八年級數(shù)學(xué)教案15篇
作為一無名無私奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。我們應(yīng)該怎么寫教案呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案,希望能夠幫助到大家。
八年級數(shù)學(xué)教案1
【教學(xué)目標(biāo)】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質(zhì)
3、探索三角形的中位線的性質(zhì)的一些簡單的應(yīng)用
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):三角形的中位線定理。
難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。
【教學(xué)過程】
。ㄒ唬﹦(chuàng)設(shè)情景,引入新課
1、如圖,為了測量一個池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>
。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
(2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導(dǎo)學(xué)生概括出中位線的概念。
問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?
啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個頂點(diǎn)。
4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)
(二)、師生互動,探究新知
1、證明你的猜想
引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。
(已知:⊿ABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)
啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)
啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補(bǔ)短)
學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強(qiáng)調(diào)有其他證法。
證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四邊形BCFD是平行四邊形(一組對邊平行且相等的.四邊形是平行四邊形),
∴DF∥BC(根據(jù)什么?),
∴DE 1/2BC
2、啟發(fā)學(xué)生歸納定理,并用文字語言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。
。ㄈ⿲W(xué)以致用、落實(shí)新知
1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長是多少?
2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。
求證:四邊形EFGH是平行四邊形。
啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會聯(lián)想到什么圖形?
啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,
∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG 1/2AC。
∴EF HG。
∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)
挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?
。ㄋ模⿲W(xué)生練習(xí),鞏固新知
1、請回答引例中的問題(1)
2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點(diǎn)。求證:∠PNM=∠PMN
。ㄎ澹┬〗Y(jié)回顧,反思提高
今天你學(xué)到了什么?還有什么困惑?
八年級數(shù)學(xué)教案2
一、學(xué)習(xí)目標(biāo)
1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理。
二、重點(diǎn)難點(diǎn)
重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的.過程。
三、合作學(xué)習(xí)
。ㄒ唬┗仡檰雾(xiàng)式除以單項(xiàng)式法則
(二)學(xué)生動手,探究新課
1.計(jì)算下列各式:
(1)(am+bm)÷m;
。2)(a2+ab)÷a;
。3)(4x2y+2xy2)÷2xy。
2.提問:
、僬f說你是怎樣計(jì)算的;
、谶有什么發(fā)現(xiàn)嗎?
。ㄈ┛偨Y(jié)法則
1.多項(xiàng)式除以單項(xiàng)式:先把這個多項(xiàng)式的每一項(xiàng)除以XXXXXXXXXXX,再把所得的商XXXXXX
2.本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成XXXXXXXXXXXXXX
四、精講精練
例:(1)(12a3—6a2+3a)÷3a;
。2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
。3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
隨堂練習(xí):教科書練習(xí)。
五、小結(jié)
1、單項(xiàng)式的除法法則
2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:
A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過程中注意單項(xiàng)式的系數(shù)飽含它前面的符號;
B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);
C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個因式,不要遺漏;
D、要注意運(yùn)算順序,有乘方要先做乘方,有括號先算括號里的,同級運(yùn)算從左到右的順序進(jìn)行;
E、多項(xiàng)式除以單項(xiàng)式法則。
八年級數(shù)學(xué)教案3
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識與技能
1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的`點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學(xué)教案4
【教學(xué)目標(biāo)】
一、教學(xué)知識點(diǎn)
1.命題的組成.
2.命題真假的判斷。
二、能力訓(xùn)練要求:
1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假
2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法
三、情感與價值觀要求:
1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一
2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣
3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值
【教學(xué)重點(diǎn)】準(zhǔn)確的找出命題的條件和結(jié)論
【教學(xué)難點(diǎn)】理解判斷一個真命題需要證明
【教學(xué)方法】探討、合作交流
【教具準(zhǔn)備】投影片
【教學(xué)過程】
一、情景創(chuàng)設(shè)、引入新課
師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?
新課:
。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。
1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。
2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。
3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。
4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。
5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。
師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。
二、例題講解:
例1:師:下列命題的`條件是什么?結(jié)論是什么?
