初步認識負數(shù),了解負數(shù)的作用,感受運用負數(shù)的需要和方便。
2、使學(xué)生知道正數(shù)和負數(shù)的讀法和寫法,知道0既不是正數(shù),又不是負數(shù)。正數(shù)都大于0,負數(shù)都小于0。
3、使學(xué)生體驗數(shù)學(xué)和生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的能力。
教學(xué)重點:
初步認識正數(shù)和負數(shù)以及讀法和寫法。
教學(xué)難點:
理解0既不是正數(shù),也不是負數(shù)。
教學(xué)具準(zhǔn)備:
多媒體課件、溫度計、練習(xí)紙、卡片等。
教學(xué)過程:
一、游戲?qū)耄ǜ惺苌钪械南喾船F(xiàn)象)
1、游戲:我們來玩?zhèn)游戲輕松一下,游戲叫做《我反我反我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。
、傧蛏峡矗ㄏ蛳驴矗
、谙蚯白200米(向后走200米)
、垭娞萆仙15層(下降15層)。
2、下面我們來難度大些的,看誰反應(yīng)最快。
、傥以阢y行存入了500元(取出了500元)。
、谥R競賽中,五(1)班得了20分(扣了20分)。
③10月份,學(xué)校小賣部賺了500元。(虧了500元)。
④零上10攝氏度(零下10攝氏度)。
說明什么是相反意義的量(意義正好相反)
3、談話:周老師的一位朋友喜歡旅游,11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準(zhǔn)備。下面就請大家一起和我走進天氣預(yù)報。(天氣預(yù)報片頭)
二、教學(xué)例1
1、認識溫度計,理解用正負數(shù)來表示零上和零下的溫度。
課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。
這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
B、現(xiàn)在你能看出南京是多少攝氏度嗎?(是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
。2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結(jié)合課件,突出上海的氣溫在零刻度線以上)。
。3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關(guān)系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
(4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。
、偕虾5臍鉁乇0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學(xué)們所說的4℃也就是+4℃。(板書)
負號能不能省略不寫?為什么?
、诒本┑臍鉁乇0℃低,是零下4攝氏度。我們可以用—4℃來表示零下4攝氏度(板書—4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。
。5)小結(jié):通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數(shù)可以來表示零上溫度,用—4這樣的數(shù)可以表示零下溫度。
2、試一試:學(xué)生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)
3、聽一段中央臺的天氣預(yù)報,將你聽到城市的最低和溫度記錄下來。
4、小結(jié):通過剛才的學(xué)習(xí),我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。
三、學(xué)習(xí)珠峰、吐魯番盆地的海拔表達方法(P4第2題)
1、同學(xué)們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關(guān)的。最近經(jīng)國家測繪局公布了珠峰的最新海拔高度。老師把有關(guān)網(wǎng)頁帶來了。(課件出現(xiàn)網(wǎng)頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。
2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態(tài)地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?
3、我們再來看新疆的吐魯番盆地的'海拔圖。(動態(tài)演示吐魯番盆地的海拔情況)。
你又能從圖上看懂些什么呢?(引導(dǎo)學(xué)生交流,回答珠穆朗瑪峰比海平面高8844。43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
。1)交流:珠穆朗瑪峰的海拔可以記作:+8844。43米或8844。43米。
吐魯番盆地的海拔可以記作:—155米。(板書)
(2)小結(jié):以海平面為界線,+8844。43米或8844。43米這樣的數(shù)可以表示海平面以上的高度,—155米這樣的數(shù)可以表示海平面以下的高度。
四、小組討論,歸納正數(shù)和負數(shù)。
1、通過剛才的學(xué)習(xí),我們收集到了一些數(shù)據(jù)(課件顯示)我們可以用這些數(shù)來表示零上溫度和零下溫度,還可以表示海平面以上的高度和海平面以下的高度。那么你們觀察一下這些數(shù),它們一樣嗎?你們想幫它們分分類嗎?
2、學(xué)生交流、討論。
3、指出:因為+8844。43也可以寫成8844。43米,所以有正號和沒正號都可以歸于一類。提出疑問:0到底歸于哪一類?(引導(dǎo)學(xué)生爭論,各自發(fā)表意見)
、偃绻纪夥秩惖,老師可以出難題:我覺得0可以分在4它們一類啊,你們怎么來說服我?
、谌绻袑W(xué)生發(fā)表分三類的,有的分兩類的,可以引導(dǎo)他們互相爭論。
4、小結(jié):什么是正數(shù)、負數(shù)?
