欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    時(shí)間:2023-03-07 18:30:19 總結(jié) 投訴 投稿

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)

      總結(jié)是對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究的書(shū)面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),快快來(lái)寫(xiě)一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編收集整理的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

      一、集合有關(guān)概念

      1. 集合的含義

      2. 集合的中元素的三個(gè)特性:

      (1) 元素的確定性,

      (2) 元素的互異性,

      (3) 元素的無(wú)序性,

      3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

      (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

      (2) 集合的表示方法:列舉法與描述法。

      ? 注意:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

      正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

      1) 列舉法:{a,b,c……}

      2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

      3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

      4) Venn圖:

      4、集合的分類(lèi):

      (1) 有限集 含有有限個(gè)元素的集合

      (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

      (3) 空集 不含任何元素的集合 例:{x|x2=-5}

      二、集合間的基本關(guān)系

      1.“包含”關(guān)系—子集

      注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

      反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

      2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

      實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

      即:① 任何一個(gè)集合是它本身的子集。A?A

      ②真子集:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

      ③如果 A?B, B?C ,那么 A?C

     、 如果A?B 同時(shí) B?A 那么A=B

      3. 不含任何元素的集合叫做空集,記為Φ

      規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

      ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

      三、集合的運(yùn)算

      運(yùn)算類(lèi)型 交 集 并 集 補(bǔ) 集

      定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

      由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

      設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

      二、函數(shù)的有關(guān)概念

      1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

      注意:

      1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱(chēng)為函數(shù)的定義域。

      求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

      (1)分式的分母不等于零;

      (2)偶次方根的被開(kāi)方數(shù)不小于零;

      (3)對(duì)數(shù)式的真數(shù)必須大于零;

      (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

      (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

      (6)指數(shù)為零底不可以等于零,

      (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

      相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

      2.值域 : 先考慮其定義域

      (1)觀(guān)察法

      (2)配方法

      (3)代換法

      3. 函數(shù)圖象知識(shí)歸納

      (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿(mǎn)足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .

      (2) 畫(huà)法

      A、 描點(diǎn)法:

      B、 圖象變換法

      常用變換方法有三種

      1) 平移變換

      2) 伸縮變換

      3) 對(duì)稱(chēng)變換

      4.區(qū)間的概念

      (1)區(qū)間的`分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

      (2)無(wú)窮區(qū)間

      (3)區(qū)間的數(shù)軸表示.

      5.映射

      一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

      6.分段函數(shù)

      (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

      (2)各部分的自變量的取值情況.

      (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

      補(bǔ)充:復(fù)合函數(shù)

      如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱(chēng)為f、g的復(fù)合函數(shù)。

      二.函數(shù)的性質(zhì)

      1.函數(shù)的單調(diào)性(局部性質(zhì))

      (1)增函數(shù)

      設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

      如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱(chēng)為y=f(x)的單調(diào)減區(qū)間.

      注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

      (2) 圖象的特點(diǎn)

      如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

      (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

      (A) 定義法:

      ○1 任取x1,x2∈D,且x1

      ○2 作差f(x1)-f(x2);

      ○3 變形(通常是因式分解和配方);

      ○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

      ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

      (B)圖象法(從圖象上看升降)

      (C)復(fù)合函數(shù)的單調(diào)性

      復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

      注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.

      8.函數(shù)的奇偶性(整體性質(zhì))

      (1)偶函數(shù)

      一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

      (2).奇函數(shù)

      一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

      (3)具有奇偶性的函數(shù)的圖象的特征

      偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

      利用定義判斷函數(shù)奇偶性的步驟:

      ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱(chēng);

      ○2確定f(-x)與f(x)的關(guān)系;

      ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

      (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;

      (3)利用定理,或借助函數(shù)的圖象判定 .

      9、函數(shù)的解析表達(dá)式

      (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

      (2)求函數(shù)的解析式的主要方法有:

      1) 湊配法

      2) 待定系數(shù)法

      3) 換元法

      4) 消參法

      10.函數(shù)最大(小)值(定義見(jiàn)課本p36頁(yè))

      ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

      ○2 利用圖象求函數(shù)的最大(小)值

      ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

      如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

      如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

      內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀(guān)察圖象最明顯。

      復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。

      指數(shù)與對(duì)數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

      函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù);

      正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。

      兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱(chēng),Y=X是對(duì)稱(chēng)軸;

      求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù)的`值域。

      冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

      奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

      反比例函數(shù)圖像性質(zhì):

      反比例函數(shù)的圖像為雙曲線(xiàn)。

      由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線(xiàn),高中地理,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為?k?。

      如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

      當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)

      當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

      知識(shí)點(diǎn):

      1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標(biāo)軸圍成的矩形的面積為k。

      2.對(duì)于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

      一、直線(xiàn)與方程

      (1)直線(xiàn)的傾斜角

      定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當(dāng)直線(xiàn)與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

      (2)直線(xiàn)的斜率

      ①定義:傾斜角不是90的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

      ②過(guò)兩點(diǎn)的直線(xiàn)的斜率公式:

      注意下面四點(diǎn):

      (1)當(dāng)時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90

      (2)k與P1、P2的順序無(wú)關(guān);

      (3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標(biāo)直接求得;

      (4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標(biāo)先求斜率得到。

      (3)直線(xiàn)方程

     、冱c(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)

      注意:當(dāng)直線(xiàn)的斜率為0時(shí),k=0,直線(xiàn)的方程是y=y1。當(dāng)直線(xiàn)的斜率為90時(shí),直線(xiàn)的.斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

      ②斜截式:,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b

     、蹆牲c(diǎn)式:()直線(xiàn)兩點(diǎn),

     、芙鼐厥剑浩渲兄本(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

      ⑤一般式:(A,B不全為0)

      ⑤一般式:(A,B不全為0)

      注意:○1各式的適用范圍

      ○2特殊的方程如:平行于x軸的直線(xiàn):(b為常數(shù));平行于y軸的直線(xiàn):(a為常數(shù));

      (4)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)

      (一)平行直線(xiàn)系

      平行于已知直線(xiàn)(是不全為0的常數(shù))的直線(xiàn)系:(C為常數(shù))

      (二)過(guò)定點(diǎn)的直線(xiàn)系

      (ⅰ)斜率為k的直線(xiàn)系:直線(xiàn)過(guò)定點(diǎn);

      (ⅱ)過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為(為參數(shù)),其中直線(xiàn)不在直線(xiàn)系中。

      (5)兩直線(xiàn)平行與垂直;

      注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。

      (6)兩條直線(xiàn)的交點(diǎn)

      相交:交點(diǎn)坐標(biāo)即方程組的一組解。方程組無(wú)解;方程組有無(wú)數(shù)解與重合

      (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

      (8)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離

      (9)兩平行直線(xiàn)距離公式:在任一直線(xiàn)上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

      1.函數(shù)的奇偶性

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

      (5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

      2.復(fù)合函數(shù)的有關(guān)問(wèn)題

      (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

      (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

      3.函數(shù)圖像(或方程曲線(xiàn)的對(duì)稱(chēng)性)

      (1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;

      (2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然;

      (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對(duì)稱(chēng);

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對(duì)稱(chēng);

      4.函數(shù)的周期性

      (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

      (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的.周期函數(shù);

      (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);

      (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);

      (5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);

      (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

      5.方程k=f(x)有解k∈D(D為f(x)的值域);

      6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

      7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);

      (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;(4)alogaN=N(a>0,a≠1,N>0);

      8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

      9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

      10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

      11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;

      12.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題

      13.恒成立問(wèn)題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

      【(一)、映射、函數(shù)、反函數(shù)】

      1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射.

      2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

      (1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).

      (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.

      (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

      3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

      (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

      (2)由y=f(x)的解析式求出x=f-1(y);

      (3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.

      注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

     、谑煜さ膽(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算.