1.如果兩個角相等,那么他們是對頂角;
2.如果a>b,b>c,那么a=c;
3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;
4.菱形的四條邊都相等;
5.全等三角形的面積相等。
例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。
2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴(kuò)展成這種形式,以分清條件和結(jié)論。
例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。
師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。
教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。
三、思維拓展:
拓展1.師:如何證實(shí)一個命題是真命題呢?請同學(xué)們分小組交流一下。
教學(xué)建議:不急于解決學(xué)生怎么證實(shí)真命題的問題,可按以下程序設(shè)計(jì)教學(xué)過程
。1)首先給學(xué)生介紹歐幾里得的《原本》
。2)引出概念:公理、定理,證明
。3)啟發(fā)學(xué)生,現(xiàn)在如何證實(shí)一個命題的正確性
。4)給出本套教材所選用如下6個命題作為公理
。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。
拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?
建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實(shí)踐驗(yàn)證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。
練習(xí)書p197習(xí)題6.31
四、問題式總結(jié)
師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?
建議:可對學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點(diǎn)、命題是否都正確、如何判斷一個命題是假命題、如何證實(shí)一個命題是真命題。
作業(yè):書p197習(xí)題6.32、3
板書設(shè)計(jì):
定義與命題
課時2
條件
1.命題的結(jié)構(gòu)特征
結(jié)論
1.假命題——可以舉反例
2.命題真假的判別
2.真命題——需要證明 學(xué)生活動一——
探索命題的結(jié)構(gòu)特征
學(xué)生觀察、分組討論,得出結(jié)論:
。1)這五個命題都是用“如果……那么……”形式敘述的
。2)這五個命題都是由已知得到結(jié)論
(3)這五個命題都有條件和結(jié)論
學(xué)生活動二——
探索命題的條件和結(jié)論
生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。
學(xué)生活動三
探索命題的真假——如何判斷假命題
生:可以舉一個例子,說明命題1是不正確的,如圖:
已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角
生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c
生:由此說明:命題1、2是不正確的
生:命題3、4、5是正確的
學(xué)生活動四
探索命題的真假——如何證實(shí)一個命題是真命題
學(xué)生交流:
生:用我們以前學(xué)過的觀察、實(shí)驗(yàn)、驗(yàn)證特例等方法
生:這些方法往往并不可靠
生:能夠根據(jù)已知道的真命題證實(shí)呢?
生:那已經(jīng)知道的真命題又是如何證實(shí)的?
生:那可怎么辦呢?
生:可通過證明的方法
學(xué)生分小組討論得出結(jié)論
生:命題的結(jié)構(gòu)特征:條件和結(jié)論
生:命題有真假之分
生:可以通過舉反例的方法判斷假命題
生:可通過證明的方法證實(shí)真命題
八年級數(shù)學(xué)教案5
創(chuàng)設(shè)情境
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。
根據(jù)平行四邊形的定義,我們研究了平行四邊形的`其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
探究歸納
平行四邊形的判定方法:
證明:兩組對邊分別相等的四邊形是平行四邊形
已知:
求證:
做一做:將四根細(xì)木條(其中兩條長相等,另外兩條長也相等)用小釘子釘在一起,做成一個四邊形,使等長的木條成為對邊。它是平行四邊形嗎?
學(xué)生交流:把你做的四邊形和其他同學(xué)做的進(jìn)行比較,看看是否都是平行四邊形。
觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形
練習(xí):如圖,在ABCD中,E,F(xiàn),G和H分別是各邊中點(diǎn).求證:四邊形EFGH為平行四邊形
八年級數(shù)學(xué)教案6
一、教學(xué)目標(biāo):
1、加深對加權(quán)平均數(shù)的理解
2、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題
3、會用計(jì)算器求加權(quán)平均數(shù)的值
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
3、難點(diǎn)的突破方法:
首先應(yīng)先復(fù)習(xí)組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的'好處是簡化了計(jì)算量。
為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會表格的實(shí)際意義。
三、例習(xí)題的意圖分析
1、教材P140探究欄目的意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法。
(2)、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計(jì)知識可以解決生活中的許多實(shí)際問題
(2)、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
3、P141利用計(jì)算器計(jì)算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計(jì)算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡單。統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了。
四、課堂引入
采用教材原有的引入問題,設(shè)計(jì)的幾個問題如下:
(1)、請同學(xué)讀P140探究問題,依據(jù)統(tǒng)計(jì)表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的?
