欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    初三數(shù)學(xué)圓的總結(jié)

    時(shí)間:2023-03-05 19:39:45 總結(jié) 投訴 投稿
    • 相關(guān)推薦

    初三數(shù)學(xué)圓的總結(jié)

      總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對(duì)學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,因此好好準(zhǔn)備一份總結(jié)吧?偨Y(jié)怎么寫才能發(fā)揮它的作用呢?以下是小編精心整理的初三數(shù)學(xué)圓的總結(jié),歡迎大家分享。

    初三數(shù)學(xué)圓的總結(jié)

    初三數(shù)學(xué)圓的總結(jié)1

      圓的全章復(fù)習(xí)

      圓的基礎(chǔ)知識(shí)(1)圓的有關(guān)概念:

      弦,弧,半圓,弓形,弓形高,等。[含同圓等圓),弦心距,直徑等。

      (2)圓的確定

      圓心決定位置,半徑?jīng)Q定大小,不共線的三點(diǎn)確定一個(gè)圓。注意:作圖(兩邊中垂線找交點(diǎn)),外心的位置,外心到三角形各頂點(diǎn)距離等

      圓的對(duì)稱性:軸對(duì)稱,中心對(duì)稱,旋轉(zhuǎn)不變性

      2.圓與其它圖形

     。1)點(diǎn)與圓三種

     。2)直線與圓

      相離dr

     、僖粭l直線與圓三種相切dr

      相交d

      r②兩條直線與圓有關(guān)的角:圓周角,弦切角,圓外角等比例線段:圓冪定理等

     、廴龡l直線與圓即三角形與圓

      三角形“四心”的區(qū)別:垂心意義三條高的交點(diǎn)性質(zhì)等式積:位置銳角三角形:內(nèi)部直角三角形:直角頂點(diǎn)鈍角三角形:外部必在三角形內(nèi)部ahabhbchc重心三條中線的交點(diǎn)同一中線上重心到頂點(diǎn)的距離是它到該頂點(diǎn)的對(duì)邊距離的2倍外心

      1.外接圓的圓心

      2.三邊中垂線的交點(diǎn)

      3.內(nèi)切圓的圓心

      4.三條角平分線的交點(diǎn)到三角形三頂點(diǎn)距離相等銳角三角形:內(nèi)部直角三角形:斜邊中點(diǎn)鈍角三角形:外部到三角形三邊距離相等與頂點(diǎn)連線平分該內(nèi)角必在三角形內(nèi)部?jī)?nèi)心

     、芩臈l直線與圓為180內(nèi)切四邊形:對(duì)角之和的和相等外切四邊形:兩組對(duì)邊

      (3)兩圓與直線

      兩圓外切時(shí)連心線過(guò)內(nèi)公切線切點(diǎn)與該切線垂直。兩圓內(nèi)切時(shí)連心線過(guò)切點(diǎn),垂直于過(guò)切點(diǎn)的切線。

      兩圓相交時(shí),連心線垂直于公共弦,并且平分公共弦。

      3.圓與圓的位置關(guān)系:

      (1).掌握?qǐng)A與圓的五種位置關(guān)系,類比于點(diǎn)與圓,直線與圓的位置關(guān)系,能通過(guò)兩圓半徑r1,r2及圓心距d三者的數(shù)量關(guān)系,判斷兩圓位置關(guān)系,或通過(guò)位置關(guān)系,判斷數(shù)量關(guān)系。

      (2).在數(shù)軸上表示當(dāng)d在不同位置時(shí),兩圓的位置關(guān)系。

      (3).在證明兩圓的或多圓的圖形時(shí),常加的輔助線:公共弦、公切線;圓心距,連心線。

      (4).當(dāng)兩圓相交時(shí),連心線垂直平分公共弦。當(dāng)兩圓內(nèi)切時(shí),連心線垂直于公切線。當(dāng)兩圓外切時(shí),連心線垂直于內(nèi)公切線。

      (5).公切線是指兩個(gè)圓公共的切線,如果兩圓在公切線同旁則稱外公切線,如果兩圓在公切線兩旁則稱內(nèi)切線。公切線上兩切點(diǎn)間線段的長(zhǎng)叫公切線長(zhǎng)。(Rr)(外離時(shí))

