欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    數(shù)學(xué)定理的教案

    時(shí)間:2022-11-18 16:27:15 教案 投訴 投稿
    • 相關(guān)推薦

    數(shù)學(xué)定理的教案

      在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,常常需要準(zhǔn)備教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么問題來了,教案應(yīng)該怎么寫?以下是小編為大家收集的數(shù)學(xué)定理的教案,僅供參考,歡迎大家閱讀。

    數(shù)學(xué)定理的教案

    數(shù)學(xué)定理的教案1

      課題:

      勾股定理

      課型:

      新授課

      課時(shí)安排:

      1課時(shí)

      教學(xué)目的:

      一、知識(shí)與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡單的實(shí)際問題。

      二、過程與方法目標(biāo)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

      三、情感、態(tài)度與價(jià)值觀目標(biāo)了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

      教學(xué)重點(diǎn):

      引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡單的實(shí)際問題

      教學(xué)難點(diǎn):

      用面積法方法證明勾股定理

      課前準(zhǔn)備:

      多媒體ppt,相關(guān)圖片

      教學(xué)過程:

      (一)情境導(dǎo)入

      1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20xx年國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。

      2、多媒體課件演示flash小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。

     。ǘ⿲W(xué)習(xí)新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對(duì)于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對(duì)于一般的直角三角形是否也有這樣的性質(zhì)呢?請(qǐng)大家畫一個(gè)任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過這個(gè)觀察和驗(yàn)算這個(gè)直角三角形外圍的三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對(duì)兩個(gè)問題的驗(yàn)證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

     。ㄈ╈柟叹毩(xí)1、如果一個(gè)直角三角形的`兩條邊長分別是6厘米和8厘米,那么這個(gè)三角形的周長是多少厘米?2、解決課程開始時(shí)提出的情境問題。

     。ㄋ模┬〗Y(jié)

      1、背景知識(shí)介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨(dú)創(chuàng)。

      2、通過這節(jié)課的學(xué)習(xí),你會(huì)寫方程了嗎?你有什么收獲和體會(huì)?

     。ㄎ澹┳鳂I(yè)練習(xí)18.1中的1、2、3題。板書設(shè)計(jì):勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

    數(shù)學(xué)定理的教案2

      一、教學(xué)目標(biāo)

      1.體會(huì)勾股定理的逆定理得出過程,掌握勾股定理的逆定理.

      2.探究勾股定理的逆定理的證明方法.

      3.理解原命題、逆命題、逆定理的概念及關(guān)系.

      二、重點(diǎn)、難點(diǎn)

      1.重點(diǎn):掌握勾股定理的逆定理及證明.

      2.難點(diǎn):勾股定理的逆定理的證明.

      3.難點(diǎn)的突破方法:

      先讓學(xué)生動(dòng)手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法.充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受.

      為學(xué)生搭好臺(tái)階,掃清障礙.

     、湃绾闻袛嘁粋(gè)三角形是直角三角形,現(xiàn)在只知道若有一個(gè)角是直角的三角形是直角三角形,從而將問題轉(zhuǎn)化為如何判斷一個(gè)角是直角.

     、评靡阎獥l件作一個(gè)直角三角形,再證明和原三角形全等,使問題得以解決.

     、窍茸鲋苯,再截取兩直角邊相等,利用勾股定理計(jì)算斜邊A1B1=c,則通過三邊對(duì)應(yīng)相等的兩個(gè)三角形全等可證.

      三、課堂引入

      創(chuàng)設(shè)情境:⑴怎樣判定一個(gè)三角形是等腰三角形?

     、圃鯓优卸ㄒ粋(gè)三角形是直角三角形?和等腰三角形的判定進(jìn)行對(duì)比,從勾股定理的逆命題進(jìn)行猜想.

      四、例習(xí)題分析

      例1(補(bǔ)充)說出下列命題的逆命題,這些命題的逆命題成立嗎?

      ⑴同旁內(nèi)角互補(bǔ),兩條直線平行.

     、迫绻麅蓚(gè)實(shí)數(shù)的平方相等,那么兩個(gè)實(shí)數(shù)平方相等.

     、蔷段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等.

     、戎苯侨切沃30°角所對(duì)的直角邊等于斜邊的一半.

      分析:⑴每個(gè)命題都有逆命題,說逆命題時(shí)注意將題設(shè)和結(jié)論調(diào)換即可,但要分清題設(shè)和結(jié)論,并注意語言的運(yùn)用.

     、评眄?biāo)麄冎g的關(guān)系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假.

      解略.

      本題意圖在于使學(xué)生了解命題,逆命題,逆定理的概念,及它們之間的關(guān)系.

      例2(P82探究)證明:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.

      分析:⑴注意命題證明的格式,首先要根據(jù)題意畫出圖形,然后寫已知求證.

     、迫绾闻袛嘁粋(gè)三角形是直角三角形,現(xiàn)在只知道若有一個(gè)角是直角的'三角形是直角三角形,從而將問題轉(zhuǎn)化為如何判斷一個(gè)角是直角.

     、抢靡阎獥l件作一個(gè)直角三角形,再證明和原三角形全等,使問題得以解決.

     、认茸鲋苯,再截取兩直角邊相等,利用勾股定理計(jì)算斜邊A1B1=c,則通過三邊對(duì)應(yīng)相等的兩個(gè)三角形全等可證.

     、上茸寣W(xué)生動(dòng)手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法.充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受.

      證明略.

      通過讓學(xué)生動(dòng)手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,鍛煉學(xué)生的動(dòng)手操作能力,再通過探究理論證明方法,使實(shí)踐上升到理論,提高學(xué)生的理性思維.

      例3(補(bǔ)充)已知:在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

      求證:∠C=90°.

      分析:⑴運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:①先判斷那條邊最大.②分別用代數(shù)方法計(jì)算出a2+b2和c2的值.③判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形.

     、埔C∠C=90°,只要證△ABC是直角三角形,并且c邊最大.根據(jù)勾股定理的逆定理只要證明a2+b2=c2即可.

     、怯捎赼2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,從而a2+b2=c2,故命題獲證.