(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
五、隨堂練習(xí)
1、某校為了了解學(xué)生作課外作業(yè)所用時間的情況,對學(xué)生作課外作業(yè)所用時間進(jìn)行調(diào)查,下表是該校初二某班50名學(xué)生某一天做數(shù)學(xué)課外作業(yè)所用時間的情況統(tǒng)計(jì)表
所用時間t(分鐘)人數(shù)
0 0<≤ 6 20 30 40 50 (1)、第二組數(shù)據(jù)的組中值是多少? (2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時間 2、某班40名學(xué)生身高情況如下圖, 請計(jì)算該班學(xué)生平均身高 答案1.(1).15. (2)28. 2. 165 六、課后練習(xí): 1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表 部門A B C D E F G 人數(shù)1 1 2 4 2 2 5 每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2 該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元? 2、下表是截至到20xx年費(fèi)爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計(jì)算獲費(fèi)爾茲獎得主獲獎時的平均年齡? 年齡頻數(shù) 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個居民區(qū)進(jìn)行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。 答案:1.約2.95萬元2.約29歲3.60.54分貝 教學(xué)目標(biāo) 1.知識與技能 領(lǐng)會運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力. 2.過程與方法 經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟. 3.情感、態(tài)度與價值觀 培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力. 重、難點(diǎn)與關(guān)鍵 1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會應(yīng)用. 2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解. 3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的 教學(xué)方法 采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容. 教學(xué)過程 一、回顧交流,導(dǎo)入新知 【問題牽引】 1.分解因式: (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2; (3)x2-0.01y2. 【知識遷移】 2.計(jì)算下列各式: (1)(m-4n)2;(2)(m+4n)2; (3)(a+b)2;(4)(a-b)2. 【教師活動】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律. 3.分解因式: (1)m2-8mn+16n2(2)m2+8mn+16n2; (3)a2+2ab+b2;(4)a2-2ab+b2. 【學(xué)生活動】從逆向思維的角度入手,很快得到下面答案: 解: (1)m2-8mn+16n2=(m-4n)2; (2)m2+8mn+16n2=(m+4n)2; (3)a2+2ab+b2=(a+b)2; (4)a2-2ab+b2=(a-b)2. 【歸納公式】完全平方公式a2±2ab+b2=(a±b)2. 二、范例學(xué)習(xí),應(yīng)用所學(xué) 【例1】把下列各式分解因式: (1)-4a2b+12ab2-9b3; (2)8a-4a2-4; (3)(x+y)2-14(x+y)+49;(4)+n4. 【例2】如果x2+axy+16y2是完全平方,求a的值. 【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3. 三、隨堂練習(xí),鞏固深化 課本P170練習(xí)第1、2題. 【探研時空】 1.已知x+y=7,xy=10,求下列各式的值. (1)x2+y2;(2)(x-y)2 2.已知x+=-3,求x4+的值. 四、課堂總結(jié),發(fā)展?jié)撃?/p> 由于多項(xiàng)式的`因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項(xiàng)式因式分解的公式,主要的有以下三個: a2-b2=(a+b)(a-b); a2±ab+b2=(a±b)2. 在運(yùn)用公式因式分解時,要注意: (1)每個公式的形式與特點(diǎn),通過對多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時,考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時,應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時,應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解. 五、布置作業(yè),專題突破 一、內(nèi)容和內(nèi)容解析 1.內(nèi)容 三角形高線、中線及角平分線的概念、幾何語言表達(dá)及它們的畫法. 2.內(nèi)容解析 本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動手操作及解決問題的能力;鼓勵學(xué)生主動參與,體驗(yàn)幾何知識在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛生活、勇于探索的思想感情。 理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個深入.學(xué)習(xí)了這一課,對于學(xué)生增長幾何知識,運(yùn)用幾何知識解決生活中的有關(guān)問題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準(zhǔn)備. 本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點(diǎn)是鈍角三角形的`高的畫法及不同類型的三角形高線的位置關(guān)系. 二、目標(biāo)和目標(biāo)解析 1.教學(xué)目標(biāo) (1)理解三角形的高、中線與角平分線等概念; (2)會用工具畫三角形的高、中線與角平分線; 2.