- 相關(guān)推薦
初二年級數(shù)學(xué)知識點(diǎn)總結(jié)
總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,他能夠提升我們的書面表達(dá)能力,我想我們需要寫一份總結(jié)了吧。但是總結(jié)有什么要求呢?下面是小編為大家收集的初二年級數(shù)學(xué)知識點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。
初二年級數(shù)學(xué)知識點(diǎn)總結(jié)1
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關(guān)系,那么這個(gè)三角形是直角三角形。
3、勾股數(shù)
滿足的三個(gè)正整數(shù),稱為勾股數(shù)。
常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。
二、證明
1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180度。
(1)證明三角形內(nèi)角和定理的.思路是將原三角形中的三個(gè)角湊到一起組成一個(gè)平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內(nèi)角是互為補(bǔ)角。
3、三角形的外角與它不相鄰的內(nèi)角關(guān)系
(1)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
(2)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
4、證明一個(gè)命題是真命題的基本步驟
(1)根據(jù)題意,畫出圖形。
(2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證。
(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時(shí)需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。
初二年級數(shù)學(xué)知識點(diǎn)總結(jié)2
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個(gè)頂點(diǎn)和它對邊中點(diǎn)的線段叫做三角形的中線。
5、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的.對角線。
11、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質(zhì):
(1)三角形的內(nèi)角和:三角形的內(nèi)角和為180°
(2)三角形外角的性質(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
(3)多邊形內(nèi)角和公式:邊形的內(nèi)角和等于?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對角線的條數(shù):
①從邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對角線,把多邊形分成個(gè)三角形。
②邊形共有條對角線。
初二年級數(shù)學(xué)知識點(diǎn)總結(jié)3
第一章勾股定理
1、探索勾股定理
、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒剑绻胊,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2
2、一定是直角三角形嗎
、偃绻切蔚娜呴La b c滿足a2+b2=c2,那么這個(gè)三角形一定是直角三角形
3、勾股定理的應(yīng)用
第二章實(shí)數(shù)
1、認(rèn)識無理數(shù)
、儆欣頂(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示
、跓o理數(shù):無限不循環(huán)小數(shù)
2、平方根
、偎銛(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根
、谔貏e地,我們規(guī)定:0的算數(shù)平方根是0
、燮椒礁阂话愕,如果一個(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根
、芤粋(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根
、菡龜(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來可記作±
、揲_平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開平方,a叫做被開方數(shù)
3、立方根
、倭⒎礁阂话愕,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根
②每個(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
、坶_立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開立方,a叫做被開方數(shù)
4、估算
、俟浪,一般結(jié)果是相對復(fù)雜的小數(shù),估算有精確位數(shù)
5、用計(jì)算機(jī)開平方
6、實(shí)數(shù)
、賹(shí)數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱
②實(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大
7、二次根式
①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)
、 =(a≥0,b≥0),=(a≥0,b>0)
、圩詈喍胃剑阂话愕,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡二次根式
、芑啎r(shí),通常要求最終結(jié)果中分母不含有根號,而且各個(gè)二次根式時(shí)最簡二次根式
第三章位置與坐標(biāo)
1、確定位置
①在平面內(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)
2、平面直角坐標(biāo)系
、俸x:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系
、谕ǔ5,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)
③建立了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對來表示
④在平面直角坐標(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限
⑤在直角坐標(biāo)系中,對于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(即點(diǎn)的坐標(biāo))與它對應(yīng);反過來,對于任意一個(gè)有序?qū)崝?shù)對,都有平面上唯一的一點(diǎn)與它對應(yīng)
3、軸對稱與坐標(biāo)變化
、訇P(guān)于x軸對稱的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)
第四章一次函數(shù)
1、函數(shù)
①一般地,如果在一個(gè)變化過程中有兩個(gè)變量x和y,并且對于變量x的每一個(gè)值,變量y都有唯一的值與它對應(yīng),那么我們稱y是x的函數(shù)其中x是自變量
、诒硎竞瘮(shù)的方法一般有:列表法、關(guān)系式法和圖象法
、蹖τ谧宰兞吭诳扇≈捣秶鷥(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對應(yīng)值,這個(gè)對應(yīng)值稱為當(dāng)自變量等于a的函數(shù)值
2、一次函數(shù)與正比例函數(shù)
、偃魞蓚(gè)變量x,y間的對應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)
3、一次函數(shù)的圖像
①正比例函數(shù)y=kx的圖像是一條經(jīng)過原點(diǎn)(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點(diǎn),過這個(gè)點(diǎn)與原點(diǎn)畫直線就可以了
、谠谡壤瘮(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減。划(dāng)k<0時(shí),y的值隨著x的值增大而減小
、垡淮魏瘮(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過這兩點(diǎn)畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b
④一次函數(shù)y=kx+b的圖像經(jīng)過點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小
4、一次函數(shù)的應(yīng)用
、僖话愕,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0
第五章二元一次方程組
1、認(rèn)識二元一次方程組
①含有兩個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程
②共含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組
③二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解
2、求解二元一次方程組
①將其中一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法
、谕ㄟ^兩式子加減,消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法
3、應(yīng)用二元一次方程組
、匐u兔同籠
4、應(yīng)用二元一次方程組
①增減收支
5、應(yīng)用二元一次方程組
、倮锍瘫系臄(shù)
6、二元一次方程組與一次函數(shù)
①一般地,以一個(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線
②一般地,從圖形的角度看,確定兩條直線相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的`二元一次方程組的解,解一個(gè)二元一次方程組相當(dāng)于確定相應(yīng)兩條直線交點(diǎn)的坐標(biāo)
7、用二元一次方程組確定一次函數(shù)表達(dá)式
①先設(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。
8、三元一次方程組
、僭谝粋(gè)方程組中,各個(gè)式子都含有三個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程
②像這樣,共含有三個(gè)未知數(shù)的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組
、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。
第六章數(shù)據(jù)的分析
1、平均數(shù)