      本題目的在于使學(xué)生明確運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:①先判斷那條邊最大.②分別用代數(shù)方法計(jì)算出a2+b2和c2的值.③判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形.

    數(shù)學(xué)定理的教案3

      教學(xué)目標(biāo):

      一知識(shí)技能

      1.理解勾股定理的逆定理的證明方法和證明過程;

      2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;

      二數(shù)學(xué)思考

      1.通過勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過程;

      2.通過三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.

      三解決問題

      通過勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題.

      四情感態(tài)度

      1.通過三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一關(guān)系;

      2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流合作的意識(shí)和探究精神.

      教學(xué)重難點(diǎn):

      一重點(diǎn):勾股定理的逆定理及其應(yīng)用.

      二難點(diǎn):勾股定理的逆定理的證明.

      教學(xué)方法

      啟發(fā)引導(dǎo)分組討論合作交流等。

      教學(xué)媒體

      多媒體課件演示。

      教學(xué)過程:

      一復(fù)習(xí)孕新,引入課題

      問題:

      (1) 勾股定理的內(nèi)容是什么?

      (2) 求以線段ab為直角邊的直角三角形的斜邊c的長:

     、 a=3,b=4

     、 a=2.5,b=6

     、 a=4,b=7.5

      (3) 分別以上述abc為邊的三角形的形狀會(huì)是什么樣的呢?

      二動(dòng)手實(shí)踐,檢驗(yàn)推測(cè)

      1.把準(zhǔn)備好的一根打了13個(gè)等距離結(jié)的繩子,按3個(gè)結(jié)4個(gè)結(jié)5個(gè)結(jié)的長度為邊擺放成一個(gè)三角形,請(qǐng)觀察并說出此三角形的形狀?

      學(xué)生分組活動(dòng),動(dòng)手操作,并在組內(nèi)進(jìn)行交流討論的基礎(chǔ)上,作出實(shí)踐性預(yù)測(cè).

      教師深入小組參與活動(dòng),并幫助指導(dǎo)部分學(xué)生完成任務(wù),得出勾股定理的逆命題.在此基礎(chǔ)上,介紹:古埃及和我國古代大禹治水都是用這種方法來確定直角的.

      2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫出兩個(gè)三角形,請(qǐng)觀察并說出此三角形的形狀?

      3.結(jié)合三角形三邊長度的平方關(guān)系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關(guān)系嗎?

      三探索歸納,證明猜想

      問題

      1.三邊長度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的.直角三角形之間有什么關(guān)系?你是怎樣得到的?

      2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長的三角形是直角三角形嗎?

      3.如圖18.2-2,若△ABC的三邊長

      滿足

      ,試證明△ABC是直角三角形,請(qǐng)簡要地寫出證明過程.

      教師提出問題,并適時(shí)誘導(dǎo),指導(dǎo)學(xué)生完成問題3的證明.之后,歸納得出勾股定理的逆定理.

      四嘗試運(yùn)用,熟悉定理

      問題

      1例1:判斷由線段

      組成的三角形是不是直角三角形:

      (1)

      (2)

      2三角形的兩邊長分別為3和4,要使這個(gè)三角形是直角三角形,則第三條邊長是多少?

      教師巡視,了解學(xué)生對(duì)知識(shí)的掌握情況.

      特別關(guān)注學(xué)生在練習(xí)中反映出的問題,有針對(duì)性地講解,學(xué)生能否熟練地應(yīng)用勾股定理的逆定理去分析和解決問題

      五類比模仿,鞏固新知

      1.練習(xí):練習(xí)題13.

      2.思考:習(xí)題18.2第5題.

      部分學(xué)生演板,剩余學(xué)生在課堂練習(xí)本上獨(dú)立完成.

      小結(jié)梳理,內(nèi)化新知

      六1.小結(jié):教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)的知識(shí).

      2.作業(yè):

      (1)必做題:習(xí)題18.2第1題(2)(4)和第3題;

      (2)選做題:習(xí)題18.2第46題.

    數(shù)學(xué)定理的教案4

      一、教學(xué)目標(biāo)

      通過對(duì)幾種常見的勾股定理驗(yàn)證方法,進(jìn)行分析和欣賞。理解數(shù)

      學(xué)知識(shí)之間的內(nèi)在聯(lián)系,體會(huì)數(shù)形結(jié)合的思想方法,進(jìn)一步感悟勾股定理的文化價(jià)值。

      通過拼圖活動(dòng),嘗試驗(yàn)證勾股定理,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐和創(chuàng)新能力。

      (3)讓學(xué)生經(jīng)歷自主探究、合作交流、觀察比較、計(jì)算推理、動(dòng)手操作等過程,獲得一些研究問題的方法,取得成功和克服困難的經(jīng)驗(yàn),培養(yǎng)學(xué)生良好的思維品質(zhì),增進(jìn)他們數(shù)學(xué)學(xué)習(xí)的信心。

      二、教學(xué)的重、難點(diǎn)

      重點(diǎn):探索和驗(yàn)證勾股定理的過程

      難點(diǎn):

      (1)“數(shù)形結(jié)合”思想方法的理解和應(yīng)用

      通過拼圖,探求驗(yàn)證勾股定理的新方法

      三、學(xué)情分析

      八年級(jí)的學(xué)生已具備一定的生活經(jīng)驗(yàn),對(duì)新事物容易產(chǎn)生興趣,動(dòng)手實(shí)踐能力也比較強(qiáng),在班級(jí)上已初步形成合作交流,勇于探索與實(shí)踐的良好班風(fēng),估計(jì)本節(jié)課的學(xué)習(xí)中學(xué)生能夠在教師的引導(dǎo)和點(diǎn)撥下自主探索歸納勾股定理。

      四、教學(xué)程序分析

     。ㄒ唬⿲(dǎo)入新課

      介紹勾股世界

      兩千多年前,古希臘有個(gè)畢達(dá)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國外人們通常稱勾股定理為畢達(dá)哥拉斯定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票。

      我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中。

     。ǘ┲v解新課

      1、探索活動(dòng)一:

      觀察下圖,并回答問題:

      (1)觀察圖1

      正方形A中含有

      個(gè)小方格,即A的面積是

      個(gè)單位面積;

      正方形B中含有

      個(gè)小方格,即B的面積是

      個(gè)單位面積;

      正方形C中含有

      個(gè)小方格,即C的面積是

      個(gè)單位面積。

      (2)在圖2、圖3中,正方形A、B、C中各含有多少個(gè)小方格?它們的面積各是多少?你是如何得到上述結(jié)果的?與同伴交流。

      (3)請(qǐng)將上述結(jié)果填入下表,你能發(fā)現(xiàn)正方形A,B,C,的面積關(guān)系嗎?