教學(xué)目標(biāo)解析 (1)經(jīng)歷畫圖實(shí)踐過程,理解三角形的高、中線與角平分線等概念. (2)能夠熟練用幾何語言表達(dá)三角形的高、中線與角平分線的性質(zhì). (3)掌握三角形的高、中線與角平分線的畫法. (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn). 三、教學(xué)問題診斷分析 三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點(diǎn)是三角形的頂點(diǎn),另一個端點(diǎn)在這個頂點(diǎn)的對邊或?qū)吽诘闹本上. 三角形的中線的理解:三角形的中線也是線段,它是一個頂點(diǎn)和對邊中點(diǎn)的連線,它的一個端點(diǎn)是三角形的頂點(diǎn),另一個端點(diǎn)是這個頂點(diǎn)的對邊中點(diǎn). 三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個端點(diǎn),另一個端點(diǎn)在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別. 一、課堂導(dǎo)入 回顧平行四邊的性質(zhì)定理及定義 1.什么叫平行四邊形?平行四邊形有什么性質(zhì)? 2.將以上的性質(zhì)定理,分別用命題形式敘述出來。(如果……那么……) 根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立? 二、新課講解 平行四邊形的判定: (定義法):兩組對邊分別平行的四邊形的平邊形。 幾何語言表達(dá)定義法: ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形 解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。 活動:用做好的紙條拼成一個四邊形,其中強(qiáng)調(diào)兩組對邊分別相等。 (平行四邊形判定定理): (一)兩組對邊分別相等的四邊形是平行四邊形。 設(shè)問:這個命題的前提和結(jié)論是什么? 已知:四邊形ABCD中,AB=CD,BC=DA。 求證:四邊ABCD是平行四邊形。 分析:判定平行四邊形的'依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。 板書證明過程。 小結(jié):用幾何語言表達(dá)用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為: 平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形 (二)設(shè)問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢? 活動:課本探究內(nèi)容,并用事準(zhǔn)備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的端點(diǎn)為四邊形的頂點(diǎn),則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點(diǎn)為頂點(diǎn)組成的四邊形是不是平行四邊形? 設(shè)問:我們能否用推理的方法證明這個命題是正確的呢?(讓學(xué)生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過程。) 一、教學(xué)目標(biāo): 1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量。 2、會求一組數(shù)據(jù)的極差。 二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法 1、重點(diǎn):會求一組數(shù)據(jù)的極差。 2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn). 三、課堂引入: 下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進(jìn)行比較呢? 從表中你能得到哪些信息? 比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法. 經(jīng)計(jì)算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的.平均氣溫相等,都是12度. 這是不是說,兩個時段的氣溫情況沒有什么差異呢? 根據(jù)兩段時間的氣溫情況可繪成的折線圖. 觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果. 用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range). 四、例習(xí)題分析 本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析 問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計(jì)知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。 【教學(xué)目標(biāo)】 知識與技能 能確定多項(xiàng)式各項(xiàng)的公因式,會用提公因式法把多項(xiàng)式分解因式. 過程與方法 使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解. 情感、態(tài)度與價值觀 培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗(yàn),體會其應(yīng)用價值. 【教學(xué)重難點(diǎn)】 重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式. 難點(diǎn):正確地確定多項(xiàng)式的最大公因式. 關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪. 【教學(xué)過程】 一、回顧交流,導(dǎo)入新知 【復(fù)習(xí)交流】 下列從左到右的變形是否是因式分解,為什么? (1)2x2+4=2(x2+2); (2)2t2-3t+1=(2t3-3t2+t); (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my; (5)x2-2xy+y2=(x-y)2. 問題: 1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎? 2.多項(xiàng)式4x2-x和xy2-yz-y呢? 請將上述多項(xiàng)式分別寫成兩個因式的乘積的.形式,并說明理由. 【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y. 