      【(二)、函數(shù)的解析式與定義域】

      1、函數(shù)及其定義域是不可分割的整體,沒(méi)有定義域的函數(shù)是不存在的,因此,要正確地寫(xiě)出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類(lèi)型:

      (1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

      (2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

     、俜质降姆帜覆坏脼榱;

      ②偶次方根的被開(kāi)方數(shù)不小于零;

     、蹖(duì)數(shù)函數(shù)的真數(shù)必須大于零;

      ④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

     、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

      應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).

      (3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.

      已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿(mǎn)足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.

      2、求函數(shù)的解析式一般有四種情況

      (1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.

      (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

      (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

      (4)若已知f(x)滿(mǎn)足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.

      【(三)、函數(shù)的值域與最值】

      1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

      (1)直接法:亦稱(chēng)觀(guān)察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀(guān)察得出函數(shù)的值域.

      (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

      (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

      (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.

      (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

      (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

      (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

      (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

      2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

      求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.

      如函數(shù)的值域是(0,16],值是16,無(wú)最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無(wú)值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見(jiàn)定義域?qū)瘮?shù)的值域或最值的影響.

      3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用

      函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)”或“面積(體積)(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值.

      【(四)、函數(shù)的奇偶性】

      1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

      正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的.恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

      2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式:

      注意如下結(jié)論的運(yùn)用:

      (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

      (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類(lèi)似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

      (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

      (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

      3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論

      (1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱(chēng).

      (2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

      (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

      (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱(chēng)區(qū)間上的單調(diào)性是相同(反)的。

      (5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

      (6)奇偶性的推廣

      函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線(xiàn)x=a對(duì)稱(chēng),即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對(duì)定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱(chēng)圖形,即y=f(a+x)為奇函數(shù)。

      【(五)、函數(shù)的單調(diào)性】

      1、單調(diào)函數(shù)

      對(duì)于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱(chēng)f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱(chēng)為單調(diào)函數(shù).

      對(duì)于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):

      (1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念.一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性.

      (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.

      (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).

      (4)注意定義的兩種等價(jià)形式:

      設(shè)x1、x2∈[a,b],那么:

     、僭赱a、b]上是增函數(shù);

      在[a、b]上是減函數(shù).

     、谠赱a、b]上是增函數(shù).

      在[a、b]上是減函數(shù).

      需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線(xiàn)的斜率都大于(或小于)零.

      (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說(shuō)明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”.

      5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性

      若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減.簡(jiǎn)稱(chēng)“同增、異減”.

      在研究函數(shù)的單調(diào)性時(shí),常需要先將函數(shù)化簡(jiǎn),轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過(guò)程.

      6、證明函數(shù)的單調(diào)性的方法

      (1)依定義進(jìn)行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論.

      (2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo).

      如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).

      【(六)、函數(shù)的圖象】

      函數(shù)的圖象是函數(shù)的直觀(guān)體現(xiàn),應(yīng)加強(qiáng)對(duì)作圖、識(shí)圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問(wèn)題的意識(shí).

      求作圖象的函數(shù)表達(dá)式

      與f(x)的關(guān)系

      由f(x)的圖象需經(jīng)過(guò)的變換

      y=f(x)±b(b>0)

      沿y軸向平移b個(gè)單位

      y=f(x±a)(a>0)

      沿x軸向平移a個(gè)單位

      y=-f(x)

      作關(guān)于x軸的對(duì)稱(chēng)圖形

      y=f(|x|)

      右不動(dòng)、左右關(guān)于y軸對(duì)稱(chēng)

      y=|f(x)|

      上不動(dòng)、下沿x軸翻折

      y=f-1(x)

      作關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)圖形

      y=f(ax)(a>0)

      橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變

      y=af(x)

      縱坐標(biāo)伸長(zhǎng)到原來(lái)的|a|倍,橫坐標(biāo)不變

      y=f(-x)

      作關(guān)于y軸對(duì)稱(chēng)的圖形

      【例】定義在實(shí)數(shù)集上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

     、偾笞C:f(0)=1;

     、谇笞C:y=f(x)是偶函數(shù);

     、廴舸嬖诔(shù)c,使求證對(duì)任意x∈R,有f(x+c)=-f(x)成立;試問(wèn)函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請(qǐng)說(shuō)明理由.

      思路分析:我們把沒(méi)有給出解析式的函數(shù)稱(chēng)之為抽象函數(shù),解決這類(lèi)問(wèn)題一般采用賦值法.

      解答:①令x=y=0,則有2f(0)=2f2(0),因?yàn)閒(0)≠0,所以f(0)=1.

     、诹顇=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說(shuō)明f(x)為偶函數(shù).

     、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=

      所以,所以f(x+c)=-f(x).

      兩邊應(yīng)用中的結(jié)論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

      所以f(x)是周期函數(shù),2c就是它的一個(gè)周期.

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

      一、平面解析幾何的基本思想和主要問(wèn)題

      平面解析幾何是用代數(shù)的方法研究幾何問(wèn)題的一門(mén)數(shù)學(xué)學(xué)科,其基本思想就是用代數(shù)的方法研究幾何問(wèn)題。例如,用直線(xiàn)的方程可以研究直線(xiàn)的性質(zhì),用兩條直線(xiàn)的方程可以研究這兩條直線(xiàn)的位置關(guān)系等。

      平面解析幾何研究的問(wèn)題主要有兩類(lèi):一是根據(jù)已知條件,求出表示平面曲線(xiàn)的方程;二是通過(guò)方程,研究平面曲線(xiàn)的性質(zhì)。

      二、直線(xiàn)坐標(biāo)系和直角坐標(biāo)系

      直線(xiàn)坐標(biāo)系,也就是數(shù)軸,它有三個(gè)要素:原點(diǎn)、度量單位和方向。如果讓一個(gè)實(shí)數(shù)與數(shù)軸上坐標(biāo)為的點(diǎn)對(duì)應(yīng),那么就可以在實(shí)數(shù)集與數(shù)軸上的點(diǎn)集之間建立一一對(duì)應(yīng)關(guān)系。

      點(diǎn)與實(shí)數(shù)對(duì)應(yīng),則稱(chēng)點(diǎn)的坐標(biāo)為,記作,如點(diǎn)坐標(biāo)為,則記作;點(diǎn)坐標(biāo)為,則記為。

      直角坐標(biāo)系是由兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時(shí)也可以不同,兩個(gè)數(shù)軸的交點(diǎn)是直角坐標(biāo)系的原點(diǎn)。在平面直角坐標(biāo)系中,有序?qū)崝?shù)對(duì)構(gòu)成的集合與坐標(biāo)平面內(nèi)的點(diǎn)集具有一一對(duì)應(yīng)關(guān)系。

      一個(gè)點(diǎn)的坐標(biāo)是這樣求得的,由點(diǎn)向軸及軸作垂線(xiàn),在兩坐標(biāo)軸上形成正投影,在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的橫坐標(biāo),在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的縱坐標(biāo)。

      在學(xué)習(xí)這兩種坐標(biāo)系時(shí),要注意用類(lèi)比的方法。例如,平面直角坐標(biāo)系是二維坐標(biāo)系,它有兩個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)需用兩個(gè)實(shí)數(shù)(即一對(duì)有序?qū)崝?shù))來(lái)表示,而直線(xiàn)坐標(biāo)系是一維坐標(biāo)系,它只有一個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)只需用一個(gè)實(shí)數(shù)來(lái)表示。

      三、向量的有關(guān)概念和公式

      如果數(shù)軸上的任意一點(diǎn)沿著軸的正向或負(fù)向移動(dòng)到另一個(gè)點(diǎn),則說(shuō)點(diǎn)在軸上作了一次位移。位移是一個(gè)既有大小又有方向的量,通常叫做位移向量,簡(jiǎn)稱(chēng)向量,記作。如果點(diǎn)移動(dòng)的方向與數(shù)軸的正方向相同,則向量為正,否則為負(fù)。線(xiàn)段的長(zhǎng)叫做向量的長(zhǎng)度,記作。向量的長(zhǎng)度連同表示其方向的正負(fù)號(hào)叫做向量的坐標(biāo)(或數(shù)量),用表示。這里同學(xué)們要分清,,三個(gè)符號(hào)的含義。

