欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    高一數(shù)學《指數(shù)函數(shù)》教案

    時間:2023-11-25 08:02:30 教案 投訴 投稿
    • 相關(guān)推薦

    高一數(shù)學《指數(shù)函數(shù)》教案

      作為一名專為他人授業(yè)解惑的人民教師,時常需要用到教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么教案應該怎么寫才合適呢?以下是小編收集整理的高一數(shù)學《指數(shù)函數(shù)》教案,歡迎大家借鑒與參考,希望對大家有所幫助。

    高一數(shù)學《指數(shù)函數(shù)》教案

    高一數(shù)學《指數(shù)函數(shù)》教案1

      教學目標

      1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應用.

      (1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

      (2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的`性質(zhì)解決簡單的問題.

      2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.

      3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性.

      教學建議

      教材分析

      (1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ).

      (2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應成為教學的重點.

      (3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關(guān)鍵,所以應是本節(jié)課的難點.教法建議

      (1)對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

      (2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,從而提高學習興趣.

    高一數(shù)學《指數(shù)函數(shù)》教案2

      一、內(nèi)容及其解析

      (一)內(nèi)容:指數(shù)函數(shù)的性質(zhì)的應用。

      (二)解析:通過進一步鞏固指數(shù)函數(shù)的圖象和性質(zhì),掌握由指數(shù)函數(shù)和其他簡單函數(shù)組成的復合函數(shù)的性質(zhì):定義域、值域、單調(diào)性,最值等性質(zhì)。

      二、目標及其解析

      (一)教學目標

      指數(shù)函數(shù)的圖象及其性質(zhì)的應用;

      (二)解析

      通過進一步掌握指數(shù)函數(shù)的圖象和性質(zhì),能夠構(gòu)建指數(shù)函數(shù)的模型來解決實際問題;體會指數(shù)函數(shù)在實際生活中的重要作用,感受數(shù)學建模在解題中的作用,提高學生分析問題與解決問題的'能力。

      三、問題診斷分析

      解決實際問題本來就是學生的一個難點,并且學生對函數(shù)模型也不熟悉,所以在構(gòu)建函數(shù)模型解決實際問題是學生的一個難點,解決的方法就是在實例中讓學生加強理解,通過實例讓學生感受到如何選擇適當?shù)暮瘮?shù)模型。

      四、教學過程設(shè)計

      探究點一:平移指數(shù)函數(shù)的圖像

      例1:畫出函數(shù) 的圖像,并根據(jù)圖像指出它的單調(diào)區(qū)間.

      解析:由函數(shù)的解析式可得:

      其圖像分成兩部分,一部分是將 (x-1)的圖像作出,而它的圖像可以看作 的圖像沿x軸的負方向平移一個單位而得到的,另一部分是將 的圖像作出,而它的圖像可以看作將 的圖像沿x軸的負方向平移一個單位而得到的.

      解:圖像由老師們自己畫出

      變式訓練一:已知函數(shù)

      (1)作出其圖像;

      (2)由圖像指出其單調(diào)區(qū)間;

      解:(1) 的圖像如下圖:

      (2)函數(shù)的增區(qū)間是(-,-2],減區(qū)間是[-2,+).

      探究點二:復合函數(shù)的性質(zhì)

      例2:已知函數(shù)

      (1)求f(x)的定義域;

      (2)討論f(x)的奇偶性;

      解析:求定義域注意分母的范圍,判斷奇偶性需要注意定義域是否關(guān)于原點對稱。

      解:(1)要使函數(shù)有意義,須 -1 ,即x 1,所以,定義域為(- ,0) (0,+ ).

      (2)變式訓練二:已知函數(shù) ,試判斷函數(shù)的奇偶性;

      簡析:∵定義域為 ,且 是奇函數(shù);

      探究點三 應用問題

      例3某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩留的質(zhì)量是原來的

      84%.寫出這種物質(zhì)的剩留量關(guān)于時間的函數(shù)關(guān)系式.