概念:如果一個多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個公因式提出來,從而將多項(xiàng)式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法. 二、小組合作,探究方法 教師提問:多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么? 【師生共識】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪. 三、范例學(xué)習(xí),應(yīng)用所學(xué) 例1:把-4x2yz-12xy2z+4xyz分解因式. 解:-4x2yz-12xy2z+4xyz =-(4x2yz+12xy2z-4xyz) =-4xyz(x+3y-1) 例2:分解因式:3a2(x-y)3-4b2(y-x)2 【分析】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法. 解法1:3a2(x-y)3-4b2(y-x)2 =-3a2(y-x)3-4b2(y-x)2 =-[(y-x)2·3a2(y-x)+4b2(y-x)2] =-(y-x)2[3a2(y-x)+4b2] =-(y-x)2(3a2y-3a2x+4b2) 解法2:3a2(x-y)3-4b2(y-x)2 =(x-y)2·3a2(x-y)-4b2(x-y)2 =(x-y)2[3a2(x-y)-4b2] =(x-y)2(3a2x-3a2y-4b2) 例3:用簡便的方法計(jì)算: 0.84×12+12×0.6-0.44×12. 【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡便. 解:0.84×12+12×0.6-0.44×12 =12×(0.84+0.6-0.44) =12×1=12. 【教師活動】在學(xué)生完成例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同? 四、隨堂練習(xí),鞏固深化 課本115頁練習(xí)第1、2、3題. 【探研時空】 利用提公因式法計(jì)算: 0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69 五、課堂總結(jié),發(fā)展?jié)撃?/p> 1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪. 2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止. 六、布置作業(yè),專題突破 課本119頁習(xí)題14.3第1、4(1)、6題. 第三十四學(xué)時:14.2.1平方差公式 一、學(xué)習(xí)目標(biāo): 1.經(jīng)歷探索平方差公式的過程。 2.會推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡單的運(yùn)算。 二、重點(diǎn)難點(diǎn) 重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用; 難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。 三、合作學(xué)習(xí) 你能用簡便方法計(jì)算下列各題嗎? 。1)20xx×1999(2)998×1002 導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積. 。1)(x+1)(x—1); 。2)(m+2)(m—2) (3)(2x+1)(2x—1); 。4)(x+5y)(x—5y)。 結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的`積,等于這兩個數(shù)的平方差。 即:(a+b)(a—b)=a2—b2 四、精講精練 例1:運(yùn)用平方差公式計(jì)算: 。1)(3x+2)(3x—2); (2)(b+2a)(2a—b); 。3)(—x+2y)(—x—2y)。 例2:計(jì)算: 。1)102×98; 。2)(y+2)(y—2)—(y—1)(y+5)。 隨堂練習(xí) 計(jì)算: 。1)(a+b)(—b+a); 。2)(—a—b)(a—b); 。3)(3a+2b)(3a—2b); 。4)(a5—b2)(a5+b2); 。5)(a+2b+2c)(a+2b—2c); 。6)(a—b)(a+b)(a2+b2)。 五、小結(jié) 。╝+b)(a—b)=a2—b2 ●教學(xué)目標(biāo) (一)教學(xué)知識點(diǎn) 1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似. 2.能根據(jù)相似比進(jìn)行計(jì) 算. (二)能力訓(xùn)練要求 1.能根據(jù)定義判斷兩個三角形是否相似,訓(xùn)練 學(xué)生的判斷能力. 2.能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運(yùn)用能力. (三)情感與價值觀要求 通過與相似多邊形有關(guān)概念的'類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系. ●教學(xué)重點(diǎn) 相似三角形的定義及運(yùn)用. ●教學(xué)難點(diǎn) 根據(jù)定義求線段長或角的度數(shù). ●教學(xué)過程 、.創(chuàng)設(shè)問題情境,引入新課 今天, 我們就來研究相似三角形. 、.新課講解 1.相似三角形的定義及記法 三角對應(yīng)相等,三邊 對應(yīng)成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF 其中對應(yīng)頂點(diǎn)要寫在對應(yīng)位置,如A與D,B與E,C與F相對應(yīng).AB∶DE等于相似比. 2.想一想 如果△ABC∽△DEF,那么哪些角是對應(yīng)角?哪些邊是對應(yīng)邊?對應(yīng) 角 有什么關(guān)系?對應(yīng)邊呢? 所以 D、E、F. . 3.議一議,學(xué)生討論 (1)兩個全等三角形一定相似嗎?為什么? (2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么? (3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么? 結(jié)論:兩 個全等三角形一定相似. 兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似. 4.例題 例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實(shí)際長度. 例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45, ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長. 5.