      對(duì)于數(shù)軸上任意三點(diǎn),都有成立。該等式左邊表示在數(shù)軸上點(diǎn)向點(diǎn)作一次位移,等式右邊表示點(diǎn)先向點(diǎn)作一次位移,再由點(diǎn)向點(diǎn)作一次位移,它們的最終結(jié)果是相同的。

      向量的坐標(biāo)公式(或數(shù)量公式),它表示向量的數(shù)量等于終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo),這個(gè)公式非常重要。

      有相等坐標(biāo)的兩個(gè)向量相等,看做同一個(gè)向量;反之,兩個(gè)相等向量坐標(biāo)必相等。

      注意:①相等的所有向量看做一個(gè)整體,作為同一向量,都等于以原點(diǎn)為起點(diǎn),坐標(biāo)與這所有向量相等的那個(gè)向量。②向量與數(shù)軸上的實(shí)數(shù)(或點(diǎn))是一一對(duì)應(yīng)的,零向量即原點(diǎn)。

      四、兩點(diǎn)的距離公式和中點(diǎn)公式

      1。對(duì)于數(shù)軸上的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則的'距離為,的中點(diǎn)的坐標(biāo)為。

      由于表示數(shù)軸上兩點(diǎn)與的距離,所以在解一些簡(jiǎn)單的含絕對(duì)值的方程或不等式時(shí),常借助于數(shù)形結(jié)合思想,將問(wèn)題轉(zhuǎn)化為數(shù)軸上的距離問(wèn)題加以解決。例如,解方程時(shí),可以將問(wèn)題看作在數(shù)軸上求一點(diǎn),使它到,的距離之和等于。

      2。對(duì)于直角坐標(biāo)系中的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則兩點(diǎn)的距離為,的中點(diǎn)的坐標(biāo)滿(mǎn)足。

      兩點(diǎn)的距離公式和中點(diǎn)公式是解析幾何中最基本、最常用的公式之一,要求同學(xué)們能熟練掌握并能靈活運(yùn)用。

      五、坐標(biāo)法

      坐標(biāo)法是數(shù)學(xué)中一種重要的數(shù)學(xué)思想方法,它是借助于坐標(biāo)系來(lái)研究幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線(xiàn)看成滿(mǎn)足某種條件的點(diǎn)的集合或軌跡,用曲線(xiàn)上點(diǎn)的坐標(biāo)所滿(mǎn)足的方程表示曲線(xiàn),通過(guò)研究方程,間接地來(lái)研究曲線(xiàn)的性質(zhì)。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

      集合間的基本關(guān)系

      1.“包含”關(guān)系—子集

      注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

      2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

      實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

      結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

      A?① 任何一個(gè)集合是它本身的子集。A

      B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

      C?C ,那么 A?B, B?③如果 A

      A 那么A=B?B 同時(shí) B?④ 如果A

      3. 不含任何元素的集合叫做空集,記為Φ

      規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

      集合的運(yùn)算

      1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

      記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

      2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的'集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

      3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

      4、全集與補(bǔ)集

      (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

      A}?S且 x? x?記作: CSA 即 CSA ={x

      (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

      (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

      1過(guò)兩點(diǎn)有且只有一條直線(xiàn)

      2兩點(diǎn)之間線(xiàn)段最短

      3同角或等角的補(bǔ)角相等

      4同角或等角的余角相等

      5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

      6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

      7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

      8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

      9同位角相等,兩直線(xiàn)平行

      10內(nèi)錯(cuò)角相等,兩直線(xiàn)平行

      11同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行

      12兩直線(xiàn)平行,同位角相等

      13兩直線(xiàn)平行,內(nèi)錯(cuò)角相等

      14兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)

      15定理三角形兩邊的和大于第三邊

      16推論三角形兩邊的差小于第三邊

      17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

      18推論1直角三角形的兩個(gè)銳角互余

      19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

      20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

      21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

      22邊角邊公理(sas)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

      23角邊角公理(asa)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      24推論(aas)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      25邊邊邊公理(sss)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      26斜邊、直角邊公理(hl)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

      27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

      28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

      29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

      30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

      31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

      32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合

      33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

      34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

      35推論1三個(gè)角都相等的三角形是等邊三角形

      36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

      37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

      38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

      39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

      40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

      41線(xiàn)段的`垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

      42定理1關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形

      43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上

      45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)

      46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

      47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形

      48定理四邊形的內(nèi)角和等于360°

      49四邊形的外角和等于360°

      50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

      51推論任意多邊的外角和等于360°

      52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等

      53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等

      54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

      55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線(xiàn)互相平分

      56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形

      57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形

      58平行四邊形判定定理3對(duì)角線(xiàn)互相平分的四邊形是平行四邊形

      59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形

      60矩形性質(zhì)定理1矩形的四個(gè)角都是直角

      61矩形性質(zhì)定理2矩形的對(duì)角線(xiàn)相等

      62矩形判定定理1有三個(gè)角是直角的四邊形是矩形

      63矩形判定定理2對(duì)角線(xiàn)相等的平行四邊形是矩形

      64菱形性質(zhì)定理1菱形的四條邊都相等

      65菱形性質(zhì)定理2菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角

      66菱形面積=對(duì)角線(xiàn)乘積的一半,即s=(a×b)÷2

      67菱形判定定理1四邊都相等的四邊形是菱形

      68菱形判定定理2對(duì)角線(xiàn)互相垂直的平行四邊形是菱形

      69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

      70正方形性質(zhì)定理2正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角

      71定理1關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的

      72定理2關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分

      73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)

      74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

      75等腰梯形的兩條對(duì)角線(xiàn)相等

      76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

      77對(duì)角線(xiàn)相等的梯形是等腰梯形

      78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

      79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

      80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊

      81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半

      82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半l=(a+b)÷2s=l×h

      83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

      84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

      85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

      86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對(duì)應(yīng)線(xiàn)段成比例

      87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(zhǎng)線(xiàn)),所得的對(duì)應(yīng)線(xiàn)段成比例

      88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(zhǎng)線(xiàn))所得的對(duì)應(yīng)線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

      89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

      90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(zhǎng)線(xiàn))相交,所構(gòu)成的三角形與原三角形相似

      91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(asa)

      92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

      93判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(sas)

      94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(sss)

      95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

      96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線(xiàn)的比與對(duì)應(yīng)角平分線(xiàn)的比都等于相似比

      97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比

      98性質(zhì)定理3相似三角形面積的比等于相似比的平方

      99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等

      于它的余角的正弦值

      100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

      101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

      102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

      103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

      104同圓或等圓的半徑相等

      105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

      106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線(xiàn)段的垂直平分線(xiàn)

      107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

      108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

      109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

      110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

      111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

     、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

     、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

      112推論2圓的兩條平行弦所夾的弧相等

      113圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

      114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

      115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

      116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

      117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

      118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

      119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

      120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

      121①直線(xiàn)l和⊙o相交d

     、谥本(xiàn)l和⊙o相切d=r

     、壑本(xiàn)l和⊙o相離d>r

      122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

      123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

      124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

      125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

      126切線(xiàn)長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

      127圓的外切四邊形的兩組對(duì)邊的和相等

      128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

      129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

      130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(zhǎng)的積相等

      131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的

      兩條線(xiàn)段的比例中項(xiàng)

      132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(zhǎng)是這點(diǎn)到割

      線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(zhǎng)的比例中項(xiàng)

      133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(zhǎng)的積相等

      134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

      135①兩圓外離d>r+r②兩圓外切d=r+r

      ③兩圓相交r-rr)

     、軆蓤A內(nèi)切d=r-r(r>r)⑤兩圓內(nèi)含dr)

      136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

      137定理把圓分成n(n≥3):

     、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

      ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

      138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

      139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

      140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

      141正n邊形的面積sn=pnrn/2p表示正n邊形的周長(zhǎng)

      142正三角形面積√3a/4a表示邊長(zhǎng)

      143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為

      360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      144弧長(zhǎng)計(jì)算公式:l=nπr/180

      145扇形面積公式:s扇形=nπr2/360=lr/2

      146內(nèi)公切線(xiàn)長(zhǎng)=d-(r-r)外公切線(xiàn)長(zhǎng)=d-(r+r)

      147等腰三角形的兩個(gè)底腳相等

      148等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高相互重合

      149如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等

      150三條邊都相等的三角形叫做等邊三角形

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

      一:函數(shù)及其表示

      知識(shí)點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

      1. 函數(shù)與映射的區(qū)別:

      2. 求函數(shù)定義域

      常見(jiàn)的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

      ①當(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.