      A的面積

      (單位面積)

      B的面積

      (單位面積)

      C的面積

      (單位面積)

      圖1

      9

      9

      18

      圖2

      4

      4

      8

      2、探索活動(dòng)二:

      (1)觀察圖3,圖4

      并填寫下表:

      A的面積

      (單位面積)

      B的面積

      (單位面積)

      C的面積

      (單位面積)

      圖3

      16

      9

      25

      圖4

      4

      9

      13

      你是怎樣得到上面結(jié)果的'?與同伴交流。

      (2)三個(gè)正方形A,B,C的面積之間的關(guān)系?

      3、議一議(合作交流,驗(yàn)證發(fā)現(xiàn))

      (1)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?

      勾股定理:如果直角三角形兩直角邊分別為a、b,斜邊為c

      ,那么a2+b2=c2。

      即直角三角形兩直角邊的平方和等于斜邊的平方。

      (2)我們?cè)趺醋C明這個(gè)定理呢?

      教師指導(dǎo)第一種證明方法,學(xué)生合作探究第二種證明方法。

      可得:

      想一想:大正方形的面積該怎樣表示?

      想一想:這四個(gè)直角三角形還能怎樣拼?

      可得:

      4、例題分析

      如圖,一根電線桿在離地面5米處斷裂,電線桿頂部落在離電線桿底部12米處,電線桿折斷之前有多高?

      解:∵,

      ∴在中,

      ,根據(jù)勾股定理,

      ∴電線桿折斷之前的高度=BC+AB=5米+13米=18米

      (三)課堂小結(jié)

      勾股定理從邊的角度刻畫了直角三角形的又一個(gè)特征.人類對(duì)勾股定理的研究已有近3000年的歷史,在西方,勾股定理又被稱為“畢達(dá)哥拉斯定理”、“百牛定理”、“驢橋定理”等等

      .

     。ㄋ模┎贾米鳂I(yè)

      收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.

      五、板書設(shè)計(jì)

      勾股定理的探索與證明

      做一做

      勾股定理

      議一議

     。ㄖ苯侨切蔚闹苯沁叿謩e為a、b,斜邊為c,則a2+b2=c2)

      六、課后反思

      《新課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)!睌(shù)學(xué)實(shí)驗(yàn)在現(xiàn)階段的數(shù)學(xué)教學(xué)中還沒有普及與推廣,實(shí)際上,通過學(xué)生的合作探究、動(dòng)手實(shí)踐、歸納證明等活動(dòng),讓數(shù)學(xué)課堂生動(dòng)起來,也讓學(xué)生感覺數(shù)學(xué)是可以動(dòng)手做實(shí)驗(yàn)的,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣與激情。本節(jié)課,我充分利用學(xué)生動(dòng)手能力強(qiáng)、表現(xiàn)欲高的特點(diǎn),在充裕的時(shí)間里,放手讓學(xué)生動(dòng)手操作,自己歸納與分析。最后得出結(jié)論。我認(rèn)為本節(jié)課是成功的,一方面體現(xiàn)了學(xué)生的主體地位,另一方面讓實(shí)驗(yàn)走進(jìn)了數(shù)學(xué)課堂,真正體現(xiàn)了實(shí)驗(yàn)的巨大作用。

    數(shù)學(xué)定理的教案5

      [教學(xué)分析]

      勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

      本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。

      [教學(xué)目標(biāo)]

      一、知識(shí)與技能

      1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

      2、應(yīng)用勾股定理解決簡單的實(shí)際問題

      3學(xué)會(huì)簡單的合情推理與數(shù)學(xué)說理

      二、過程與方法

      引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。

      三、情感與態(tài)度目標(biāo)

      通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

      四、重點(diǎn)與難點(diǎn)

      1、探索和證明勾股定理

      2、熟練運(yùn)用勾股定理

      [教學(xué)過程]

      一、創(chuàng)設(shè)情景,揭示課題

      1、教師展示圖片并介紹第一情景

      以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。

      周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

      2、教師展示圖片并介紹第二情景

      畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

      二、師生協(xié)作,探究問題

      1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

      2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

      3、你能得到什么結(jié)論嗎?

      三、得出命題

      勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

      四、勾股定理的證明

      趙爽弦圖的證法(圖2)

      第一種方法:邊長為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因?yàn)檫呴L為的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。

      第二種方法:邊長為的'正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的

      角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為的正方形“小洞”。

      因?yàn)檫呴L為的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。

      這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

      五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

      勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

      例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

      六、歸納總結(jié)

      1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問題

      2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

      七、討論交流

      讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

      我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

    數(shù)學(xué)定理的教案6

     一、利用勾股定理進(jìn)行計(jì)算

      1.求面積

      例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個(gè)三角形面積。

      析解:若能求出這個(gè)等腰三角形底邊上的高,就可以求出這個(gè)三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時(shí)D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個(gè)三角形面積為×BC×AD=×16×6=48cm2。

      2.求邊長

      例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

      析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點(diǎn)B作BD⊥AC,交AC的延長線于D點(diǎn),構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因?yàn)椤螦CB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

      點(diǎn)評(píng):這兩道題有一個(gè)共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的`方法里蘊(yùn)含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請(qǐng)同學(xué)們要留心。

      二、利用勾股定理的逆定理判斷直角三角形

      例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

      析解:由于所給條件是關(guān)于a,b,c的一個(gè)等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因?yàn)閍2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因?yàn)?a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因?yàn)?2+122=132,所以a2+b2=c2,即△ABC是直角三角形。

