欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    高二數(shù)學知識點歸納總結(jié)

    時間:2022-11-02 13:52:10 總結(jié) 投訴 投稿

    高二數(shù)學知識點歸納總結(jié)8篇

      總結(jié)在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以有效鍛煉我們的語言組織能力,讓我們抽出時間寫寫總結(jié)吧。總結(jié)你想好怎么寫了嗎?以下是小編收集整理的高二數(shù)學知識點歸納總結(jié),歡迎閱讀與收藏。

    高二數(shù)學知識點歸納總結(jié)8篇

    高二數(shù)學知識點歸納總結(jié)1

      第一章:三角函數(shù)?荚嚤乜碱}。誘導公式和基本三角函數(shù)圖像的一些性質(zhì)只要記住會畫圖就行,難度在于三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相,及根據(jù)最值計算A、B的值和周期,及等變化時圖像及性質(zhì)的變化,這一知識點內(nèi)容較多,需要多花時間,首先要記憶,其次要多做題強化練習,只要能踏踏實實去做,也不難掌握,畢竟不存在理解上的難度。

      第二章:平面向量。個人覺得這一章難度較大,這也是我掌握最差的一章。向量的運算性質(zhì)及三角形法則平行四邊形法則難度都不大,只要在計算的時候記住要同起點的向量。向量共線和垂直的數(shù)學表達,這是計算當中經(jīng)常要用的`公式。向量的共線定理、基本定理、數(shù)量積公式。難點在于分點坐標公式,首先要準確記憶。向量在考試過程一般不會單獨出現(xiàn),常常是作為解題要用的工具出現(xiàn),用向量時要首先找出合適的向量,個人認為這個比較難,常常找不對。有同樣情況的同學建議多看有關(guān)題的圖形。

      第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫之后貼在桌子上,天天都要看。而且的三角函數(shù)變換都有一定的規(guī)律,記憶的時候可以結(jié)合起來去記。除此之外,就是多練習。要從多練習中找到變換的規(guī)律,比如一般都要化等等。這一章也是考試必考,所以一定要重點掌握。

    高二數(shù)學知識點歸納總結(jié)2

      一、集合、簡易邏輯(14課時,8個)

      1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

      二、函數(shù)(30課時,12個)

      1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

      三、數(shù)列(12課時,5個)

      1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。

      四、三角函數(shù)(46課時,17個)

      1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

      五、平面向量(12課時,8個)

      1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。

      六、不等式(22課時,5個)

      1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

      七、直線和圓的方程(22課時,12個)

      1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程。

      八、圓錐曲線(18課時,7個)

      1.橢圓及其標準方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標準方程;7.拋物線的'簡單幾何性質(zhì)。

      九、直線、平面、簡單何體(36課時,28個)

      1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;

      13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

      十、排列、組合、二項式定理(18課時,8個)

      1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。

      十一、概率(12課時,5個)

      1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復試驗。

      選修Ⅱ(24個)

      十二、概率與統(tǒng)計(14課時,6個)

      1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。

      十三、極限(12課時,6個)

      1.數(shù)學歸納法;2.數(shù)學歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。

      十四、導數(shù)(18課時,8個)

      1.導數(shù)的概念;2.導數(shù)的幾何意義;3.幾種常見函數(shù)的導數(shù);4.兩個函數(shù)的和、差、積、商的導數(shù);5.復合函數(shù)的導數(shù);6.基本導數(shù)公式;7.利用導數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。

      十五、復數(shù)(4課時,4個)

      1.復數(shù)的概念;2.復數(shù)的加法和減法;3.復數(shù)的乘法和除法;4.復數(shù)的一元二次方程和二項方程的解法。

    高二數(shù)學知識點歸納總結(jié)3

      1、幾何概型的定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。

      2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長度(面積或體積);

      試驗的全部結(jié)果所構(gòu)成的區(qū)域長度(面積或體積)

      3、幾何概型的特點:

      1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;

      2)每個基本事件出現(xiàn)的可能性相等、

      4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結(jié)果是可數(shù)的';而幾何概型則是在試驗中出現(xiàn)無限多個結(jié)果,且與事件的區(qū)域長度(或面積、體積等)有關(guān),即試驗結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結(jié)果都具有等可能性,這是二者的共性。

      通過以上對于幾何概型的基本知識點的梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個特點,無限性是指在一次試驗中,基本事件的個數(shù)可以是無限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長度、面積(體積)和角度等”與“試驗的基本事件所占總長度、面積(體積)和角度等”之比來表示。下面就幾何概型常見類型題作一歸納梳理。

    高二數(shù)學知識點歸納總結(jié)4

      一、直線與圓:

      1、直線的傾斜角的范圍是在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;

      2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

      3、直線方程:

      (1)點斜式:直線過點斜率為,則直線方程為

      (2)斜截式:直線在軸上的截距為和斜率,則直線方程為

      4、直線與直線的位置關(guān)系:

     。1)平行A1/A2=B1/B2注意檢驗

     。2)垂直A1A2+B1B2=0

      5、點到直線的距離公式;

      兩條平行線與的距離是

      6、圓的標準方程:圓的一般方程:注意能將標準方程化為一般方程

      7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

      8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

      9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

      二、圓錐曲線方程:

      1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

      2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

      3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

      4、直線被圓錐曲線截得的.弦長公式:

      三、直線、平面、簡單幾何體:

      1、學會三視圖的分析:

      2、斜二測畫法應(yīng)注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

     。2)平行于x軸的線段長不變,平行于y軸的線段長減半.