師:(結(jié)合圖)我們從溫度計上觀察,以0℃為界限線,0℃以上的溫度用正幾表示,0℃以下的溫度用負幾表示。同樣,以海平面為界線,高于海平面的高度我們用正幾來表示,低于海平面我們用負幾表示。0是正負數(shù)的分界點,把正數(shù)和負數(shù)分開了,它誰都不屬于。但對于正數(shù)和負數(shù)來說,它卻必不可少。我們把以前學(xué)過的,象+4、16、3/8、0。5、+8844。43等這樣的數(shù)叫做正數(shù);象—4、—155等這樣的數(shù)我們叫做負數(shù);而0既不是正數(shù),也不是負數(shù)。(板書)這節(jié)課我們就和大家一起來認識正數(shù)和負數(shù)。(板書:認識正數(shù)和負數(shù))
五、聯(lián)系生活,鞏固練習(xí)
1、練習(xí)一第2、3題
2、你知道嗎:水沸騰時的溫度是xxxx。水結(jié)冰時的溫度是xxxx。地球表面的最低溫度是。
3、討論生活中的正數(shù)和負數(shù)
。1)存折:這里的—800表示什么意思?(以原來的錢為標(biāo)準(zhǔn),取出了800元記作—800;存入了1200元記作1200元,還可以記作+1200元)
。2)電梯:這里的1和—1表示什么意思?(以地平面為界線,地平面以上一層我們用1或+1來表示,—1就表示地下一層)。老師現(xiàn)在要到33層應(yīng)該按幾?要到地下3層呢?
六、課堂小結(jié)
這節(jié)課我們一起認識了正數(shù)和負數(shù)。在我們的生活中,零攝氏度以上和零攝氏度以下,海平面以上和海平面以下,得分與失分等都具有相反的意義,我們都可以用正數(shù)和負數(shù)來表示。
七年級數(shù)學(xué)教案12
一、目標(biāo)
1.用它們拼成各種形狀不同的四邊形,并計算它們的周長。
(鼓勵學(xué)生把長方形和等腰三角形拼和成各種圖形,分別計算出它們的`周長和面積)
2.教師揭示以上這些工作實際上是在進行整式的加減運算
3.回顧以上過程 思考:整式的加減運算要進行哪些工作?
生1:“去括號”
生2:“合并同類項”
師生小結(jié):整式的加減實際上是“去括號”和“合并同類項”法則的綜合應(yīng)用,
二、揭示如何進行整式的加減運算
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.教學(xué)例二 例2 求2a2-4a+1與-3a2+2a-5的差.
。ū绢}首先帶領(lǐng)學(xué)生根據(jù)題意列出式子,強調(diào)要把兩個代數(shù)式看成整體,列式時應(yīng)加上括號)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展練習(xí)
(1)求多項式2x -3 +7與6x -5 -2的和.
提問:你有哪些計算方法?(可引導(dǎo)學(xué)生進行豎式計算,并在練習(xí)中注意豎式計算過程中需要注意什么?)
。2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)
(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)
4.教學(xué)例3
先化簡下式,再求值:
(做此類題目應(yīng)先與學(xué)生一起探討一般步驟:
。1)去括號。
(2)合并同類項。
。3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小結(jié)
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.進行化簡求值計算時
。1)去括號。
。2)合并同類項。
(3)代值
3.通過本節(jié)課的學(xué)習(xí)你還有哪些疑問?
四、布置作業(yè)
習(xí)題4.5 2. (3) ;4. (2);5.。
五、課后反思
省略
七年級數(shù)學(xué)教案13
教學(xué)目標(biāo)
1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。
教學(xué)建議
一、教學(xué)重點、難點
重點:通過具體例子了解公式、應(yīng)用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的.公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊涵的思想,明確公式的應(yīng)用具有普遍性,達到對公式的靈活應(yīng)用。
2.在教學(xué)過程中,應(yīng)使學(xué)生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。
3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學(xué)生分析問題、解決問題的能力。
教學(xué)設(shè)計示例
公式
五、教具學(xué)具準(zhǔn)備
投影儀,自制膠片。
六、師生互動活動設(shè)計
教者投影顯示推導(dǎo)梯形面積計算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.
七年級數(shù)學(xué)教案14
第一章 有理數(shù)
單元教學(xué)內(nèi)容
1.本單元結(jié)合學(xué)生的生活經(jīng)驗,列舉了學(xué)生熟悉的用正、負數(shù)表示的實例,?從擴充運算的角度引入負數(shù),然后再指出可以用正、負數(shù)表示現(xiàn)實生活中具有相反意義的量,使學(xué)生感受到負數(shù)的引入是來自實際生活的需要,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系.
引入正、負數(shù)概念之后,接著給出正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)集合及整數(shù)、分數(shù)和有理數(shù)的概念.
2.通過怎樣用數(shù)簡明地表示一條東西走向的馬路旁的樹、?電線桿與汽車站的相對位置關(guān)系引入數(shù)軸.?dāng)?shù)軸是非常重要的數(shù)學(xué)工具,它可以把所有的有理數(shù)用數(shù)軸上的點形象地表示出來,使數(shù)與形結(jié)合為一體,揭示了數(shù)形之間的內(nèi)在聯(lián)系,從而體現(xiàn)出以下4個方面的作用:
(1)數(shù)軸能反映出數(shù)形之間的對應(yīng)關(guān)系.