      點(diǎn)評(píng):用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

      三、利用勾股定理說明線段平方和、差之間的關(guān)系

      例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說明:BC2=BE2-AE2。

      析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因?yàn)椤螩=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

      點(diǎn)評(píng):若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時(shí),則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。

    數(shù)學(xué)定理的教案7

      向量證明正弦定理

      表述:設(shè)三面角∠P—ABC的三個(gè)面角∠BPC,∠CPA,∠APB所對(duì)的二面角依次為∠PA,∠PB,∠PC,則Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。

      目錄

      1證明2全向量證明

      證明

      過A做OA⊥平面BPC于O。過O分別做OM⊥BP于M與ON⊥PC于N。連結(jié)AM、AN。顯然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。則Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。同理可證Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得證三面角正弦定理。

      全向量證明

      如圖1,△ABC為銳角三角形,過點(diǎn)A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°—A,j與向量CB的夾角為90°—C

      由圖1,AC+CB=AB(向量符號(hào)打不出)

      在向量等式兩邊同乘向量j,得·

      j·AC+CB=j·AB

      ∴│j││AC│cos90°+│j││CB│cos(90°—C)

      =│j││AB│cos(90°—A)

      ∴asinC=csinA

      ∴a/sinA=c/sinC

      同理,過點(diǎn)C作與向量CB垂直的單位向量j,可得

      c/sinC=b/sinB

      ∴a/sinA=b/sinB=c/sinC

      2步驟1

      記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

      ∴a+b+c=0

      則i(a+b+c)

      =i·a+i·b+i·c

      =a·cos(180—(C—90))+b·0+c·cos(90—A)

      =—asinC+csinA=0

      接著得到正弦定理

      其他

      步驟2、

      在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H

      CH=a·sinB

      CH=b·sinA

      ∴a·sinB=b·sinA

      得到a/sinA=b/sinB

      同理,在△ABC中,

      b/sinB=c/sinC

      步驟3、

      證明a/sinA=b/sinB=c/sinC=2R:

      任意三角形ABC,作ABC的外接圓O、

      作直徑BD交⊙O于D、連接DA、

      因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以∠DAB=90度

      因?yàn)橥∷鶎?duì)的圓周角相等,所以∠D等于∠C、

      所以c/sinC=c/sinD=BD=2R

      類似可證其余兩個(gè)等式。

      3用向量叉乘表示面積則s = CB叉乘CA = AC叉乘AB

      => absinC = bcsinA (這部可以直接出來哈哈,不過為了符合向量的做法)

      => a/sinA = c/sinC

      20xx—7—18 17:16 jinren92 |三級(jí)

      記向量i,使i垂直于AC于C,△ABC三邊AB,BC,接著得到正弦定理其他步驟2、在銳角△ABC中,證明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,

      4過三角形ABC的.頂點(diǎn)A作BC邊上的高,垂足為D、(1)當(dāng)D落在邊BC上時(shí),向量AB與向量AD的夾角為90°—B,向量AC與向量AD的夾角為90°—C,由于向量AB、向量AC在向量AD方向上的射影相等,有數(shù)量積的幾何意義可知向量AB—向量AD=向量AC—向量AD即向量AB的絕對(duì)值—向量AD的絕對(duì)值—COS(90°—B)=向量的AC絕對(duì)值—向量AD的絕對(duì)值—cos(90°—C)所以csinB=bsinC即b/sinB=c/sinC(2)當(dāng)D落在BC的延長線上時(shí),同樣可以證得

    數(shù)學(xué)定理的教案8

      教學(xué)目標(biāo)

      1、知識(shí)與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。

      2、過程與方法目標(biāo):經(jīng)歷用測(cè)量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。

      3、情感態(tài)度與價(jià)值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動(dòng)探究的習(xí)慣,并進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

      教學(xué)重點(diǎn)

      了解勾股定理的由來,并能用它來解決一些簡單的問題。

      教學(xué)難點(diǎn)

      勾股定理的探究以及推導(dǎo)過程。

      教學(xué)過程

      一、創(chuàng)設(shè)問題情景、導(dǎo)入新課

      首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻(xiàn),結(jié)合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的.貢獻(xiàn)。

      出示課件觀察后回答:

      1、觀察圖1—2,正方形A中有_______個(gè)小方格,即A的面積為______個(gè)單位。

      正方形B中有_______個(gè)小方格,即B的面積為______個(gè)單位。

      正方形C中有_______個(gè)小方格,即C的面積為______個(gè)單位。

      2、你是怎樣得出上面的結(jié)果的?

      3、在學(xué)生交流回答的基礎(chǔ)上教師進(jìn)一步設(shè)問:圖1—2中,A,B,C面積之間有什么關(guān)系?學(xué)生交流后得到結(jié)論:A+B=C。

      二、層層深入、探究新知

      1、做一做

      出示投影3(書中P3圖1—3)

      提問:(1)圖1—3中,A,B,C之間有什么關(guān)系?(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?

      學(xué)生討論、交流后,得出結(jié)論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。

      2、議一議

      圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?

      (1)你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?在同學(xué)交流的基礎(chǔ)上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

     。2)分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長度(學(xué)生測(cè)量后回答斜邊長為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?

      3、想一想

      我們常見的電視的尺寸:29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運(yùn)用剛才所學(xué)的知識(shí),檢驗(yàn)一下電視劇的尺寸是否合格?

      三、鞏固練習(xí)。

      1、在圖1—1的問題中,折斷之前旗桿有多高?