①一般地,對于n個(gè)數(shù)x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。
②在實(shí)際問題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)
2、中位數(shù)與眾數(shù)
①中位數(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)
②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)
、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計(jì)量
、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。
、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息
⑥各個(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別意義
3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢
4、數(shù)據(jù)的離散程度
①實(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量
、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫
③方差是各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)
④其中是x1x2......xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根
、菀话愣裕唤M數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
第七章平行線的證明
1、為什么要證明
、賹(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個(gè)數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明
2、定義與命題
、僮C明時(shí),為了交流方便,必須對某些名稱和術(shù)語形成共同的認(rèn)識,為此,就要對名稱和術(shù)語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義
、谂袛嘁患虑榈木渥樱凶雒}
、垡话愕兀總(gè)命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通?梢詫懗伞叭绻....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論
、苷_的命題稱為真命題,不正確的命題稱為假命題
⑤要說明一個(gè)命題是假命題,常?梢耘e出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱為反例
、逇W幾里得在編寫《原本》時(shí),挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱為原名,公認(rèn)的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進(jìn)行判斷
、哐堇[推理的過程稱為證明,經(jīng)過證明的真命題稱為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來證明
a.本套教科書選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線
b.兩點(diǎn)之間線段最短
c.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直
d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)
e.過直線外一點(diǎn)有且只有一條直線與這條直線平行
f.兩邊及其夾角分別相等的兩個(gè)三角形全等
g.兩角及其夾邊分別相等的兩個(gè)三角形全等
h.三邊分別相等的兩個(gè)三角形全等
、啻送,數(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)
⑨ 定理:同角(等角)的補(bǔ)角相等
同角(等角)的余角相等
三角形的任意兩邊之和大于第三邊
對頂角相等
3、平行線的判定
、 定理:兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行,簡述為:內(nèi)錯(cuò)角相等,兩直線平行
、 定理:兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行,簡述為:同旁內(nèi)角互補(bǔ),兩直線平行。
4、平行線的性質(zhì)
① 定理:兩條平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等
、 定理:兩條平行直線被第三條直線所截,內(nèi)錯(cuò)角相等。簡述為:兩直線平行,內(nèi)錯(cuò)角相等
、 定理:兩條平行直線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡述為:兩直線平行,同旁內(nèi)角互補(bǔ)
④ 定理:平行于同一條直線的兩條直線平行
5、三角形內(nèi)角和定理
、 三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°
、 定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
、 我們通過三角形的內(nèi)角和定理直接推導(dǎo)出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。
初二數(shù)學(xué)上冊知識點(diǎn)匯總
(一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2
如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
。ǘ┢椒讲罟
1.平方差公式
。1)式子: a2—b2=(a+b)(a—b)
。2)語言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
。ㄈ┮蚴椒纸
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
。ㄋ模┩耆椒焦
。1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2—2ab+b2 =(a—b)2
這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
、夙(xiàng)數(shù):三項(xiàng)
、谟袃身(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號相同。
、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。
。3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。
(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。
。ㄎ澹┓纸M分解法
我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)×(a +b)。
這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式。
。┨峁蚴椒
1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符號,直到可確定多項(xiàng)式的公因式。
2. 運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。
2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:
、 列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;
、趪L試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。
3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。
(七)分式的乘除法
1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。
2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡分式。
3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。
4.分式約分中注意正確運(yùn)用乘方的符號法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個(gè)分式的符號,然后再按—1的偶次方為正、奇次方為負(fù)來處理。當(dāng)然,簡單的分式之分子分母可直接乘方。
6.注意混合運(yùn)算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減。
。ò耍┓?jǐn)?shù)的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個(gè)分式而言,而通分是針對多個(gè)分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。
4.通分的依據(jù):分式的基本性質(zhì)。
5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
6.類比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p。
9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號。
10.對于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。
11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化。
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式。
。ň牛┖凶帜赶禂(shù)的一元一次方程
1.含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程 ax=b(a≠0)
在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零
【初二年級數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
初二數(shù)學(xué)知識點(diǎn)總結(jié)07-21
初二數(shù)學(xué)知識點(diǎn)總結(jié)15篇07-23
初二數(shù)學(xué)知識點(diǎn)總結(jié)(15篇)07-23
初二下數(shù)學(xué)知識點(diǎn)總結(jié)12-23
初二數(shù)學(xué)知識點(diǎn)總結(jié)(合集15篇)07-23
初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)11-02
初二數(shù)學(xué)知識點(diǎn)總結(jié)(匯編15篇)07-23
初二物理知識點(diǎn)總結(jié)06-27
初二物理知識點(diǎn)總結(jié)12-11