      ②當(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。

     、郛(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開(kāi)方數(shù)不小于0的實(shí)數(shù)集合。

     、墚(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

     、萑绻鹒(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

     、迯(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。

     、邔(duì)于由實(shí)際問(wèn)題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問(wèn)題的制約。

      3. 求函數(shù)值域

      (1)、觀(guān)察法:通過(guò)對(duì)函數(shù)定義域、性質(zhì)的觀(guān)察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

      (2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過(guò)換元可以寫(xiě)成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過(guò)自變量的范圍可以求出該函數(shù)的值域;

      (3)、判別式法:

      (4)、數(shù)形結(jié)合法;通過(guò)觀(guān)察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的'值域;

      (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

      (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來(lái)求出值域;

      (7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

      (8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

      (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

      本節(jié)內(nèi)容主要是空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系,在認(rèn)識(shí)過(guò)程中,可以進(jìn)一步提高同學(xué)們的空間想象能力,發(fā)展推理能力.通過(guò)對(duì)實(shí)際模型的認(rèn)識(shí),學(xué)會(huì)將文字語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言和符號(hào)語(yǔ)言,以具體的長(zhǎng)方體中的點(diǎn)、線(xiàn)、面之間的關(guān)系作為載體,使同學(xué)們?cè)谥庇^(guān)感知的基礎(chǔ)上,認(rèn)識(shí)空間中點(diǎn)、線(xiàn)、面之間的位置關(guān)系,點(diǎn)、線(xiàn)、面的位置關(guān)系是立體幾何的主要研究對(duì)象,同時(shí)也是空間圖形最基本的幾何元素.

      重難點(diǎn)知識(shí)歸納

      1、平面

      (1)平面概念的理解

      直觀(guān)的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀(guān)的印象,但它們都不是平面,而僅僅是平面的一部分.

      抽象的理解:平面是平的,平面是無(wú)限延展的,平面沒(méi)有厚。

      (2)平面的表示法

     、賵D形表示法:通常用平行四邊形來(lái)表示平面,有時(shí)根據(jù)實(shí)際需要,也用其他的平面圖形來(lái)表示平面.

     、谧帜副硎荆撼S玫认ED字母表示平面.

      (3)涉及本部分內(nèi)容的符號(hào)表示有:

     、冱c(diǎn)A在直線(xiàn)l內(nèi),記作; ②點(diǎn)A不在直線(xiàn)l內(nèi),記作;

     、埸c(diǎn)A在平面內(nèi),記作; ④點(diǎn)A不在平面內(nèi),記作;

      ⑤直線(xiàn)l在平面內(nèi),記作; ⑥直線(xiàn)l不在平面內(nèi),記作;

      注意:符號(hào)的使用與集合中這四個(gè)符號(hào)的使用的區(qū)別與聯(lián)系.

      (4)平面的基本性質(zhì)

      公理1:如果一條直線(xiàn)的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)上的所有點(diǎn)都在這個(gè)平面內(nèi).

      符號(hào)表示為:.

      注意:如果直線(xiàn)上所有的點(diǎn)都在一個(gè)平面內(nèi),我們也說(shuō)這條直線(xiàn)在這個(gè)平面內(nèi),或者稱(chēng)平面經(jīng)過(guò)這條直線(xiàn).

      公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面.

      符號(hào)表示為:直線(xiàn)AB存在唯一的平面,使得.

      注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來(lái)代替.此公理又可表示為:不共線(xiàn)的三點(diǎn)確定一個(gè)平面.

      公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn).

      符號(hào)表示為:.

      注意:兩個(gè)平面有一條公共直線(xiàn),我們說(shuō)這兩個(gè)平面相交,這條公共直線(xiàn)就叫作兩個(gè)平面的交線(xiàn).若平面、平面相交于直線(xiàn)l,記作.

      公理的推論:

      推論1:經(jīng)過(guò)一條直線(xiàn)和直線(xiàn)外的一點(diǎn)有且只有一個(gè)平面.

      推論2:經(jīng)過(guò)兩條相交直線(xiàn)有且只有一個(gè)平面.

      推論3:經(jīng)過(guò)兩條平行直線(xiàn)有且只有一個(gè)平面.

      2.空間直線(xiàn)

      (1)空間兩條直線(xiàn)的位置關(guān)系

     、傧嘟恢本(xiàn):有且僅有一個(gè)公共點(diǎn),可表示為;

     、谄叫兄本(xiàn):在同一個(gè)平面內(nèi),沒(méi)有公共點(diǎn),可表示為a//b;

     、郛惷嬷本(xiàn):不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn).

      (2)平行直線(xiàn)

      公理4:平行于同一條直線(xiàn)的'兩條直線(xiàn)互相平行.

      符號(hào)表示為:設(shè)a、b、c是三條直線(xiàn),.

      定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等.

      (3)兩條異面直線(xiàn)所成的角

      注意:

     、賰蓷l異面直線(xiàn)a,b所成的角的范圍是(0°,90°].

     、趦蓷l異面直線(xiàn)所成的角與點(diǎn)O的選擇位置無(wú)關(guān),這可由前面所講過(guò)的“等角定理”直接得出.

     、塾蓛蓷l異面直線(xiàn)所成的角的定義可得出異面直線(xiàn)所成角的一般方法:

      (i)在空間任取一點(diǎn),這個(gè)點(diǎn)通常是線(xiàn)段的中點(diǎn)或端點(diǎn).

      (ii)分別作兩條異面直線(xiàn)的平行線(xiàn),這個(gè)過(guò)程通常采用平移的方法來(lái)實(shí)現(xiàn).

      (iii)指出哪一個(gè)角為兩條異面直線(xiàn)所成的角,這時(shí)我們要注意兩條異面直線(xiàn)所成的角的范圍.

      3.空間直線(xiàn)與平面

      直線(xiàn)與平面位置關(guān)系有且只有三種:

      (1)直線(xiàn)在平面內(nèi):有無(wú)數(shù)個(gè)公共點(diǎn);

      (2)直線(xiàn)與平面相交:有且只有一個(gè)公共點(diǎn);

      (3)直線(xiàn)與平面平行:沒(méi)有公共點(diǎn).

      4.平面與平面

      兩個(gè)平面之間的位置關(guān)系有且只有以下兩種:

      (1)兩個(gè)平面平行:沒(méi)有公共點(diǎn);

      (2)兩個(gè)平面相交:有一條公共直線(xiàn).

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

      函數(shù)圖象知識(shí)歸納

      (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿(mǎn)足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

      (2)畫(huà)法

      A、描點(diǎn)法:

      B、圖象變換法

      常用變換方法有三種

      1)平移變換

      2)伸縮變換

      3)對(duì)稱(chēng)變換

      4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

      (1)函數(shù)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

      (2)無(wú)窮區(qū)間

      5.映射

      一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

      對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿(mǎn)足:

      (1)函數(shù)A中的'每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

      (2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

      (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

      6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

      (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

      (2)各部分的自變量的取值情況.