      【解】

      設(shè)該物質(zhì)的質(zhì)量是1,經(jīng)過 年后剩留量是 .

      經(jīng)過1年,剩留量

      變式:儲蓄按復利計算利息,若本金為 元,每期利率為 ,設(shè)存期是 ,本利和(本金加上利息)為 元.

      (1)寫出本利和 隨存期 變化的函數(shù)關(guān)系式;

      (2)如果存入本金1000元,每期利率為2.25%,試計算5期后的本利和.

      分析:復利要把本利和作為本金來計算下一年的利息.

      【解】

      (1)已知本金為 元,利率為 則:

      1期后的本利和為

      2期后的本利和為

      期后的本利和為

      (2)將 代入上式得

      六.小結(jié)

      通過本節(jié)課的學習,本節(jié)課應用了指數(shù)函數(shù)的性質(zhì)來解決了什么問題?如何構(gòu)建指數(shù)函數(shù)模型,解決生活中的實際問題?

    高一數(shù)學《指數(shù)函數(shù)》教案3

      一、教學目標:

      1、知識與技能:

      (1) 結(jié)合實例,了解正整數(shù)指數(shù)函數(shù)的概念.

      (2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).

      2、 過程與方法:

      (1)讓學生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.

      (2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學習作好鋪墊.

      3、情感.態(tài)度與價值觀:使學生通過學習正整數(shù)指數(shù)函數(shù)體會學習指數(shù)函數(shù)的重要意義,增強學習研究函數(shù)的積極性和自信心.

      二、教學重點: 正整數(shù)指數(shù)函數(shù)的定義.教學難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.

      三、學法指導:學生觀察、思考、探究.教學方法:探究交流,講練結(jié)合。

      四、教學過程

      (一)新課導入

      [互動過程1]:

      (1)請你用列表表示1個細胞分裂次數(shù)分別

      為1,2,3,4,5,6,7,8時,得到的細胞個數(shù);

      (2)請你用圖像表示1個細胞分裂的次數(shù)n( )與得到的細

      胞個數(shù)y之間的關(guān)系;

      (3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用

      科學計算器計算細胞分裂15次、20次得到的細胞個數(shù).

      解:

      (1)利用正整數(shù)指數(shù)冪的運算法則,可以算出1個細胞分裂1,2,3,

      4,5,6,7,8次后,得到的細胞個數(shù)

      分裂次數(shù) 1 2 3 4 5 6 7 8

      細胞個數(shù) 2 4 8 16 32 64 128 256

      (2)1個細胞分裂的`次數(shù) 與得到的細胞個數(shù) 之間的關(guān)系可以用圖像表示,它的圖像是由一些孤立的點組成

      (3)細胞個數(shù) 與分裂次數(shù) 之間的關(guān)系式為 ,用科學計算器算得 ,

      所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.

      探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別是什么?此函數(shù)是什么類型的函數(shù)? 細胞個數(shù) 隨著分裂次數(shù) 發(fā)生怎樣變化?你從哪里看出?

      小結(jié):從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 細胞個數(shù) 與分裂次數(shù) 之間的關(guān)系式為 .細胞個數(shù) 隨著分裂次數(shù) 的增多而逐漸增多.

      [互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量Q近似滿足關(guān)系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是時間(年),這里設(shè)Q0=1.

      (1)計算經(jīng)過20,40,60,80,100年,臭氧含量Q;

      (2)用圖像表示每隔20年臭氧含量Q的變化;

      (3)試分析隨著時間的增加,臭氧含量Q是增加還是減少.

      解:(1)使用科學計算器可算得,經(jīng)過20,40,60,80,100年,臭氧含量Q的值分別為0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

      (2)用圖像表示每隔20年臭氧含量Q的變化如圖所

      示,它的圖像是由一些孤立的點組成.