。2)數(shù)軸能反映數(shù)的性質(zhì).
(3)數(shù)軸能解釋數(shù)的某些概念,如相反數(shù)、絕對值、近似數(shù).
(4)數(shù)軸可使有理數(shù)大小的比較形象化.
3.對于相反數(shù)的概念,?從“數(shù)軸上表示互為相反數(shù)的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數(shù)的幾何意義,同時補充“零的相反數(shù)是零”作為相反數(shù)意義的一部分.
4.正確理解絕對值的概念是難點.
根據(jù)有理數(shù)的絕對值的兩種意義,可以歸納出有理數(shù)的絕對值有如下性質(zhì):
。1)任何有理數(shù)都有唯一的絕對值.
。2)有理數(shù)的絕對值是一個非負數(shù),即最小的絕對值是零.
。3)兩個互為相反數(shù)的絕對值相等,即│a│=│-a│.
(4)任何有理數(shù)都不大于它的絕對值,即│a│≥a,│a│≥-a.
。5)若│a│=│b│,則a=b,或a=-b或a=b=0.
三維目標(biāo)
1.知識與技能
。1)了解正數(shù)、負數(shù)的實際意義,會判斷一個數(shù)是正數(shù)還是負數(shù).
。2)掌握數(shù)軸的畫法,能將已知數(shù)在數(shù)軸上表示出來,?能說出數(shù)軸上已知點所表示的解.
。3)理解相反數(shù)、絕對值的幾何意義和代數(shù)意義,?會求一個數(shù)的相反數(shù)和絕對值.
。4)會利用數(shù)軸和絕對值比較有理數(shù)的大。
2.過程與方法
經(jīng)過探索有理數(shù)運算法則和運算律的過程,體會“類比”、“轉(zhuǎn)化”、“數(shù)形結(jié)合”等數(shù)學(xué)方法.
3.情感態(tài)度與價值觀
使學(xué)生感受數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,鼓勵學(xué)生探索規(guī)律,并在合作交流中完善規(guī)范語言.
重、難點與關(guān)鍵
1.重點:正確理解有理數(shù)、相反數(shù)、絕對值等概念;會用正、?負數(shù)表示具有相反意義的量,會求一個數(shù)的相反數(shù)和絕對值.
2.難點:準(zhǔn)確理解負數(shù)、絕對值等概念.
3.關(guān)鍵:正確理解負數(shù)的意義和絕對值的意義.
課時劃分
1.1 正數(shù)和負數(shù) 2課時
1.2 有理數(shù) 5課時
1.3 有理數(shù)的加減法4課時
1.4 有理數(shù)的乘除法5課時
1.5 有理數(shù)的乘方 4課時
第一章有理數(shù)(復(fù)習(xí)) 2課時
1.1正數(shù)和負數(shù)
第一課時
三維目標(biāo)
一.知識與技能
能判斷一個數(shù)是正數(shù)還是負數(shù),能用正數(shù)或負數(shù)表示生活中具有相反意義的量.
二.過程與方法
借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性.
三.情感態(tài)度與價值觀
培養(yǎng)學(xué)生積極思考,合作交流的意識和能力.
教學(xué)重、難點與關(guān)鍵
1.重點:正確理解負數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負數(shù)的方法.
2.難點:正確理解負數(shù)的概念.
3.關(guān)鍵:創(chuàng)設(shè)情境,充分利用學(xué)生身邊熟悉的事物,?加深對負數(shù)意義的理解. 教具準(zhǔn)備
投影儀.
教學(xué)過程
四、課堂引入
我們知道,數(shù)是人們在實際生活和生活需要中產(chǎn)生,并不斷擴充的.人們由記數(shù)、排序、產(chǎn)生數(shù)1,2,3,?;為了表示“沒有物體”、“空位”引進了數(shù)“0”,?測量和分配有時不能得到整數(shù)的結(jié)果,為此產(chǎn)生了分數(shù)和小數(shù).
在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運算的問題,例如課本第2?頁至第3頁中提到的四個問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%.
五、講授新課
。1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0?以外的數(shù))叫做正數(shù),有時在正數(shù)前
11面也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數(shù)前面33
的“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號.
(2)、中國古代用算籌(表示數(shù)的.工具)進行計算,紅色算籌表示正數(shù),黑色算籌表示負數(shù).
(3)、數(shù)0既不是正數(shù),也不是負數(shù),但0是正數(shù)與負數(shù)的分界數(shù).
(4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度.