      (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

      補(bǔ)充:復(fù)合函數(shù)

      如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復(fù)合函數(shù)。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

      知識(shí)點(diǎn)總結(jié)

      本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的.最值、函數(shù)的對(duì)稱(chēng)性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

      一、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義

      2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

      二、函數(shù)的奇偶性和周期性

      1、函數(shù)的奇偶性和周期性的定義

      2、函數(shù)的奇偶性的判定和證明方法

      3、函數(shù)的周期性的判定方法

      三、函數(shù)的圖象

      1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法

      2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱(chēng)變換、翻折變換。

      常見(jiàn)考法

      本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

      誤區(qū)提醒

      1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。

      2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫(xiě)成開(kāi)區(qū)間,不必考慮端點(diǎn)問(wèn)題。

      3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開(kāi)。

      4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)一定是非奇非偶函數(shù)。

      5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

      集合的運(yùn)算

      運(yùn)算類(lèi)型交 集并 集補(bǔ) 集

      定義域 R定義域 R

      值域>0值域>0

      在R上單調(diào)遞增在R上單調(diào)遞減

      非奇非偶函數(shù)非奇非偶函數(shù)

      函數(shù)圖象都過(guò)定點(diǎn)(0,1)函數(shù)圖象都過(guò)定點(diǎn)(0,1)

      注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

     。1)在[a,b]上, 值域是 或 ;

     。2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;

      (3)對(duì)于指數(shù)函數(shù) ,總有 ;

      二、對(duì)數(shù)函數(shù)

     。ㄒ唬⿲(duì)數(shù)

      1.對(duì)數(shù)的概念:

      一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)

      說(shuō)明:○1 注意底數(shù)的限制 ,且 ;

      ○2 ;

      ○3 注意對(duì)數(shù)的書(shū)寫(xiě)格式.

      兩個(gè)重要對(duì)數(shù):

      ○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;

      ○2 自然對(duì)數(shù):以無(wú)理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .

      指數(shù)式與對(duì)數(shù)式的互化

      冪值 真數(shù)

     。 N = b

      底數(shù)

      指數(shù) 對(duì)數(shù)

      (二)對(duì)數(shù)的運(yùn)算性質(zhì)

      如果 ,且 , , ,那么:

      ○1 + ;

      ○2 - ;

      ○3 .

      注意:換底公式: ( ,且 ; ,且 ; ).

      利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .

     。3)、重要的公式 ①、負(fù)數(shù)與零沒(méi)有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式

     。ǘ⿲(duì)數(shù)函數(shù)

      1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).

      注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類(lèi)似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱(chēng)其為對(duì)數(shù)型函數(shù).

      ○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .

      2、對(duì)數(shù)函數(shù)的性質(zhì):

      a>10

      定義域x>0定義域x>0

      值域?yàn)镽值域?yàn)镽

      在R上遞增在R上遞減

      函數(shù)圖象都過(guò)定點(diǎn)(1,0)函數(shù)圖象都過(guò)定點(diǎn)(1,0)

     。ㄈ﹥绾瘮(shù)

      1、冪函數(shù)定義:一般地,形如 的函數(shù)稱(chēng)為冪函數(shù),其中 為常數(shù).

      2、冪函數(shù)性質(zhì)歸納.

      (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);

      (2) 時(shí),冪函數(shù)的圖象通過(guò)原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;

      (3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無(wú)限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無(wú)限地逼近 軸正半軸.

      第四章 函數(shù)的應(yīng)用

      一、方程的根與函數(shù)的零點(diǎn)

      1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù) 的.零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。

      即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).

      3、函數(shù)零點(diǎn)的求法:

      ○1 (代數(shù)法)求方程 的實(shí)數(shù)根;

      ○2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

      4、二次函數(shù)的零點(diǎn):

      二次函數(shù) .

     。1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

     。2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

     。3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

      5.函數(shù)的模型

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

      圓的方程定義:

      圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

      直線(xiàn)和圓的位置關(guān)系:

      1、直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。

      ①Δ>0,直線(xiàn)和圓相交、②Δ=0,直線(xiàn)和圓相切、③Δ<0,直線(xiàn)和圓相離。

      方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較。

     、賒R,直線(xiàn)和圓相離、

      2、直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程、求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

      3、直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題。

      切線(xiàn)的性質(zhì)

     、艌A心到切線(xiàn)的距離等于圓的半徑;

     、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);

     、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);

     、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;

      當(dāng)一條直線(xiàn)滿(mǎn)足

     。1)過(guò)圓心;

     。2)過(guò)切點(diǎn);

      (3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。

      切線(xiàn)的.判定定理

      經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

      切線(xiàn)長(zhǎng)定理

      從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(zhǎng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

      集合的有關(guān)概念

      1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

      注意:①集合與集合的元素是兩個(gè)不同的概念,教科書(shū)中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線(xiàn)的概念類(lèi)似。

     、诩现械脑鼐哂写_定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。

     、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件

      2)集合的表示方法:常用的有列舉法、描述法和圖文法

      3)集合的分類(lèi):有限集,無(wú)限集,空集。

      4)常用數(shù)集:N,Z,Q,R,N

      子集、交集、并集、補(bǔ)集、空集、全集等概念

      1)子集:若對(duì)x∈A都有x∈B,則AB(或AB);

      2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

      3)交集:A∩B={x|x∈A且x∈B}

      4)并集:A∪B={x|x∈A或x∈B}

      5)補(bǔ)集:CUA={x|xA但x∈U}

      注意:A,若A≠?,則?A;

      若且,則A=B(等集)

      集合與元素

      掌握有關(guān)的術(shù)語(yǔ)和符號(hào),特別要注意以下的符號(hào):(1)與、?的區(qū)別;(2)與的`區(qū)別;(3)與的區(qū)別。

      子集的幾個(gè)等價(jià)關(guān)系

      ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

     、蹵∩CuB=空集CuAB;⑤CuA∪B=IAB。

      交、并集運(yùn)算的性質(zhì)

      ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

     、跜u(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

      有限子集的個(gè)數(shù):

      設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

      練習(xí)題:

      已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿(mǎn)足關(guān)系()

      A)M=NPB)MN=PC)MNPD)NPM

      分析一:從判斷元素的共性與區(qū)別入手。

      解答一:對(duì)于集合M:{x|x=,m∈Z};對(duì)于集合N:{x|x=,n∈Z}

      對(duì)于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)16

      高一數(shù)學(xué)集合有關(guān)概念

      集合的含義

      集合的中元素的三個(gè)特性:

      元素的確定性如:世界上的山

      元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

      元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

      3。集合的表示:{…}如:{我校的`籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

      用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

      集合的表示方法:列舉法與描述法。

      注意:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

      列舉法:{a,b,c……}

      描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

      語(yǔ)言描述法:例:{不是直角三角形的三角形}

      Venn圖:

      4、集合的分類(lèi):

      有限集含有有限個(gè)元素的集合

      無(wú)限集含有無(wú)限個(gè)元素的集合

      空集不含任何元素的集合例:{x|x2=—5}

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)17

      必修一

      一、集合

      一、集合有關(guān)概念1.集合的含義

      2.集合的中元素的三個(gè)特性:

      (1)元素的確定性如:世界上最高的山

      (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

      3.集合的表示:{}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,

      北冰洋}

      (1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R1)列舉法:{a,b,c}

      2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的

      方法。{xR|x-3>2},{x|x-3>2}

      3)語(yǔ)言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類(lèi):

      (1)有限集含有有限個(gè)元素的集合(2)無(wú)限集含有無(wú)限個(gè)元素的集合2

      (3)空集不含任何元素的集合例:{x|x=-5}

      二、集合間的基本關(guān)系1.“包含”關(guān)系子集

      注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)2

      實(shí)例:設(shè)A={x|x-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個(gè)集合是它本身的子集。AA

     、谡孀蛹:如果AB,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

     、廴绻鸄B,BC,那么AC④如果AB同時(shí)BA那么A=B

      3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1

      有n個(gè)元素的集合,含有2個(gè)子集,2個(gè)真子集

      二、函數(shù)

      1、函數(shù)定義域、值域求法綜合

      2.、函數(shù)奇偶性與單調(diào)性問(wèn)題的解題策略3、恒成立問(wèn)題的求解策略4、反函數(shù)的幾種題型及方法

      5、二次函數(shù)根的問(wèn)題一題多解&指數(shù)函數(shù)y=a^x

      a^a*a^b=a^a+b(a>0,a、b屬于Q)(a^a)^b=a^ab(a>0,a、b屬于Q)(ab)^a=a^a*b^a(a>0,a、b屬于Q)指數(shù)函數(shù)對(duì)稱(chēng)規(guī)律:

      1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對(duì)稱(chēng)2、函數(shù)y=a^x與y=-a^x關(guān)于x軸對(duì)稱(chēng)

      3、函數(shù)y=a^x與y=-a^-x關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)&對(duì)數(shù)函數(shù)y=loga^x

      如果a0,且a1,M0,N0,那么:1loga(MMN)logaM+logaN;○

      2loga○logaM-logaN;n3○logaMNnlogaM(nR).注意:換底公式logcblogab(a0,且a1;c0,且c1;b0).冪函數(shù)y=x^a(a屬于R)logca1、冪函數(shù)定義:一般地,形如yx(aR)的函數(shù)稱(chēng)為冪函數(shù),其中為常數(shù).