      (3)通過計算和觀察圖形可以知道, 隨著時間的增加,

      臭氧含量Q在逐漸減少.

      探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別

      又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量Q隨著

      時間的增加發(fā)生怎樣變化?你從哪里看出?

      小結(jié):從本題中可以看出我們得到的臭氧含量Q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 臭氧含量Q近似滿足關(guān)系式Q=0.9975 t, 隨著時間的增加,臭氧含量Q在逐漸減少.

      [互動過程3]:上面兩個問題所得的函數(shù)有沒有共同點?你能統(tǒng)一嗎?自變量的取值范圍又是什么?這樣的函數(shù)圖像又是什么樣的?為什么?

      正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù) 叫作正整數(shù)指數(shù)函數(shù),其中 是自變量,定義域是正整數(shù)集 .

      說明: 1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復利問題、質(zhì)量濃度問題中常見這類函數(shù).

      (二)、例題:某地現(xiàn)有森林面積為1000 ,每年增長5%,經(jīng)過 年,森林面積為 .寫出 , 間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.

      分析:要得到 , 間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出 , 間的函數(shù)關(guān)系式.

      解: 根據(jù)題意,經(jīng)過一年, 森林面積為1000(1+5%) ;經(jīng)過兩年, 森林面積為1000(1+5%)2 ;經(jīng)過三年, 森林面積為1000(1+5%)3 ;所以 與 之間的函數(shù)關(guān)系式為 ,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).

      練習:課本練習1,2

      補充例題:高一某學生家長去年年底到銀行存入2000元,銀行月利率為2.38%,那么如果他第n個月后從銀行全部取回,他應取回錢數(shù)為y,請寫出n與y之間的關(guān)系,一年后他全部取回,他能取回多少?

      解:一個月后他應取回的錢數(shù)為y=20xx(1+2.38%),二個月后他應取回的錢數(shù)為y=20xx(1+2.38%)2;,三個月后他應取回的錢數(shù)為y=20xx(1+2.38%)3,, n個月后他應取回的錢數(shù)為y=20xx(1+2.38%)n; 所以n與y之間的關(guān)系為y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的錢數(shù)為y=20xx(1+2.38%)12.

      補充練習:某工廠年產(chǎn)值逐年按8%的速度遞增,今年的年產(chǎn)值為200萬元,那么第n年后該廠的年產(chǎn)值為多少?

      (三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復利問題、質(zhì)量濃度問題中常見這類函數(shù).

      (四)、作業(yè):課本習題3-1 1,2,3

    高一數(shù)學《指數(shù)函數(shù)》教案4

      教材分析:

      “指數(shù)函數(shù)”是在學生系統(tǒng)地學習了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運算性質(zhì)的基礎(chǔ)上展開研究的.作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學習奠定基礎(chǔ).指數(shù)函數(shù)在知識體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應用,因此它也是對學生進行情感價值觀教育的好素材,所以指數(shù)函數(shù)應重點研究.

      學情分析:

      通過初中階段的學習和高中對函數(shù)、指數(shù)的運算等知識的系統(tǒng)學習,學生對函數(shù)已經(jīng)有了一定的認識,學生對用“描點法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學生對由特殊到一般再到特殊的數(shù)學活動過程已有一定的體會.

      教學目標:

      知識與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應用其性質(zhì)(單調(diào)性、中介值)比較大。

      過程與方法:

      (1) 體會從特殊到一般再到特殊的研究問題的方法,培養(yǎng)學生觀察、歸納、猜想、概括的能力,讓學生了解數(shù)學來源于生活又在生活中有廣泛的應用;理解并掌握探求函數(shù)性質(zhì)的一般方法;

      (2) 從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會數(shù)形結(jié)合、分類討論的數(shù)學思想方法,提高思維的靈活性,培養(yǎng)學生直觀、嚴謹?shù)乃季S品質(zhì).

