欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    必修二數(shù)學(xué)知識點(diǎn)高中

    時間:2022-05-17 13:01:40 學(xué)習(xí)資料 投訴 投稿
    • 相關(guān)推薦

    必修二數(shù)學(xué)知識點(diǎn)高中

      在年少學(xué)習(xí)的日子里,相信大家一定都接觸過知識點(diǎn)吧!知識點(diǎn)也可以理解為考試時會涉及到的知識,也就是大綱的分支。還在為沒有系統(tǒng)的知識點(diǎn)而發(fā)愁嗎?以下是小編為大家整理的必修二數(shù)學(xué)知識點(diǎn)高中,僅供參考,大家一起來看看吧。

    必修二數(shù)學(xué)知識點(diǎn)高中

      反比例函數(shù)

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實數(shù)。

      反比例函數(shù)圖像性質(zhì):

      反比例函數(shù)的圖像為雙曲線。

      由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

      如圖,上面給出了k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

      當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

      當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

      知識點(diǎn):

      1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

      2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      直線和平面的位置關(guān)系:

      直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

     、僦本在平面內(nèi)——有無數(shù)個公共點(diǎn)

      ②直線和平面相交——有且只有一個公共點(diǎn)

      直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

      esp?臻g向量法(找平面的法向量)

      規(guī)定:

      a、直線與平面垂直時,所成的角為直角,

      b、直線與平面平行或在平面內(nèi),所成的角為0°角

      由此得直線和平面所成角的取值范圍為[0°,90°]

      最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。

      三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直esp。直線和平面垂直。

      直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

      直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

      直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

      ③直線和平面平行——沒有公共點(diǎn)

      直線和平面平行的定義:如果一條直線和一個平面沒有公共點(diǎn),那么我們就說這條直線和這個平面平行。

      直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

      直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

      空間角問題

      (1)直線與直線所成的角

     、賰善叫兄本所成的角:規(guī)定為。

     、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

     、蹆蓷l異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

     。2)直線和平面所成的角

     、倨矫娴钠叫芯與平面所成的角:規(guī)定為。

      ②平面的垂線與平面所成的角:規(guī)定為。

      ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

      求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

      在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

      在解題時,注意挖掘題設(shè)中兩個主要信息:

      (1)斜線上一點(diǎn)到面的垂線;

     。2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

     。3)二面角和二面角的平面角

     、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

     、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

      ③直二面角:平面角是直角的二面角叫直二面角。

      兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角。

      ④求二面角的方法

      定義法:在棱上選擇有關(guān)點(diǎn),過這個點(diǎn)分別在兩個面內(nèi)作垂直于棱的射線得到平面角。

      垂面法:已知二面角內(nèi)一點(diǎn)到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角。

      高中數(shù)學(xué)的學(xué)習(xí)方法

      1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。

      2、及時了解、掌握常用的數(shù)學(xué)思想和方法,學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動思想,轉(zhuǎn)化思想,變換思想。

      3、逐步形成“以我為主”的學(xué)習(xí)模式數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動地參與學(xué)習(xí)過程,養(yǎng)成實事求是的科學(xué)態(tài)度,獨(dú)立思考、勇于探索的創(chuàng)新精神。

      4、記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。

      數(shù)學(xué)中的判定

      判定多用于數(shù)學(xué)的證明概念,通過事物的本質(zhì)屬性反映出的本質(zhì)性質(zhì),以此作為依據(jù)推知下一步結(jié)論,這個行為叫做判定。

      例如:兩組對邊分別平行的四邊形,叫做平行四邊形,這個作為已證明的定理,揭示了本質(zhì),可以說是“永遠(yuǎn)成立”。

      以此作為判定依據(jù),這個依據(jù)叫判定定理,我發(fā)現(xiàn)一個四邊形的一組對邊平行且相等,那么可以斷定此四邊形就是平行四邊形,這個行為叫判定

    【必修二數(shù)學(xué)知識點(diǎn)高中】相關(guān)文章:

    必修二數(shù)學(xué)知識點(diǎn)總結(jié)07-12

    高中數(shù)學(xué)必修知識點(diǎn)總結(jié)06-05

    高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)07-16

    高中數(shù)學(xué)知識點(diǎn)必修總結(jié)07-29

    必修二數(shù)學(xué)知識點(diǎn)總結(jié)11篇07-12

    必修二數(shù)學(xué)知識點(diǎn)總結(jié)(11篇)07-12

    高中數(shù)學(xué)必修知識點(diǎn)總結(jié)4篇06-05

    必修二數(shù)學(xué)知識點(diǎn)總結(jié)(匯編11篇)07-12

    高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)6篇07-16

    高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)(6篇)07-16