      2、冪函數(shù)性質(zhì)歸納.

     。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);(2)0時(shí),冪函數(shù)的圖象通過(guò)原點(diǎn),并且在區(qū)間[0,)上是增函數(shù).特別地,當(dāng)1時(shí),冪函數(shù)的圖象下凸;當(dāng)01時(shí),冪函數(shù)的圖象上凸;(3)0時(shí),冪函數(shù)的圖象在區(qū)間(0,)上是減函數(shù).在第一象限內(nèi),當(dāng)x從右邊趨向原點(diǎn)時(shí),圖象在y軸右方無(wú)限地逼近y軸正半軸,當(dāng)x趨于時(shí),圖象在x軸上方無(wú)限地逼近x軸正半軸.

      方程的根與函數(shù)的零點(diǎn)

      1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實(shí)數(shù)根,亦即函數(shù)yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

      即:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).3、函數(shù)零點(diǎn)的求法:

      1(代數(shù)法)求方程f(x)0的實(shí)數(shù)根;○

      2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖○

      象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).4、二次函數(shù)的零點(diǎn):2bxc(a0).二次函數(shù)yax2(1)△>0,方程axbxc0有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).2(2)△=0,方程axbxc0有兩相等實(shí)根,二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).2(3)△<0,方程axbxc0無(wú)實(shí)根,二次函數(shù)的圖象與x軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

      高一數(shù)學(xué)知識(shí)總結(jié)數(shù)性質(zhì)三、平面向量

      向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒(méi)有方向的量.

      有向線(xiàn)段的三要素:起點(diǎn)、方向、長(zhǎng)度.零向量:長(zhǎng)度為0的向量.

      單位向量:長(zhǎng)度等于1個(gè)單位的向量.相等向量:長(zhǎng)度相等且方向相同的向量&向量的運(yùn)算加法運(yùn)算

      AB+BC=AC,這種計(jì)算法則叫做向量加法的三角形法則。

      已知兩個(gè)從同一點(diǎn)O出發(fā)的兩個(gè)向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線(xiàn)OC就是向量OA、OB的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。對(duì)于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。

      向量的加法滿(mǎn)足所有的加法運(yùn)算定律。

      減法運(yùn)算

      與a長(zhǎng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

      數(shù)乘運(yùn)算

      實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ>0時(shí),λa的方向和a的方向相同,當(dāng)λ<0時(shí),λa的方向和a的方向相反,當(dāng)λ=0時(shí),λa=0。設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

      向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱(chēng)線(xiàn)性運(yùn)算。

      向量的數(shù)量積

      已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。a?b的幾何意義:數(shù)量積a?b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積。兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。四、三角函數(shù)

      1、善于用“1“巧解題

      2、三角問(wèn)題的非三角化解題策略3、三角函數(shù)有界性求最值解題方法4、三角函數(shù)向量綜合題例析5、三角函數(shù)中的數(shù)學(xué)思想方法

      15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):ysinxytanxycosx函圖象

      定義域值域最值周期性奇偶性單調(diào)性

      RR

      1,1

      當(dāng)x2kk當(dāng)x2kk時(shí),

      ymax時(shí),21;當(dāng)ymax1;當(dāng)x2kx2kk時(shí),ymin1.ky1.2min時(shí),

      2

      1,1

      xxk,k

      2R

      既無(wú)最大值也無(wú)最小值

      2

      奇函數(shù)

      奇函數(shù)

      在

      偶函數(shù)

      對(duì)稱(chēng)性

      必修四

      角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱(chēng)為第幾象限角.k36090,k第一象限角的集合為k360,k第二象限角的'集合為k36090k360180第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k終邊在y軸上的角的集合為k18090,k終邊在坐標(biāo)軸上的角的集合為k90,k3、與角終邊相同的角的集合為*k360,k4、已知是第幾象限角,確定n所在象限的方法:先把各象限均分n等份,再?gòu)膞軸的正半

      2k,2k在2k,2kk上232k上是增函數(shù);在是增函數(shù);在2k,2k2k,2kk上是減函數(shù).22k上是減函數(shù).對(duì)稱(chēng)中心k,0中心稱(chēng)k對(duì)對(duì)稱(chēng)軸xkkk,0k

      x2k對(duì)稱(chēng)軸2k

      ,k

      22k上是增函數(shù).

      k,0k對(duì)稱(chēng)中心無(wú)對(duì)稱(chēng)軸2在kn軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來(lái)是第幾象限對(duì)應(yīng)的標(biāo)號(hào)即為區(qū)域.

      5、長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度.口訣:奇變偶不變,符號(hào)看象限.

      公式一:

      設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:

      設(shè)α為任意角,πα的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

      公式三:

      任意角α與-α的三角函數(shù)值之間的關(guān)系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

      公式四:

      利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

      公式五:

      利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

      公式六:

      π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα

      sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

      sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα

      sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα

      (以上k∈Z)

      其他三角函數(shù)知識(shí):同角三角函數(shù)基本關(guān)系

     、蓖侨呛瘮(shù)的基本關(guān)系式倒數(shù)關(guān)系:

      tanαcotα=1sinαcscα=1cosαsecα=1商的關(guān)系:

      sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方關(guān)系:

      sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)兩角和差公式

     、矁山呛团c差的三角函數(shù)公式

      sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

      tanα+tanβtan(α+β)=1-tanαtanβ

      tanα-tanβtan(α-β)=1+tanαtanβ

      n終邊所落在的

      倍角公式

     、扯督堑恼、余弦和正切公式(升冪縮角公式)sin2α=2sinαcosα

      cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=1-tan^2(α)半角公式

      ⒋半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)1-cosαsin^2(α/2)=21+cosαcos^2(α/2)=21-cosαtan^2(α/2)=1+cosα萬(wàn)能公式⒌萬(wàn)能公式

      2tan(α/2)sinα=1+tan^2(α/2)

      1-tan^2(α/2)cosα=1+tan^2(α/2)

      2tan(α/2)tanα=1-tan^2(α/2)和差化積公式

     、啡呛瘮(shù)的和差化積公式

      α+βα-βsinα+sinβ=2sin----cos---22

      α+βα-βsinα-sinβ=2cos----sin----22

      α+βα-βcosα+cosβ=2cos-----cos-----22

      α+βα-βcosα-cosβ=-2sin-----sin-----22積化和差公式

      ⒏三角函數(shù)的積化和差公式

      sinαcosβ=0.5[sin(α+β)+sin(α-β)]cosαsinβ=0.5[sin(α+β)-sin(α-β)]cosαcosβ=0.5[cos(α+β)+cos(α-β)]sinαsinβ=-0.5[cos(α+β)-cos(α-β)]

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)18

      1.對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。

      中元素各表示什么?

      注重借助于數(shù)軸和文氏圖解集合問(wèn)題。

      空集是一切集合的子集,是一切非空集合的真子集。

      3.注意下列性質(zhì):

      (3)德摩根定律:

      4.你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法)

      的取值范圍。

      6.命題的四種形式及其相互關(guān)系是什么?