      2、錯(cuò)例辨析:△ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應(yīng)滿足

      =25即:c=5辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題三角形ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并未交待C是斜邊。

      綜上所述這個(gè)題目條件不足,第三邊無法求得

      四、課堂小結(jié)

      鼓勵(lì)學(xué)生自己總結(jié)、談?wù)勛约罕竟?jié)課的收獲,以及自己對(duì)勾股定理的理解,老師加以糾正和補(bǔ)充。

      五、布置作業(yè)

    數(shù)學(xué)定理的教案9

      一、教學(xué)目標(biāo)

      【知識(shí)與技能】

      理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

      【過程與方法】

      經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

      【情感、態(tài)度與價(jià)值觀】

      體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

      二、教學(xué)重難點(diǎn)

      【重點(diǎn)】勾股定理的'逆定理及其證明。

      【難點(diǎn)】勾股定理的逆定理的證明。

      三、教學(xué)過程

      (一)導(dǎo)入新課

      復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。

      提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。

      出示古埃及人利用等長的3、4、5個(gè)繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。

      (二)講解新知

      請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確

      出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

      學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗(yàn)是否為直角三角形。

    數(shù)學(xué)定理的教案10

      復(fù)習(xí)第一步::

      勾股定理的有關(guān)計(jì)算

      例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個(gè)正方形,則此正方形的面積為.

      析解:圖中陰影是一個(gè)正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

      勾股定理解實(shí)際問題

      例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.

      析解:彩旗自然下垂的長度就是矩形DCEF

      的對(duì)角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,

      得DE=h=220-150=70(cm)

      所以彩旗下垂時(shí)的最低處離地面的最小高度h為70cm

      與展開圖有關(guān)的計(jì)算

      例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的'表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.

      析解:正方體是由平面圖形折疊而成,反之,一個(gè)正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長度.

      在矩形ACC’A’中,因?yàn)锳C=2,CC’=1

      所以由勾股定理得AC’=.

      ∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為

      復(fù)習(xí)第二步:

      1.易錯(cuò)點(diǎn):本節(jié)同學(xué)們的易錯(cuò)點(diǎn)是:在用勾股定理求第三邊時(shí),分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯(cuò)誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時(shí)要弄清楚解題中的三角形是否為直角三角形.

      例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

      錯(cuò)解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒有分清直角三角形的斜邊和直角邊,錯(cuò)把c當(dāng)成了斜邊.

      正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時(shí),一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2

      例5:已知一個(gè)Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

      錯(cuò)解:因?yàn)镽t△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25

      剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

      正解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長的平方是25;當(dāng)4為斜邊時(shí),第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

      溫馨提示:在用勾股定理時(shí),當(dāng)斜邊沒有確定時(shí),應(yīng)進(jìn)行分類討論.

      例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.

      錯(cuò)解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

    數(shù)學(xué)定理的教案11

      一、教學(xué)目標(biāo)

      1、靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題、

      2、進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)、

      二、重點(diǎn)、難點(diǎn)

      1、重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題、

      2、難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題、

      3、難點(diǎn)的突破方法:

      三、課堂引入

      創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法、

      四、例習(xí)題分析

      例1(p83例2)

      分析:⑴了解方位角,及方位名詞;

      ⑵依題意畫出圖形;

     、且李}意可得pr=12×1。5=18,pq=16×1。5=24,qr=30;

     、纫?yàn)?42+182=302,pq2+pr2=qr2,根據(jù)勾股定理的逆定理,知∠qpr=90°;

     、伞蟨rs=∠qpr—∠qps=45°、

      小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí)、

      例2(補(bǔ)充)一根30米長的.細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀、

      分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

      ⑵設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;

     、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形

      本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識(shí)

    數(shù)學(xué)定理的教案12

      高中數(shù)學(xué)正弦定理教案,一起拉看看吧。

      本節(jié)內(nèi)容是正弦定理教學(xué)的第一節(jié)課,其主要任務(wù)是引入并證明正弦定理.做好正弦定理的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力.

      本節(jié)課以及后面的解三角形中涉及到計(jì)算器的使用與近似計(jì)算,這是一種基本運(yùn)算能力,學(xué)生基本上已經(jīng)掌握了.若在解題中出現(xiàn)了錯(cuò)誤,則應(yīng)及時(shí)糾正,若沒出現(xiàn)問題就順其自然,不必花費(fèi)過多的時(shí)間.

      本節(jié)可結(jié)合課件“正弦定理猜想與驗(yàn)證”學(xué)習(xí)正弦定理.

      三維目標(biāo)

      1.通過對(duì)任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法,會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題.

      2.通過正弦定理的探究學(xué)習(xí),培養(yǎng)學(xué)生探索數(shù)學(xué)規(guī)律的思維能力,培養(yǎng)學(xué)生用數(shù)學(xué)的方法去解決實(shí)際問題的能力.通過學(xué)生的積極參與和親身實(shí)踐,并成功解決實(shí)際問題,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的熱情,培養(yǎng)學(xué)生獨(dú)立思考和勇于探索的創(chuàng)新精神.

      重點(diǎn)難點(diǎn)

      教學(xué)重點(diǎn):正弦定理的證明及其基本運(yùn)用.

      教學(xué)難點(diǎn):正弦定理的探索和證明;已知兩邊和其中一邊的對(duì)角解三角形時(shí),判斷解的個(gè)數(shù).

      課時(shí)安排

      1課時(shí)

      教學(xué)過程

      導(dǎo)入新課

      思路1.(特例引入)教師可先通過直角三角形的特殊性質(zhì)引導(dǎo)學(xué)生推出正弦定理形式,如Rt△ABC中的邊角關(guān)系,若∠C為直角,則有a=csinA,b=csinB,這兩個(gè)等式間存在關(guān)系嗎?學(xué)生可以得到asinA=bsinB,進(jìn)一步提問,等式能否與邊c和∠C建立聯(lián)系?從而展開正弦定理的探究.

      思路2.(情境導(dǎo)入)如圖,某農(nóng)場(chǎng)為了及時(shí)發(fā)現(xiàn)火情,在林場(chǎng)中設(shè)立了兩個(gè)觀測(cè)點(diǎn)A和B,某日兩個(gè)觀測(cè)點(diǎn)的林場(chǎng)人員分別測(cè)到C處有火情發(fā)生.在A處測(cè)到火情在北偏西40°方向,而在B處測(cè)到火情在北偏西60°方向,已知B在A的正東方向10千米處.現(xiàn)在要確定火場(chǎng)C距A、B多遠(yuǎn)?將此問題轉(zhuǎn)化為數(shù)學(xué)問題,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC與BC的長.”這就是一個(gè)解三角形的問題.為此我們需要學(xué)習(xí)一些解三角形的必要知識(shí),今天要探究的是解三角形的第一個(gè)重要定理——正弦定理,由此展開新課的`探究學(xué)習(xí).