用正負數(shù)表示具有相反意義的量
(5)、 把0以外的數(shù)分為正數(shù)和負數(shù),起源于表示兩種相反意義的量.?正數(shù)和負數(shù)在許多方面被廣泛地應(yīng)用.在地形圖上表示某地高度時,需要以海平面為基準(zhǔn),通常用正數(shù)表示高于海平面的某地的海拔高度,負數(shù)表示低于海平面的某地的海拔高度.例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m.記錄賬目時,通常用正數(shù)表示收入款額,負數(shù)表示支出款額.
(6)、 請學(xué)生解釋課本中圖1.1-2,圖1.1-3中的正數(shù)和負數(shù)的含義.
(7)、 你能再舉一些用正負數(shù)表示數(shù)量的實際例子嗎?
。8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負數(shù)表示水位下降的高度;用正數(shù)表示買進東西的數(shù)量,用負數(shù)表示賣出東西的數(shù)量.
六、鞏固練習(xí)
課本第3頁,練習(xí)1、2、3、4題.
七、課堂小結(jié)
為了表示現(xiàn)實生活中的具有相反意義的量,我們引進了負數(shù).正數(shù)就是我們過去學(xué)過的數(shù)(除0外),在正數(shù)前放上“-”號,就是負數(shù),?但不能說:“帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù)”,在一個數(shù)前面添上負號,它表示的是原數(shù)意義相反的數(shù).如果原數(shù)是一個負數(shù),那么前面放上“-”號后所表示的數(shù)反而是正數(shù)了,另外應(yīng)注意“0”既不是正數(shù),也不是負數(shù).
八、作業(yè)布置
1.課本第5頁習(xí)題1.1復(fù)習(xí)鞏固第1、2、3題.
九、板書設(shè)計
1.1正數(shù)和負數(shù)
第一課時
1、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0?以外的數(shù))叫做正數(shù),有時在正數(shù)前面
11也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數(shù)前面的33
“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號.
2、隨堂練習(xí)。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思
1.1正數(shù)和負數(shù)
第二課時
三維目標(biāo)
一.知識與技能
進一步鞏固正數(shù)、負數(shù)的概念;理解在同一個問題中,用正數(shù)與負數(shù)表示的量具有相同的意義.
二.過程與方法
經(jīng)歷舉一反三用正、負數(shù)表示身邊具有相反意義的量,進而發(fā)現(xiàn)它們的共同特征.
三.情感態(tài)度與價值觀
鼓勵學(xué)生積極思考,激發(fā)學(xué)生學(xué)習(xí)的興趣.
教學(xué)重、難點與關(guān)鍵
1.重點:正確理解正、負數(shù)的概念,能應(yīng)用正數(shù)、?負數(shù)表示生活中具有相反意義的量.
2.難點:正數(shù)、負數(shù)概念的綜合運用.
3.關(guān)鍵:通過對實例的進一步分析,?使學(xué)生認識到正負數(shù)可以用來表示現(xiàn)實生活中具有相反意義的量.
教具準(zhǔn)備
投影儀.
教學(xué)過程
四、復(fù)習(xí)提問課堂引入
1.什么叫正數(shù)?什么叫負數(shù)?舉例說明,?有沒有既不是正數(shù)也不是負數(shù)的數(shù)?
2.如果用正數(shù)表示盈利5萬元,那么-8千元表示什么?
五、新授
例1.一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重?zé)o變化,寫出他們這個月的體重增長值.
2.20xx年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,英國減少3.5%,意大利增長0.2%,?中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
分析:在一個數(shù)前面添上負號,它表示的是與原數(shù)具有意義相反的數(shù).?“負”與“正”是相對的,增長-1,就是減少1;增長-6.4%就是減少6.4%,那么什么情況下增長率是0?當(dāng)與上年持平,既不增又不減時增長率是0.
七年級數(shù)學(xué)教案15
【教學(xué)目標(biāo)】
引導(dǎo)學(xué)生通過常規(guī)分析,得出解題思路,經(jīng)歷提出問題,自探問題,應(yīng)用知識的過程,自主總結(jié)出解題辦法;
【教學(xué)難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認為
【教學(xué)過程】
問:以前學(xué)過的有關(guān)路程,時間,和速度之間的關(guān)系是怎么樣的?你能寫出它們之間的關(guān)系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍,F(xiàn)在汽車從甲地到乙地需要多少小時?
分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。
學(xué)生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)
現(xiàn)在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的2.5倍,所以原來的時間是現(xiàn)在的.
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結(jié)】
在解答應(yīng)用題時要善于應(yīng)用不同的思路和技巧,巧解問題
【作業(yè)】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
【七年級數(shù)學(xué)教案】相關(guān)文章:
初中七年級的數(shù)學(xué)教案02-02
七年級上冊數(shù)學(xué)教案02-01
七年級下冊數(shù)學(xué)教案04-18
七年級數(shù)學(xué)教案15篇08-19