      (6).如圖內(nèi)公切線長(zhǎng)d(Rr)(外離、外切、相交時(shí))外公切線長(zhǎng)dd圓心距

      R大圓半徑

      r小圓半徑

      R≥r

      2222

      內(nèi)公切線Rr夾角一半sin

      d的正弦值

      外公切線Rr夾角一半sin

      d的正弦值

      (7).公切線條數(shù)①內(nèi)含0條0dRr②內(nèi)切1條dRr③相交2條RrdRr④外切3條dRr⑤外離4條dRr4,定理

      (1)垂徑定理及推論:過(guò)圓心;垂直弦;平分弦(非直徑);平分優(yōu);平分劣弧;知2求3。

      (2)圓心角,弦,弦心距,弧之間關(guān)系:同圓等圓中知1得3。

     。3)與圓有關(guān)的'角:圓心角,圓周角,弦切角,圓內(nèi)角,圓外角,圓內(nèi)接四邊形外角,內(nèi)對(duì)角,對(duì)角

      1.一條弧所對(duì)圓周角等于它所對(duì)的圓心角的一它所對(duì)弧度數(shù)的一半半,圓周角的度數(shù)等于角相等;

      2.同弧或等弧所對(duì)的圓周圓周角的性質(zhì)相等的圓周角所對(duì)的弧也相等

      3.直徑所對(duì)的圓周角是直角,90的圓周角所對(duì)的弦是直角

     。4)切線的判定、性質(zhì):

     、倥卸ǎ撼R姷淖C法連半徑,證垂直,判斷切線,“連垂切”或作垂直證d=r

     、谛再|(zhì):若一條直線滿足過(guò)圓心、過(guò)切點(diǎn),垂直于切線中任意兩條,可得另外一條。常見“切連垂”

     。5)和圓有關(guān)的比例線段:

      相交弦定理及推論,切割線定理及推論,圓冪定理

      5.和圓有關(guān)的計(jì)算

      (1)求線段

     、僦睆、半徑

      ②垂徑定理:求弦長(zhǎng)、弦心距、拱高

     、矍芯長(zhǎng)、公切線長(zhǎng)(外公切線長(zhǎng),內(nèi)公切線長(zhǎng))

     、苤苯侨切蝺(nèi)切圓半徑

     、萑我馊切蝺(nèi)切圓半徑與面積、周長(zhǎng)的關(guān)系

      ⑥等邊三角形內(nèi)切圓半徑:外接圓半徑=1:2

     、吲c圓有關(guān)的比例線段、弦長(zhǎng)、切線長(zhǎng)等

     。2)求角

      圓心角,圓周角,弦切角,兩切線夾角,公切線夾角

      6.常見輔助線

      半徑、直徑、弦心距、“切連垂”、連心線、公共弦、公切線

      7.圓中常見圖形

      直角三角形等腰三角形圓內(nèi)接四邊形相似三角形

      8.正多邊形和圓

      (n2)180正n邊形的內(nèi)角和為(n2)180有n個(gè)相等的內(nèi)角,每個(gè)內(nèi)角的度數(shù)為

      n注意:正多邊形的外交和始終為3609.弧長(zhǎng)公式:lnR

      180nR210.扇形面積公式:3

    初三數(shù)學(xué)圓的總結(jié)2

      圓的全章復(fù)習(xí)

      1.圓的基礎(chǔ)知識(shí)(1)圓的有關(guān)概念:

      弦,弧,半圓,弓形,弓形高,等。[含同圓等圓),弦心距,直徑等。(2)圓的確定

      圓心決定位置,半徑?jīng)Q定大小,不共線的三點(diǎn)確定一個(gè)圓。

      注意:作圖(兩邊中垂線找交點(diǎn)),外心的位置,外心到三角形各頂點(diǎn)距離等

     、蹐A的對(duì)稱性:軸對(duì)稱,中心對(duì)稱,旋轉(zhuǎn)不變性

      2.圓與其它圖形(1)點(diǎn)與圓三種(2)直線與圓

      相離dr①一條直線與圓三種相切dr

      相交dr有關(guān)的角:圓周角,弦切角,圓外角等②兩條直線與圓

      比例線段:圓冪定理等③三條直線與圓即三角形與圓

      三角形“四心”的區(qū)別:

      垂心意義三條高的交點(diǎn)性質(zhì)等式積:ahabhbchc位置銳角三角形:內(nèi)部直角三角形:直角頂點(diǎn)鈍角三角形:外部必在三角形內(nèi)部重心三條中線的交點(diǎn)同一中線上重心到頂點(diǎn)的距離是它到該頂點(diǎn)的對(duì)邊距離的2倍外心1.外接圓的圓心2.三邊中垂線的交點(diǎn)到三角形三頂點(diǎn)距離相等銳角三角形:內(nèi)部直角三角形:斜邊中點(diǎn)鈍角三角形:外部到三角形三邊距離相等與頂點(diǎn)連線平分該內(nèi)角必在三角形內(nèi)部?jī)?nèi)心

      1.內(nèi)切圓的圓心2.三條角平分線的交點(diǎn)