      推進(jìn)新課

      新知探究

      提出問題

      1閱讀本章引言,明確本章將學(xué)習(xí)哪些內(nèi)容及本章將要解決哪些問題?

      2聯(lián)想學(xué)習(xí)過的三角函數(shù)中的邊角關(guān)系,能否得到直角三 角形中角與它所對(duì)的邊之間在數(shù)量上有什么關(guān)系?

      3由2得到的數(shù)量關(guān)系式,對(duì)一般三角形是否仍然成立?

      4正弦定理的內(nèi)容是什么,你能用文字語言敘述它嗎?你能用哪些方法證明它?

      5什么叫做解三角形?

      6利用正弦定理可以解決一些怎樣的三角形問題呢?

      活動(dòng):教師引導(dǎo)學(xué)生閱讀本章引言,點(diǎn)出本章數(shù)學(xué)知識(shí)的某些重要的實(shí)際背景及其實(shí)際需要,使學(xué)生初步認(rèn)識(shí)到學(xué)習(xí)解三角形知識(shí)的必要性.如教師可提出以下問題:怎樣在航行途中測(cè)出海上兩個(gè)島嶼之間的距離?怎樣測(cè)出海上航行的輪船的航速和航向?怎樣測(cè)量底部不可到達(dá)的建筑物的高度?怎樣在水平飛行的飛機(jī)上測(cè)量飛機(jī)下方山頂?shù)暮0胃叨龋窟@些實(shí)際問題的解決需要我們進(jìn)一步學(xué)習(xí)任意三角形中邊與角關(guān)系的有關(guān)知識(shí).讓學(xué)生明確本章將要學(xué)習(xí)正弦定理和余弦定理,并學(xué)習(xí)應(yīng)用這兩個(gè)定理解三角形及解決測(cè)量中的一些問題.

      關(guān)于任意三角形中大邊對(duì)大角、小 邊對(duì)小角的邊角關(guān)系,教師引導(dǎo)學(xué)生探究其數(shù)量關(guān)系.先觀察特殊的直角三角形.如下圖,在Rt△ABC中,設(shè)BC=a,AC=b,AB=c,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有ac=sinA,bc=sinB,又sinC=1=cc,則asinA=bsinB=csinC=c.從而在Rt△ABC中,asinA=bsinB=csinC.

      那么對(duì)于任意的三角形,以上關(guān)系式是否仍然成立呢?教師引導(dǎo)學(xué)生畫圖討論分析.

      如下圖,當(dāng)△ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角的三角函數(shù)的定義,有CD=asinB=bsinA,則asinA=bsinB.同理,可得csinC=bsinB.從而asinA=bsinB=csinC.

      (當(dāng)△ABC是鈍角三角形時(shí),解法類似銳角三角形的情況,由學(xué)生自己完成)

      通過上面的討論和探究,我們知道在任意三角形中,上述等式都成立.教師點(diǎn)出這就是今天要學(xué)習(xí)的三角形中的重要定理——正弦定理.

      正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即

      asinA=bsinB=csinC

      上述的探究過程就是正弦定理的證明方法,即分直角三角形、銳角三角形、鈍角三角形三種情況進(jìn)行證明.教師提醒學(xué)生要掌握這種由特殊到一般的分類證明思想,同時(shí)點(diǎn)撥學(xué)生觀察正弦定理的特征.它指出了任意三角形中,各邊與其對(duì)應(yīng)角的正弦之間的一個(gè)關(guān)系式.正弦定理的重要性在于它非常好地描述了任意三角形中邊與角的一種數(shù)量關(guān)系;描述了任意三角形中大邊對(duì)大角的一種準(zhǔn)確的數(shù)量關(guān)系.因?yàn)槿绻螦<∠B,由三角形性質(zhì),得a<b.當(dāng)∠A、∠B都是銳角,由正弦函數(shù)在區(qū)間(0,π2)上的單調(diào)性,可知sinA<sinB.當(dāng)∠A是銳角,∠B是鈍角時(shí),由于∠A+∠B<π,因此∠B<π-∠A,由正弦函數(shù)在區(qū)間(π2,π)上的單調(diào)性,可知sinB>sin(π-A)=sinA,所以仍有sinA<sinB.

      正弦定理的證明方法很多,除了上述的證明方法以外,教師鼓勵(lì)學(xué)生課下進(jìn)一步探究正弦定理的其他證明方法.

      討論結(jié)果:

      (1)~(4)略.

      (5)已知三角形的幾個(gè)元素(把三角形的三個(gè)角A、B、C和它們的對(duì)邊a、b、c叫做三角形的元素)求其他元素的過程叫做解三角形.

      (6)應(yīng)用正弦定理可解決兩類解三角形問題:①已知三角形的任意兩個(gè)角與一邊,由三角形內(nèi)角和定理,可以計(jì)算出三角形的另一角,并由正弦定理計(jì)算出三角形的另兩邊,即“兩角一邊問題”.這類問題的解是唯一的.②已知三 角形的任意兩邊與其中一邊的對(duì)角,可以計(jì)算出另一邊的對(duì)角的正弦值,進(jìn)而確定這個(gè)角和三角形其他的邊和 角,即“兩邊一對(duì)角問題”.這類問題的答案有時(shí)不是唯一的,需根據(jù)實(shí)際情況分類討論.

      應(yīng)用示例

      例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.

      活動(dòng):解三角形就是已知三角形的某些邊和角,求其他的邊和角的過程,在本例中就是求解∠C,b,c.

      此題屬于已知兩角和其中一角所對(duì)邊的問題,直接應(yīng)用正弦定理可求出邊b,若求邊c,則先求∠C,再利用正弦定理即可.

      解:根據(jù)三角形內(nèi)角和定理,得

      ∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.

      根據(jù)正弦定理,得

      b=asinBsinA=42.9sin81.8°sin32.0°≈80.1(cm);

      c=asinCsinA=42.9sin66.2°sin32.0°≈74.1(cm).