      (互為逆否關(guān)系的命題是等價(jià)命題。)

      原命題與逆否命題同真、同假;逆命題與否命題同真同假。

      7.對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

      (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

      8.函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

      (定義域、對(duì)應(yīng)法則、值域)

      9.求函數(shù)的定義域有哪些常見(jiàn)類(lèi)型?

      10.如何求復(fù)合函數(shù)的定義域?

      義域是_____________。

      11.求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

      12.反函數(shù)存在的條件是什么?

      (一一對(duì)應(yīng)函數(shù))

      求反函數(shù)的步驟掌握了嗎?

      (①反解x;②互換x、y;③注明定義域)

      13.反函數(shù)的性質(zhì)有哪些?

     、倩榉春瘮(shù)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng);

     、诒4媪嗽瓉(lái)函數(shù)的單調(diào)性、奇函數(shù)性;

      14.如何用定義證明函數(shù)的單調(diào)性?

      (取值、作差、判正負(fù))

      如何判斷復(fù)合函數(shù)的單調(diào)性?

      ∴……)

      15.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

      值是()

      A.0B.1C.2D.3

      ∴a的值為3)

      16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

      (f(x)定義域關(guān)于原點(diǎn)對(duì)稱(chēng))

      注意如下結(jié)論:

      (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

      17.你熟悉周期函數(shù)的定義嗎?

      函數(shù),T是一個(gè)周期。)

      如:

      18.你掌握常用的圖象變換了嗎?

      注意如下“翻折”變換:

      19.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

      的雙曲線(xiàn)。

      應(yīng)用:①“三個(gè)二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程

     、谇箝]區(qū)間[m,n]上的最值。

     、矍髤^(qū)間定(動(dòng)),對(duì)稱(chēng)軸動(dòng)(定)的最值問(wèn)題。

     、芤辉畏匠谈姆植紗(wèn)題。

      由圖象記性質(zhì)!(注意底數(shù)的限定!)

      利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

      20.你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?

      21.如何解抽象函數(shù)問(wèn)題?

      (賦值法、結(jié)構(gòu)變換法)

      22.掌握求函數(shù)值域的常用方法了嗎?

      (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

      如求下列函數(shù)的最值:

      23.你記得弧度的定義嗎?能寫(xiě)出圓心角為α,半徑為R的弧長(zhǎng)公式和扇形面積公式嗎?

      24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線(xiàn)的定義

      25.你能迅速畫(huà)出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫(xiě)出單調(diào)區(qū)間、對(duì)稱(chēng)點(diǎn)、對(duì)稱(chēng)軸嗎?

      (x,y)作圖象。

      27.在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面——先求出某一個(gè)三角函數(shù)值,再判定角的范圍。

      28.在解含有正、余弦函數(shù)的問(wèn)題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎?

      29.熟練掌握三角函數(shù)圖象變換了嗎?

      (平移變換、伸縮變換)

      平移公式:

      圖象?

      30.熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?

      “奇”、“偶”指k取奇、偶數(shù)。

      A.正值或負(fù)值B.負(fù)值C.非負(fù)值D.正值

      31.熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

      理解公式之間的聯(lián)系:

      應(yīng)用以上公式對(duì)三角函數(shù)式化簡(jiǎn)。(化簡(jiǎn)要求:項(xiàng)數(shù)最少、函數(shù)種類(lèi)最少,分母中不含三角函數(shù),能求值,盡可能求值。)

      具體方法:

      (2)名的變換:化弦或化切

      (3)次數(shù)的變換:升、降冪公式

      (4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。

      32.正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

      (應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

      33.用反三角函數(shù)表示角時(shí)要注意角的范圍。

      34.不等式的性質(zhì)有哪些?

      答案:C

      35.利用均值不等式:

      值?(一正、二定、三相等)

      注意如下結(jié)論:

      36.不等式證明的基本方法都掌握了嗎?

      (比較法、分析法、綜合法、數(shù)學(xué)歸納法等)

      并注意簡(jiǎn)單放縮法的應(yīng)用。

      (移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

      38.用“穿軸法”解高次不等式——“奇穿,偶切”,從根的右上方開(kāi)始

      39.解含有參數(shù)的不等式要注意對(duì)字母參數(shù)的討論

      40.對(duì)含有兩個(gè)絕對(duì)值的不等式如何去解?

      (找零點(diǎn),分段討論,去掉絕對(duì)值符號(hào),最后取各段的并集。)

      證明:

      (按不等號(hào)方向放縮)

      42.不等式恒成立問(wèn)題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問(wèn)題,或“△”問(wèn)題)

      43.等差數(shù)列的定義與性質(zhì)

      0的二次函數(shù))

      項(xiàng),即:

      44.等比數(shù)列的定義與性質(zhì)

      46.你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?

      例如:(1)求差(商)法

      解:

      [練習(xí)]

      (2)疊乘法

      解:

      (3)等差型遞推公式

      [練習(xí)]

      (4)等比型遞推公式

      [練習(xí)]

      (5)倒數(shù)法

      47.你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?

      例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對(duì)互為相反數(shù)的項(xiàng)。

      解:

      [練習(xí)]

      (2)錯(cuò)位相減法:

      (3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫(xiě),再與原來(lái)順序的數(shù)列相加。

      [練習(xí)]

      48.你知道儲(chǔ)蓄、貸款問(wèn)題嗎?

      △零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型:

      若每期存入本金p元,每期利率為r,n期后,本利和為:

      △若按復(fù)利,如貸款問(wèn)題——按揭貸款的每期還款計(jì)算模型(按揭貸款——分期等額歸還本息的借款種類(lèi))

      若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿(mǎn)足

      p——貸款數(shù),r——利率,n——還款期數(shù)

      49.解排列、組合問(wèn)題的依據(jù)是:分類(lèi)相加,分步相乘,有序排列,無(wú)序組合。

      (2)排列:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素,按照一定的順序排成一

      (3)組合:從n個(gè)不同元素中任取m(m≤n)個(gè)元素并組成一組,叫做從n個(gè)不

      50.解排列與組合問(wèn)題的規(guī)律是:

      相鄰問(wèn)題_法;相間隔問(wèn)題插空法;定位問(wèn)題優(yōu)先法;多元問(wèn)題分類(lèi)法;至多至少問(wèn)題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。

      如:學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績(jī)

      則這四位同學(xué)考試成績(jī)的所有可能情況是()

      A.24B.15C.12D.10

      解析:可分成兩類(lèi):

      (2)中間兩個(gè)分?jǐn)?shù)相等

      相同兩數(shù)分別取90,91,92,對(duì)應(yīng)的排列可以數(shù)出來(lái),分別有3,4,3種,∴有10種。

      ∴共有5+10=15(種)情況

      51.二項(xiàng)式定理

      性質(zhì):

      (3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)且為第

      表示)

      52.你對(duì)隨機(jī)事件之間的關(guān)系熟悉嗎?

      的和(并)。

      (5)互斥事件(互不相容事件):“A與B不能同時(shí)發(fā)生”叫做A、B互斥。

      (6)對(duì)立事件(互逆事件):

      (7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。

      53.對(duì)某一事件概率的求法:

      分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

      (5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生

      如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

      (1)從中任取2件都是次品;

      (2)從中任取5件恰有2件次品;

      (3)從中有放回地任取3件至少有2件次品;

      解析:有放回地抽取3次(每次抽1件),∴n=103

      而至少有2件次品為“恰有2次品”和“三件都是次品”

      (4)從中依次取5件恰有2件次品。

      解析:∵一件一件抽取(有順序)

      分清(1)、(2)是組合問(wèn)題,(3)是可重復(fù)排列問(wèn)題,(4)是無(wú)重復(fù)排列問(wèn)題。

      54.抽樣方法主要有:簡(jiǎn)單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀(guān)性和平等性。

      55.對(duì)總體分布的估計(jì)——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

      要熟悉樣本頻率直方圖的作法:

      (2)決定組距和組數(shù);

      (3)決定分點(diǎn);

      (4)列頻率分布表;

      (5)畫(huà)頻率直方圖。

      如:從10名_與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為_(kāi)___________。

      56.你對(duì)向量的有關(guān)概念清楚嗎?