想一想 在例2的條件下,圖中有哪些線段成比例? Ⅲ.課堂練習(xí) P129 、.課時小結(jié) 相似三角形的 判定方法定義法. Ⅴ.課后作業(yè) 學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。 學(xué)習(xí)難點(diǎn):認(rèn)識函數(shù),領(lǐng)會函數(shù)的意義。 【自主復(fù)習(xí)知識準(zhǔn)備】 請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。 【自主探究知識應(yīng)用】 請看書72——74頁內(nèi)容,完成下列問題: 1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。 2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。 3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。 歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。 補(bǔ)充小結(jié): (1)函數(shù)的定義: (2)必須是一個變化過程; (3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應(yīng)。 三、鞏固與拓展: 例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。 (1)寫出表示y與x的函數(shù)關(guān)系式. (2)指出自變量x的取值范圍. (3) 汽車行駛200千米時,油箱中還有多少汽油? 【當(dāng)堂檢測知識升華】 1、判斷下列變量之間是不是函數(shù)關(guān)系: (1)長方形的寬一定時,其長與面積; (2)等腰三角形的`底邊長與面積; (3)某人的年齡與身高; 2、寫出下列函數(shù)的解析式. (1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子. (2)汽車加油時,加油槍的流量為10L/min. 、偃绻佑颓埃拖淅镞有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數(shù)關(guān)系; 、谌绻佑蜁r,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數(shù)關(guān)系. (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式. (4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點(diǎn))有n盆花,每個圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式. 八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個問題,每一個環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對性的設(shè)置,希望大家喜歡! 教學(xué)目標(biāo): 1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計(jì)的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡單的圖案。 2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。 3、情感體驗(yàn)點(diǎn):經(jīng)歷對典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。 重點(diǎn)與難點(diǎn): 重點(diǎn):靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。 難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。 疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖 教具學(xué)具準(zhǔn)備: 提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。 教學(xué)過程設(shè)計(jì): 1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23) 明確在欣賞了圖案后,簡單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的`思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。 2、課本 1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。 評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。 評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。 (二)課內(nèi)練習(xí) (1) 以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。 (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行圖案設(shè)計(jì),并簡要說明自己的設(shè)計(jì)意圖。 (三)議一議 生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進(jìn)行交流。 (四)課時小結(jié) 本課時的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡單的圖案。 通過今天的學(xué)習(xí),你對圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。) 八年級數(shù)學(xué)上冊教案(五)延伸拓展 進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。 【八年級數(shù)學(xué)教案】相關(guān)文章: 八年級數(shù)學(xué)教案11-16 八年級上冊數(shù)學(xué)教案01-13八年級數(shù)學(xué)教案7
八年級數(shù)學(xué)教案8
八年級數(shù)學(xué)教案9
八年級數(shù)學(xué)教案10
八年級數(shù)學(xué)教案11
八年級數(shù)學(xué)教案12
八年級數(shù)學(xué)教案13
八年級數(shù)學(xué)教案14
八年級數(shù)學(xué)教案15