      (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側(cè))面積與體積公式:

      (1)柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

     。2)錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

     。3)臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

     。4)球體:①表面積:S=;②體積:V=

      4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

     。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

     。2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

     。1)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

     。2)直線與平面所成的角:直線與射影所成的角

      四、導數(shù):導數(shù)的意義-導數(shù)公式-導數(shù)應(yīng)用(極值最值問題、曲線切線問題)

      1、導數(shù)的定義:在點處的導數(shù)記作.

      2、導數(shù)的幾何物理意義:曲線在點處切線的斜率

      ①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

      3.常見函數(shù)的導數(shù)公式:①;②;③;

      ⑤;⑥;⑦;⑧。

      4.、導數(shù)的四則運算法則:

      5、導數(shù)的應(yīng)用:

      (1)利用導數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導,如果,那么為增函數(shù);如果,那么為減函數(shù);

      注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

      (2)求極值的步驟:

     、偾髮(shù);

     、谇蠓匠痰母

     、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數(shù)在這個根處取得極大值;如果左負右正,那么函數(shù)在這個根處取得極小值;

     。3)求可導函數(shù)值與最小值的步驟:

     、∏蟮母虎迅c區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。

      五、常用邏輯用語:

      1、四種命題:

     、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

      注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。

      2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

      3、邏輯聯(lián)結(jié)詞:

     。1)且(and):命題形式pq;pqpqpqp

     。2)或(or):命題形式pq;真真真真假

      (3)非(not):命題形式p.真假假真假

      假真假真真

      假假假假真

      “或命題”的真假特點是“一真即真,要假全假”;

      “且命題”的真假特點是“一假即假,要真全真”;

      “非命題”的真假特點是“一真一假”

      4、充要條件

      由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

      5、全稱命題與特稱命題:

      短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

      短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

    高二數(shù)學知識點歸納總結(jié)5

      (1)總體和樣本:

     、僭诮y(tǒng)計學中,把研究對象的全體叫做總體.

     、诎衙總研究對象叫做個體.

     、郯芽傮w中個體的總數(shù)叫做總體容量.

     、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.

     。2)簡單隨機抽樣,也叫純隨機抽樣。

      就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

     。3)簡單隨機抽樣常用的方法:

      ①抽簽法

     、陔S機數(shù)表法

     、塾嬎銠C模擬法

      在簡單隨機抽樣的`樣本容量設(shè)計中,主要考慮:

      ①總體變異情況;

     、谠试S誤差范圍;

     、鄹怕时WC程度。

      (4)抽簽法:

     、俳o調(diào)查對象群體中的每一個對象編號;

     、跍蕚涑楹灥墓ぞ,實施抽簽;

     、蹖颖局械拿恳粋個體進行測量或調(diào)查

    高二數(shù)學知識點歸納總結(jié)6

      第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。

      第二章:基本初等函數(shù):指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像。函數(shù)的幾大要素和相關(guān)考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關(guān)于這三大函數(shù)的運算公式,多記多用,多做一點練習基本就沒多大問題。函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關(guān)系,這也是?汲ee點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化問題也要了解清楚。

      第三章:函數(shù)的`應(yīng)用。主要就是函數(shù)與方程的結(jié)合。其實就是的實根,即函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點,要學會在這三者之間的靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函數(shù)的零點的Δ判別法,這個倒不算難。

    高二數(shù)學知識點歸納總結(jié)7

      一、 導數(shù)的應(yīng)用

      1.用導數(shù)研究函數(shù)的最值

      確定函數(shù)在其確定的定義域內(nèi)可導(通常為開區(qū)間),求出導函數(shù)在定義域內(nèi)的零點,研究在零點左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學習了如何用導數(shù)研究函數(shù)的最值之后,可以做一個有關(guān)導數(shù)和函數(shù)的綜合題來檢驗下學習成果。

      2.生活中常見的函數(shù)優(yōu)化問題

      1)費用、成本最省問題

      2)利潤、收益最大問題

      3)面積、體積最(大)問題

      二、推理與證明

      1.歸納推理:歸納推理是高二數(shù)學的一個重點內(nèi)容,其難點就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的`信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學知識,分析兩類對象之間的關(guān)系,通過兩類對象已知的相似特征得出所需要的相似特征。

      2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。

      三、不等式

      對于含有參數(shù)的一元二次不等式解的討論

      1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。

      2)不等式對應(yīng)方程的根:如果一元二次不等式對應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關(guān)系就是分類標準,如果一元二次不等式對應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。

    高二數(shù)學知識點歸納總結(jié)8

      已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法

      1、直接法:

      直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的`不等式,再通過解不等式確定參數(shù)范圍。

      2、分離參數(shù)法:

      先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

      3、數(shù)形結(jié)合法:

      先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

    【高二數(shù)學知識點歸納總結(jié)】相關(guān)文章:

    高二知識點數(shù)學總結(jié)歸納06-15

    高二知識點數(shù)學總結(jié)歸納02-02

    數(shù)學高二知識點總結(jié)歸納07-25

    高二數(shù)學知識點總結(jié)歸納05-26

    高二知識點數(shù)學總結(jié)歸納15篇06-15

    高二知識點數(shù)學總結(jié)歸納(15篇)06-15

    數(shù)學高二知識點總結(jié)歸納13篇07-25

    數(shù)學高二知識點總結(jié)歸納(13篇)07-25

    高二數(shù)學最新知識點總結(jié)歸納06-11

    高二數(shù)學知識點總結(jié)歸納13篇05-26