      點(diǎn)評(píng):(1)此類問題結(jié)果為唯一解,學(xué)生較易掌握,如果已知兩角及兩角所夾的邊,也是先利用三角形內(nèi)角和定理180°求出第三個(gè)角,再利用正弦定理.

    數(shù)學(xué)定理的教案13

      一、教材分析

      “解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn) “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。

      二、學(xué)情分析

      我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。

      三、教學(xué)目標(biāo)

      1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。

      過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

      情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的`普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

      2、教學(xué)重點(diǎn)、難點(diǎn)

      教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

      教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

      四、教學(xué)方法與手段

      為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

      五、教學(xué)過程

      為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:

      (一)創(chuàng)設(shè)情景,揭示課題

      問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?

      1671年兩個(gè)法國天文學(xué)家首次測(cè)出了地月之間的距離大約為 385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?

      問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

      [設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。

      (二)特殊入手,發(fā)現(xiàn)規(guī)律

      問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來嗎?

      引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。

      (三)類比歸納,嚴(yán)格證明

      問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個(gè)結(jié)論還成立嗎?

      [設(shè)計(jì)說明]此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

    數(shù)學(xué)定理的教案14

      一、學(xué)生知識(shí)狀況分析

      學(xué)生技能基礎(chǔ):學(xué)生在以前的幾何學(xué)習(xí)中,已經(jīng)學(xué)習(xí)過平行線的判定定理與平行線的性質(zhì)定理以及它們的嚴(yán)格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學(xué)生掌握了平行線的性質(zhì)及嚴(yán)格的證明等知識(shí)的基礎(chǔ)上展開的,因此,學(xué)生具有良好的基礎(chǔ)。

      活動(dòng)經(jīng)驗(yàn)基礎(chǔ): 本節(jié)課主要采取的 活動(dòng)形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習(xí)方式,學(xué)生具有較熟悉的活動(dòng)經(jīng)驗(yàn).

      二、教學(xué)任務(wù)分析

      上一節(jié)課的學(xué)習(xí)中,學(xué)生對(duì)于平行線的判定定理和性質(zhì)定理以及與平行線相關(guān)的簡單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識(shí),形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線的相關(guān)知識(shí)來推導(dǎo)出新的定理以及靈活運(yùn)用新的定理解決相關(guān)問題。為此,本節(jié)課的教學(xué)目標(biāo)是:

      知識(shí)與技能:(1)掌握三角形內(nèi)角和定理的證明及簡單應(yīng)用。

      (2)靈活運(yùn)用三角形內(nèi)角和定理解決相關(guān)問題。

      數(shù)學(xué)能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。

      情感與態(tài)度:對(duì)比過去撕紙等探索過程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化 的理性作用.

      三、教學(xué)過程分析

      本節(jié)課的設(shè)計(jì)分為四個(gè)環(huán)節(jié):情境引入探索新知反饋練習(xí)課堂小結(jié)

      第一環(huán)節(jié):情境引入

      活動(dòng)內(nèi)容:(1)用折紙的方法驗(yàn)證三角形內(nèi)角和定理.

      實(shí)驗(yàn)1:先將紙片三角形一角折向其對(duì)邊,使頂點(diǎn)落在對(duì)邊上,折線與對(duì)邊平行(圖6-38(1))然后把另外兩角相向?qū)φ,使其頂點(diǎn)與已折角的頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果

      (1) (2) (3) (4)

      試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?

      (2)實(shí)驗(yàn)2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。

      試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個(gè)角呢?

      活動(dòng)目的:

      對(duì)比過去撕紙等探索過程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。將自己的操作轉(zhuǎn)化為符號(hào)語言對(duì)于學(xué)生來說還存在一定困難,因此需要一個(gè)臺(tái)階,使學(xué)生逐步過渡到嚴(yán)格的證明.

      教學(xué)效果:

      說理過程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說出用撕紙的方法可以驗(yàn)證三角形內(nèi)角和定理的原因。

      第二環(huán)節(jié):探索新知

      活動(dòng)內(nèi)容:

     、 用嚴(yán)謹(jǐn)?shù)淖C明來論證三角形內(nèi) 角和定理.

      ② 看哪個(gè)同學(xué)想的方法最多?

      方法一:過A點(diǎn)作DE∥BC

      ∵DE∥BC

      DAB=B,EAC=C(兩直線平行,內(nèi)錯(cuò)角相等)

      ∵DAB+BAC+EAC=180

      BAC+ C=180(等量代換)

      方法二:作BC的延長線CD,過點(diǎn)C作射線CE∥BA.

      ∵CE∥BA

      ECD(兩直線平行,同位角相等)

      ACE(兩直線平行,內(nèi)錯(cuò)角相等)

      ∵BCA+ACE+ECD=180

      B+ACB=180(等量代換)

      活動(dòng)目的':

      用平行線的判定定理及性質(zhì)定理來推導(dǎo)出新的定理,讓學(xué)生再次體會(huì)幾何證明的嚴(yán)密性和數(shù)學(xué)的嚴(yán)謹(jǐn),培養(yǎng) 學(xué)生的邏輯推理能力。

      教學(xué)效果:

      添輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線創(chuàng)造條件,以達(dá)到 證明的目的.

      第三環(huán)節(jié):反饋練習(xí)

      活動(dòng)內(nèi)容:

      (1)△ABC中可以有3個(gè)銳角嗎? 3個(gè)直角呢? 2個(gè)直角呢?若有1個(gè)直角另外兩角有什么特點(diǎn)?

      (2)△ABC中 ,C=90,A=30,B=?

      (3)A=50,C,則△ABC中B=?

      (4)三角形的三個(gè)內(nèi)角中,只能有____個(gè)直角或____個(gè)鈍角.

      (5)任何一個(gè)三角形中,至少有____個(gè)銳角;至多有____個(gè)銳角.

      (6)三角形中三角之比 為1∶2∶3,則三個(gè)角各為多少度?

      (7)已知:△ABC中,B=2A。

      (a)求B的度數(shù);

      (b)若BD是AC邊上的高,求 DBC的度數(shù)?