      情感、態(tài)度與價值觀:

      (1)體驗從特殊到一般再到特殊的學習規(guī)律,認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學生用聯(lián)系的觀點看問題,激發(fā)學生自主探究的精神,在探究過程中體驗合作學習的樂趣;

      (2)讓學生在數(shù)形結(jié)合中感悟數(shù)學的統(tǒng)一美、和諧美,進一步培養(yǎng)學生的學習興趣.

      教學重點:指數(shù)函數(shù)的圖象和性質(zhì)

      教學難點:指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應用

      教法研究:

      本節(jié)課準備由實際問題引入指數(shù)函數(shù)的概念,這樣可以讓學生知道指數(shù)函數(shù)的概念來源于客觀實際,便于學生接受并有利于培養(yǎng)學生用數(shù)學的意識.

      利用函數(shù)圖象來研究函數(shù)性質(zhì)是函數(shù)中的一個非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的性質(zhì),這樣便于學生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法 同時運用現(xiàn)代信息技術(shù)學習、探索和解決問題,幫助學生理解新知識

      本節(jié)課使用的教學方法有:直觀教學法、啟發(fā)引導法、發(fā)現(xiàn)法

      教學過程:

      一、問題情境 :

      問題1:某種細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,以此類推,一個這樣的細胞分裂x次后,得到的細胞個數(shù)y與x的函數(shù)關(guān)系式是什么?

      問題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過一年剩余質(zhì)量約是原來的 ,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過 年后的剩余質(zhì)量為 ,你能寫出 之間的函數(shù)關(guān)系式嗎?

      分析可知,函數(shù)的關(guān)系式分別是 與

      問題3:在問題1和2中,兩個函數(shù)的自變量都是正整數(shù),但在實際問題中自變量不一定都是正整數(shù),比如在問題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的剩余量外,還想知道3個月、一年半后該物質(zhì)的剩余量,怎么辦?

      這就需要對函數(shù)的定義域進行擴充,結(jié)合指數(shù)概念的的擴充,我們也可以將函數(shù)的定義域擴充至全體實數(shù),這樣就得到了一個新的函數(shù)——指數(shù)函數(shù).

      二、數(shù)學建構(gòu) :

      1]定義:

      一般地,函數(shù) 叫做指數(shù)函數(shù),其中 .

      問題4:為什么規(guī)定 ?

      問題5:你能舉出指數(shù)函數(shù)的例子嗎?

      閱讀材料(“放射性碳法”測定古物的年代):

      在動植物體內(nèi)均含有微量的放射性 ,動植物死亡后,停止了新陳代謝, 不在產(chǎn)生,且原有的 會自動衰變.經(jīng)過5740年( 的半衰期),它的殘余量為原來的一半.經(jīng)過科學測定,若 的.原始含量為1,則經(jīng)過x年后的殘留量為 = .

      這種方法經(jīng)常用來推算古物的年代.

      練習1:判斷下列函數(shù)是否為指數(shù)函數(shù).

     。1) (2)

      (3) (4)

      說明:指數(shù)函數(shù)的解析式y(tǒng)= 中, 的系數(shù)是1.

      有些函數(shù)貌似指數(shù)函數(shù),實際上卻不是,如y= +k (a>0且a 1,k Z);

      有些函數(shù)看起來不像指數(shù)函數(shù),實際上卻是,如y= (a>0,且a 1),因為它可以化為y= ,其中 >0,且 1

      2]通過圖象探究指數(shù)函數(shù)的性質(zhì)及其簡單應用:利用幾何畫板及其他多媒體軟件和學生一起完成

      問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?

      函數(shù)的定義域,值域,單調(diào)性,奇偶性等;

      利用函數(shù)圖象研究函數(shù)的性質(zhì)

      問題7:作函數(shù)圖象的一般步驟是什么?

      列表,描點,作圖

      探究活動1:用列表描點法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個函數(shù)的圖像,我們可以得到這兩個函數(shù)哪些共同的性質(zhì)?請同學們仔細觀察.