      內(nèi)切四邊形:對(duì)角之和④四條直線與圓外切四邊形:兩組對(duì)邊為180的和相等

     。3)兩圓與直線

      兩圓外切時(shí)連心線過(guò)內(nèi)公切線切點(diǎn)與該切線垂直。兩圓內(nèi)切時(shí)連心線過(guò)切點(diǎn),垂直于過(guò)切點(diǎn)的切線。

      兩圓相交時(shí),連心線垂直于公共弦,并且平分公共弦。

      3.圓與圓的位置關(guān)系:

      (1).掌握?qǐng)A與圓的五種位置關(guān)系,類比于點(diǎn)與圓,直線與圓的位置關(guān)系,能通過(guò)兩圓半徑r1,r2及圓心距d三者的數(shù)量關(guān)系,判斷兩圓位置關(guān)系,或通過(guò)位置關(guān)系,判斷數(shù)量關(guān)系。(2).在數(shù)軸上表示當(dāng)d在不同位置時(shí),兩圓的位置關(guān)系。

      (3).在證明兩圓的或多圓的圖形時(shí),常加的輔助線:公共弦、公切線;圓心距,連心線。(4).當(dāng)兩圓相交時(shí),連心線垂直平分公共弦。當(dāng)兩圓內(nèi)切時(shí),連心線垂直于公切線。

      當(dāng)兩圓外切時(shí),連心線垂直于內(nèi)公切線。

      (5).公切線是指兩個(gè)圓公共的切線,如果兩圓在公切線同旁則稱外公切線,如果兩圓在公切線兩旁則稱內(nèi)切線。公切線上兩切點(diǎn)間線段的長(zhǎng)叫公切線長(zhǎng)。(6).如圖內(nèi)公切線長(zhǎng)d(Rr)(外離時(shí))

      (Rr)(外離、外切、相交時(shí))外公切線長(zhǎng)d2222d圓心距R大圓半徑r小圓半徑R≥r

      內(nèi)公切線Rrd

      外公切線Rrd

      夾角一半sin的正弦值夾角一半sin的正弦值

      (7).公切線條數(shù)①內(nèi)含②內(nèi)切③相交

      0條

      1條dRrRrdRr2條0dRr④外切⑤外離

      dRrdRr

      3條4條

      4.定理

      (1)垂徑定理及推論:過(guò)圓心;垂直弦;平分弦(非直徑);平分優(yōu);平分劣;知2求3。

     。2)圓心角,弦,弦心距,弧之間關(guān)系:同圓等圓中知1得3。

     。3)與圓有關(guān)的角:圓心角,圓周角,弦切角,圓內(nèi)角,圓外角,圓內(nèi)接四邊形外角,內(nèi)對(duì)角,對(duì)角

      1.一條弧所對(duì)圓周角等于它所對(duì)的圓心角的一它所對(duì)弧度數(shù)的一半半,圓周角的度數(shù)等于角相等;同圓或等圓中2.同弧或等弧所對(duì)的圓周也相等相等的圓周角所對(duì)的弧。3.直徑所對(duì)的圓周角是直角,90的圓周角所對(duì)的弦是直角圓周角的性質(zhì)

     。4)切線的判定、性質(zhì):

     、倥卸ǎ撼R姷淖C法連半徑,證垂直,判斷切線,“連垂切”

      或作垂直證d=r

     、谛再|(zhì):若一條直線滿足過(guò)圓心、過(guò)切點(diǎn),垂直于切線中任意兩條,可得另外一條。常見“切連垂”

     。5)和圓有關(guān)的比例線段:

      相交弦定理及推論,切割線定理及推論

      5.和圓有關(guān)的計(jì)算(1)求線段①直徑、半徑

     、诖箯蕉ɡ恚呵笙议L(zhǎng)、弦心距、拱高

      ③切線長(zhǎng)、公切線長(zhǎng)(外公切線長(zhǎng),內(nèi)公切線長(zhǎng))④直角三角形內(nèi)切圓半徑

     、萑我馊切蝺(nèi)切圓半徑與面積、周長(zhǎng)的關(guān)系⑥等邊三角形內(nèi)切圓半徑:外接圓半徑=1:2⑦與圓有關(guān)的比例線段、弦長(zhǎng)、切線長(zhǎng)等(2)求角

      圓心角,圓周角,弦切角,兩切線夾角,公切線夾角6.常見輔助線

      半徑、直徑、弦心距、“切連垂”、連心線、公共弦、公切線7.圓中常見圖形

      直角三角形等腰三角形圓內(nèi)接四邊形相似三角形

      8.正多邊形和圓

      正n邊形的內(nèi)角和為(n2)180有n個(gè)相等的內(nèi)角,每個(gè)內(nèi)角的度數(shù)為

      (n2)180n

      注意:正多邊形的外交和始終為3609.弧長(zhǎng)公式:lnR

      180101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的**

      102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的**103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的**104同圓或等圓的半徑相等