      活動(dòng)目的:

      通過學(xué)生的 反饋練習(xí),使教師能全面了解學(xué)生對(duì)三角形內(nèi)角和定理的概念是否清楚,能否靈活運(yùn)用三角形內(nèi)角和定理,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.

      教學(xué)效果:

      學(xué)生對(duì)于三角形內(nèi)角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內(nèi)角和定理相關(guān)的問題。

      第四環(huán)節(jié):課堂小結(jié)

      活動(dòng)內(nèi)容:

     、 證明三角形內(nèi)角和定理有哪幾種方法?

     、 輔助線的作法技巧.

     、 三 角形內(nèi)角和定理的簡單應(yīng)用.

      活動(dòng)目的:

      復(fù)習(xí)鞏固本課知識(shí),提高學(xué)生的掌握程度.

      教學(xué)效果:

      學(xué)生對(duì)于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運(yùn)用三角形內(nèi)角和定理進(jìn)行相關(guān)證明.

      課后練習(xí):課本第239頁隨堂練習(xí);第241頁習(xí)題6.6第1,2,3題

      四、教學(xué)反思

      三角形的有關(guān)知識(shí)是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識(shí),也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識(shí)相關(guān)聯(lián)的知識(shí),看似簡單,但如果處理不好,會(huì)導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計(jì)力圖實(shí)現(xiàn)以下特點(diǎn):

      (1) 通過折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗(yàn),然后從學(xué)生的直接經(jīng)驗(yàn)出發(fā),逐步轉(zhuǎn)到符號(hào)化處理,最后達(dá)到推理論證的要求。

      (2) 充分展示學(xué)生的個(gè)性,體現(xiàn)學(xué)生是學(xué)習(xí)的主人這一主題。

      (3) 添加輔助線是教學(xué)中的一個(gè)難點(diǎn), 如何添加輔助線則應(yīng)允許學(xué)生展開思考并爭論,展示學(xué)生的思維過程,然后在老師的引導(dǎo)下達(dá)成共識(shí)。

    數(shù)學(xué)定理的教案15

      教學(xué)目的:

      1、知識(shí)與技能:了解命題的概念,并能區(qū)分命題的題設(shè)和結(jié)論.

      2、經(jīng)歷判斷命題真假的過程,對(duì)命題的真假有一個(gè)初步的了解.

      3、初步培養(yǎng)學(xué)生不同幾何語言相互轉(zhuǎn)化的能力.

      重點(diǎn):命題的概念和區(qū)分命題的題設(shè)與結(jié)論.

      難點(diǎn):區(qū)分命題的題設(shè)和結(jié)論.

      教學(xué)過程

      一、創(chuàng)設(shè)情境復(fù)習(xí)導(dǎo)入

      教師出示下列問題:

      1.平行線的判定方法有哪些?

      2.平行線的性質(zhì)有哪些.

      學(xué)生能積極的思考教師所出示的各個(gè)問題復(fù)習(xí)鞏固有關(guān)的知識(shí)點(diǎn)為本節(jié)課的學(xué)習(xí)打下良好的基礎(chǔ).(注意:平行線的判定方法三種,另外還有平行公理的推論)

      二、嘗試活動(dòng)探索新知

      (1)教師給出下列語句

     、偃绻麅蓷l直線都與第三條直線平行,那么這條直線也互相平行;

     、诘仁絻蛇叾技油粋(gè)數(shù),結(jié)果仍是等式;

     、蹖(duì)頂角相等;

     、苋绻麅蓷l直線不平行,那么同位角不相等.

      學(xué)生學(xué)生能由教師的引導(dǎo)分析每個(gè)語句的特點(diǎn).思考:你能說一說這4個(gè)語句有什么共同點(diǎn)嗎?并能耐總結(jié)出這些語句都是對(duì)某一件事情作出“是”或“不是”的判斷.初步感受到有些數(shù)學(xué)語言是對(duì)某件事作出判斷的。

      (2)教師給出命題的定義

      判斷一件事情的語句,叫做命題.

      (3)命題的組成.

     、倜}由題設(shè)和結(jié)論兩部分組成.題設(shè)是已知事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng).

     、诿}的'形成,可以寫成“如果……,那么……”的形式。

      真命題與假命題:

      教師出示問題:

      如果兩個(gè)角相等,那么它們是對(duì)頂角.

      如果a>b.b>c那么a=b

      如果兩個(gè)角互補(bǔ),那么它們是鄰補(bǔ)角.

      三、嘗試反饋理解新知

      明確命題有正確與錯(cuò)誤之分:

      命題的正確性是我們經(jīng)過推理證實(shí)的,這樣得到的真命題叫做定理,作為真命題,定理也可以作為繼續(xù)推理的依據(jù).

      1.“等式兩邊乘同一個(gè)數(shù),結(jié)果仍是等式”是命題嗎?它們題設(shè)和結(jié)論分別是什么?

      2.命題“兩條平行線被第三第直線所截,內(nèi)錯(cuò)角相等”是正確的?命題“如果兩個(gè)角互補(bǔ),那么它們是鄰補(bǔ)角”是正確嗎?再舉出一些命題的例子,判斷它們是否正確.

      四、總結(jié)拓展:教師引導(dǎo)學(xué)生完成本節(jié)課的小結(jié),強(qiáng)調(diào)重要的知識(shí)點(diǎn).

      五、布置作業(yè):習(xí)題5.3第11題.

    【數(shù)學(xué)定理的教案】相關(guān)文章:

    勾股定理教案02-11

    余弦定理教案01-11

    《勾股定理應(yīng)用》教案08-28

    勾股定理應(yīng)用優(yōu)秀教案08-26

    《正弦定理和余弦定理》復(fù)習(xí)課教學(xué)設(shè)計(jì)12-03

    《正弦定理、余弦定理》教學(xué)設(shè)計(jì)范文(通用10篇)05-10

    正弦定理的教學(xué)反思07-21

    《勾股定理》教學(xué)設(shè)計(jì)04-28

    八年級(jí)數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)05-09