      引導學生分析圖象并總結(jié)此時指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):

     。1)定義域?R

     。2)值域?函數(shù)的值域為

     。3)過哪個定點?恒過 點,即

     。4)單調(diào)性? 時, 為 上的增函數(shù)

      (5)何時函數(shù)值大于1?小于1? 當 時, ;當 時,

      問題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?

     。ㄒ龑W生自我分析和反思,培養(yǎng)學生的反思能力和解決問題的能力).

      根據(jù)學生的發(fā)現(xiàn),再總結(jié)當?shù)讛?shù)小于1時指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.

      問題9:到現(xiàn)在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質(zhì)嗎?

     。▽W生完成表格的設(shè)計,教師適當引導)

    高一數(shù)學《指數(shù)函數(shù)》教案5

      教學目標

      1.使學生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

      (1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

      (2)能在基本性質(zhì)的指導下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì).

      (3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如

      的圖象.

      2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.

      3.通過對指數(shù)函數(shù)的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.

      教學建議

      教材分析

      (1)指數(shù)函數(shù)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應用,所以指數(shù)函數(shù)應重點研究.

      (2)本節(jié)的教學重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

      (3)指數(shù)函數(shù)是學生完全陌生的.一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

      教法建議

      (1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是

      的樣子,不能有一點差異,諸如

      等都不是指數(shù)函數(shù).

      (2)對底數(shù)

      的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.

      關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.

    高一數(shù)學《指數(shù)函數(shù)》教案6

      教學目標

      1.使學生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.

      2.通過函數(shù)單調(diào)性概念的教學,培養(yǎng)學生分析問題、認識問題的能力.通過例題培養(yǎng)學生利用定義進行推理的邏輯思維能力.

      3.通過本節(jié)課的教學,滲透數(shù)形結(jié)合的數(shù)學思想,對學生進行辯證唯物主義的教育.

      教學重點與難點

      教學重點:函數(shù)單調(diào)性的概念.

      教學難點:函數(shù)單調(diào)性的判定.

      教學過程設(shè)計

      一、引入新課

      師:請同學們觀察下面兩組在相應區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?

     。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)

      第一組:

      第二組:

      生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。

      師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學習一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.

     。c明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認識的,又是新的知識,引起學生的注意.)

      二、對概念的分析

      (板書課題:)

      師:請同學們打開課本第51頁,請××同學把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.

      (學生朗讀.)

      師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?

      生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.

      師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學的魅力!

     。ㄍㄟ^教師的情緒感染學生,激發(fā)學生學習數(shù)學的興趣.)

      師:現(xiàn)在請同學們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.

     。ㄖ笀D說明.)

      師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.

     。ń處熤笀D說明分析定義,使學生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學思想方法.)

      師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應區(qū)間上較大的自變量對應……

      (不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.)

      生:較大的函數(shù)值的函數(shù).

      師:那么減函數(shù)呢?

      生:減函數(shù)就其本質(zhì)而言是在相應區(qū)間上較大的自變量對應較小的函數(shù)值的函數(shù).

     。▽W生可能回答得不完整,教師應指導他說完整.)

      師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應該抓住哪些關(guān)鍵詞語,才能更透徹地認識定義?

     。▽W生思索.)

      學生在高中階段以至在以后的學習中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數(shù)學及其他各學科的重要一環(huán).因此教師應該教會學生如何深入理解一個概念,以培養(yǎng)學生分析問題,認識問題的能力.

      (教師在學生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當?shù)奶崾荆?/p>

      生:我認為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.

      師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學習幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應的區(qū)間而言的,離開了相應的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?

      生:不能.因為此時函數(shù)值是一個數(shù).

      師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談論某一個函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學過的例子?

      生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).

     。ㄔ趯W生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)

      師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談論函數(shù)的增減性時必須指明相應的區(qū)間.

      師:還有沒有其他的關(guān)鍵詞語?

      生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.