      (1)向量——既有大小又有方向的量。

      在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

      (6)并線(xiàn)向量(平行向量)——方向相同或相反的向量。

      規(guī)定零向量與任意向量平行。

      (7)向量的加、減法如圖:

      (8)平面向量基本定理(向量的分解定理)

      的一組基底。

      (9)向量的坐標(biāo)表示

      表示。

      57.平面向量的數(shù)量積

      數(shù)量積的幾何意義:

      (2)數(shù)量積的運(yùn)算法則

      [練習(xí)]

      答案:

      答案:2

      答案:

      58.線(xiàn)段的定比分點(diǎn)

      ※.你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

      59.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

      平行垂直的證明主要利用線(xiàn)面關(guān)系的轉(zhuǎn)化:

      線(xiàn)面平行的判定:

      線(xiàn)面平行的性質(zhì):

      三垂線(xiàn)定理(及逆定理):

      線(xiàn)面垂直:

      面面垂直:

      60.三類(lèi)角的定義及求法

      (1)異面直線(xiàn)所成的角θ,0°<θ≤90°

      (2)直線(xiàn)與平面所成的角θ,0°≤θ≤90°

      (三垂線(xiàn)定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

      三類(lèi)角的求法:

      ①找出或作出有關(guān)的角。

      ②證明其符合定義,并指出所求作的角。

     、塾(jì)算大小(解直角三角形,或用余弦定理)。

      [練習(xí)]

      (1)如圖,OA為α的斜線(xiàn)OB為其在α_影,OC為α內(nèi)過(guò)O點(diǎn)任一直線(xiàn)。

      (2)如圖,正四棱柱ABCD—A1B1C1D1中對(duì)角線(xiàn)BD1=8,BD1與側(cè)面B1BCC1所成的為30°。

      ①求BD1和底面ABCD所成的角;

     、谇螽惷嬷本(xiàn)BD1和AD所成的角;

     、矍蠖娼荂1—BD1—B1的大小。

      (3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

      (∵AB∥DC,P為面PAB與面PCD的公共點(diǎn),作PF∥AB,則PF為面PCD與面PAB的'交線(xiàn)……)

      61.空間有幾種距離?如何求距離?

      點(diǎn)與點(diǎn),點(diǎn)與線(xiàn),點(diǎn)與面,線(xiàn)與線(xiàn),線(xiàn)與面,面與面間距離。

      將空間距離轉(zhuǎn)化為兩點(diǎn)的距離,構(gòu)造三角形,解三角形求線(xiàn)段的長(zhǎng)(如:三垂線(xiàn)定理法,或者用等積轉(zhuǎn)化法)。

      如:正方形ABCD—A1B1C1D1中,棱長(zhǎng)為a,則:

      (1)點(diǎn)C到面AB1C1的距離為_(kāi)__________;

      (2)點(diǎn)B到面ACB1的距離為_(kāi)___________;

      (3)直線(xiàn)A1D1到面AB1C1的距離為_(kāi)___________;

      (4)面AB1C與面A1DC1的距離為_(kāi)___________;

      (5)點(diǎn)B到直線(xiàn)A1C1的距離為_(kāi)____________。

      62.你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?

      正棱柱——底面為正多邊形的直棱柱

      正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

      正棱錐的計(jì)算集中在四個(gè)直角三角形中:

      它們各包含哪些元素?

      63.球有哪些性質(zhì)?

      (2)球面上兩點(diǎn)的距離是經(jīng)過(guò)這兩點(diǎn)的大圓的劣弧長(zhǎng)。為此,要找球心角!

      (3)如圖,θ為緯度角,它是線(xiàn)面成角;α為經(jīng)度角,它是面面成角。

      (5)球內(nèi)接長(zhǎng)方體的對(duì)角線(xiàn)是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。

      積為()

      答案:A

      64.熟記下列公式了嗎?

      (2)直線(xiàn)方程:

      65.如何判斷兩直線(xiàn)平行、垂直?

      66.怎樣判斷直線(xiàn)l與圓C的位置關(guān)系?

      圓心到直線(xiàn)的距離與圓的半徑比較。

      直線(xiàn)與圓相交時(shí),注意利用圓的“垂徑定理”。

      67.怎樣判斷直線(xiàn)與圓錐曲線(xiàn)的位置?

      68.分清圓錐曲線(xiàn)的定義

      70.在圓錐曲線(xiàn)與直線(xiàn)聯(lián)立求解時(shí),消元后得到的方程,要注意其二次項(xiàng)系數(shù)是否為零?△≥0的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱(chēng)存在性問(wèn)題都在△≥0下進(jìn)行。)

      71.會(huì)用定義求圓錐曲線(xiàn)的焦半徑嗎?

      如:

      通徑是拋物線(xiàn)的所有焦點(diǎn)弦中最短者;以焦點(diǎn)弦為直徑的圓與準(zhǔn)線(xiàn)相切。

      72.有關(guān)中點(diǎn)弦問(wèn)題可考慮用“代點(diǎn)法”。

      答案:

      73.如何求解“對(duì)稱(chēng)”問(wèn)題?

      (1)證明曲線(xiàn)C:F(x,y)=0關(guān)于點(diǎn)M(a,b)成中心對(duì)稱(chēng),設(shè)A(x,y)為曲線(xiàn)C上任意一點(diǎn),設(shè)A(x,y)為A關(guān)于點(diǎn)M的對(duì)稱(chēng)點(diǎn)。

      75.求軌跡方程的常用方法有哪些?注意討論范圍。

      (直接法、定義法、轉(zhuǎn)移法、參數(shù)法)

      76.對(duì)線(xiàn)性規(guī)劃問(wèn)題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線(xiàn),在可行域內(nèi)平移直線(xiàn),求出目標(biāo)函數(shù)的最值。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)19

      1.多面體的結(jié)構(gòu)特征

      (1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

      正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

      (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。

      正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

      (3)棱臺(tái)可由平行于底面的'平面截棱錐得到,其上下底面是相似多邊形。

      2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

      (1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉(zhuǎn)一周得到.

      (2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉(zhuǎn)一周得到.

      (3)圓臺(tái)可以由直角梯形繞直角腰所在直線(xiàn)旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

      (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

      3.空間幾何體的三視圖

      空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

      三視圖的長(zhǎng)度特征:“長(zhǎng)對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長(zhǎng),側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法。

      4.空間幾何體的直觀(guān)圖

      空間幾何體的直觀(guān)圖常用斜二測(cè)畫(huà)法來(lái)畫(huà),基本步驟是:

      (1)畫(huà)幾何體的底面

      在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀(guān)圖時(shí),把它們畫(huà)成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀(guān)圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線(xiàn)段,在直觀(guān)圖中長(zhǎng)度不變,平行于y軸的線(xiàn)段,長(zhǎng)度變?yōu)樵瓉?lái)的一半。

      (2)畫(huà)幾何體的高

      在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀(guān)圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀(guān)圖中仍平行于z′軸且長(zhǎng)度不變。

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)20

      二次函數(shù)

      I.定義與定義表達(dá)式

      一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

      則稱(chēng)y為x的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      II.二次函數(shù)的三種表達(dá)式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的'圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。

      IV.拋物線(xiàn)的性質(zhì)

      1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=-b/2a。對(duì)稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

      特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)

      2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為

      P(-b/2a,(4ac-b^2)/4a)

      當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

      3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

      當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。

      |a|越大,則拋物線(xiàn)的開(kāi)口越小。

    【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-13

    高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)09-08

    高一數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)10-18

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-31

    高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)09-08

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納08-03

    高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)09-09

    2021高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-30

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版10-10

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【熱門(mén)】10-11