      師:你答的很對.能解釋一下為什么嗎?

     。▽W生不一定能答全,教師應給予必要的提示.)

      師:“屬于”是什么意思?

      生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。

      師:如果是閉區(qū)間的話,能否取自區(qū)間端點?

      生:可以.

      師:那么“任意”和“都有”又如何理解?

      生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).

      師:能不能構(gòu)造一個反例來說明“任意”呢?

      (讓學生思考片刻.)

      生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.

      師:那么如何來說明“都有”呢?

      生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).

      師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.

     。ń處熗ㄟ^一系列的設(shè)問,使學生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發(fā)散思維能力.)

      師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的`大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.

     。ㄓ棉q證法的原理來解釋數(shù)學知識,同時用數(shù)學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學生學習的能力.)

      三、概念的應用

      例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?

     。ㄓ猛队盎脽艚o出圖象.)

      生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.

      生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?

      師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.

      例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).

      師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數(shù)不易畫出圖象,因此必須學會根據(jù)解析式和定義從數(shù)量上分析辨認,這才是我們研究函數(shù)單調(diào)性的基本途徑.

     。ㄖ赋鲇枚x證明的必要性.)

      師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.

     。ń處熝惨,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應給以啟發(fā).)

      師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.

      生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,

      f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

      所以f(x)是增函數(shù).

      師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應的語句下劃線,并標注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應位置標注“④→下結(jié)論”).

      這就是我們用定義證明函數(shù)增減性的四個步驟,請同學們記。枰赋龅氖堑诙,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以小.

     。▽W生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養(yǎng)成一定的思維習慣,形成一定的解題思路也是有幫助的.)

      調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.

      師:你的結(jié)論是什么呢?

      上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).

      生乙:我有不同的意見,我認為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).

      生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).

      域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.

      上是減函數(shù).

     。ń處熝惨暎畬W生證明中出現(xiàn)的問題給予點拔.可依據(jù)學生的問題,給出下面的提示:

     。1)分式問題化簡方法一般是通分.

     。2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.

      要注意在不等式兩邊同乘以一個負數(shù)的時候,不等號方向要改變.

      對學生的解答進行簡單的分析小結(jié),點出學生在證明過程中所出現(xiàn)的問題,引起全體學生的重視.)

      四、課堂小結(jié)

      師:請同學小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應該特別注意的?

      (請一個思路清晰,善于表達的學生口述,教師可從中給予提示.)

      生:這節(jié)課我們學習了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應該注意證明的四個步驟.

      五、作業(yè)

      1.課本P53練習第1,2,3,4題.

      數(shù).

      =a(x1-x2)(x1+x2)+b(x1-x2)

      =(x1-x2)[a(x1+x2)+b].(*)

      +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

      課堂教學設(shè)計說明

      是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應用上都有廣泛的應用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經(jīng)學過的知識,感覺乏味.因此,在設(shè)計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.

      另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.

      還有,使用函數(shù)單調(diào)性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學作一定的鋪墊.

    高一數(shù)學《指數(shù)函數(shù)》教案7

      教學目標

      1、掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應用。

     。1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。

     。2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

      2、通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。

      3、通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。

      教學建議

      教材分析

      (1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的`知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ)。

     。2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應成為教學的重點。

     。3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關(guān)鍵,所以應是本節(jié)課的難點。

      教法建議

     。1)對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

     。2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,從而提高學習興趣。

    【高一數(shù)學《指數(shù)函數(shù)》教案】相關(guān)文章:

    高一數(shù)學教案07-19

    高一數(shù)學教案根式10-20

    高一數(shù)學必修四教案10-14

    高一數(shù)學教案函數(shù)范文10-12

    高一數(shù)學教案15篇12-21

    高一數(shù)學教學總結(jié)05-09

    高一數(shù)學月考總結(jié)03-23

    高一數(shù)學總結(jié)范文03-02

    高一數(shù)學教學反思03-07