      105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

      106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

      107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

      110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

      111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

     、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

      114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

      115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等116定理一條弧所對(duì)的.圓周角等于它所對(duì)的圓心角的一半

      117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

      119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

      121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

      122切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

      126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對(duì)邊的和相等

      128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

      129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

      131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

      132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

      133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

     、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

     、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

     、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

      140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)142正三角形面積√3a/4a表示邊長(zhǎng)

      143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(zhǎng)計(jì)算公式:L=n兀R/180

      145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

    初三數(shù)學(xué)圓的總結(jié)3

      1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

      2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

      推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

      ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

      ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

      推論2圓的兩條平行弦所夾的弧相等

      3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

      4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

      5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

      6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

      7.同圓或等圓的半徑相等

      8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

      9.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

      10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

      11定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

      12.①直線L和⊙O相交d

     、谥本L和⊙O相切d=r

      ③直線L和⊙O相離d>r

      13.切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

      14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

      15.推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

      16.推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

      17.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

      18.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角

      19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

      20.①兩圓外離d>R+r ②兩圓外切d=R+r

     、.兩圓相交R-rr

      ④.兩圓內(nèi)切d=R-rR>r ⑤兩圓內(nèi)含dr

      21.定理相交兩圓的連心線垂直平分兩圓的公共弦

      22.定理把圓分成nn≥3:

     、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

      ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

      23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

      24.正n邊形的每個(gè)內(nèi)角都等于n-2×180°/n

      25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

      26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)

      27.正三角形面積√3a/4 a表示邊長(zhǎng)

      28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×n-2180°/n=360°化為n-2k-2=4

      29.弧長(zhǎng)計(jì)算公式:L=n兀R/180

      30.扇形面積公式:S扇形=n兀R^2/360=LR/2

      31.內(nèi)公切線長(zhǎng)= d-R-r外公切線長(zhǎng)= d-R+r

      32.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

      33.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

      34.推論2半圓或直徑所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

      35.弧長(zhǎng)公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr

      初三數(shù)學(xué)復(fù)習(xí)方法

      一、回歸課本,夯實(shí)基礎(chǔ),做好預(yù)習(xí)。

      數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是復(fù)習(xí)的重中之重。回歸課本,要先對(duì)知識(shí)點(diǎn)進(jìn)行梳理,把教材上的每一個(gè)例題、習(xí)題再做一遍,確保基本概念、公式等牢固掌握,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達(dá)。復(fù)習(xí)課的內(nèi)容多、時(shí)間緊。要提高復(fù)習(xí)效率,必須使自己的思維與老師的思維同步。而預(yù)習(xí)則是達(dá)到這一目的的重要途徑。沒(méi)有預(yù)習(xí),聽老師講課,會(huì)感到老師講的都重要,抓不住老師講的重點(diǎn);而預(yù)習(xí)了之后,再聽老師講課,就會(huì)在記憶上對(duì)老師講的內(nèi)容有所取舍,把重點(diǎn)放在自己還未掌握的內(nèi)容上,提高學(xué)習(xí)效率。

      二、提高課堂聽課效率,多動(dòng)腦,勤動(dòng)手

      初三的課只有兩種形式:復(fù)習(xí)課和評(píng)講課,到初三所有課都進(jìn)入復(fù)習(xí)階段,通過(guò)復(fù)習(xí),學(xué)生要知道自己哪些知識(shí)點(diǎn)掌握的比較好,哪些知識(shí)點(diǎn)有待提高,因此在復(fù)習(xí)課之前一定要有自已的思考,這樣聽課的目的就明確了,F(xiàn)在學(xué)生手中都會(huì)有一些復(fù)習(xí)資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對(duì)預(yù)習(xí)中遇到的沒(méi)有掌握好的舊知識(shí),可進(jìn)行查漏補(bǔ)缺,以減少聽課過(guò)程中的困難,自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己的數(shù)學(xué)思維;體會(huì)分析問(wèn)題的思路和解決問(wèn)題的思想方法,堅(jiān)持下去,就一定能舉一反三,事半功倍。此外對(duì)于老師講課中的難點(diǎn),重點(diǎn)要作好筆記,筆記不是記錄而是將上述聽課中的要點(diǎn),思維方法等作出簡(jiǎn)單扼要的記錄,以便復(fù)習(xí),消化,思考。

      三、建立錯(cuò)題本,查漏補(bǔ)缺

      初三復(fù)習(xí),各類試題要做幾十套,甚至上百套。特級(jí)教師提醒學(xué)生可以建立一個(gè)錯(cuò)題本,把平時(shí)做錯(cuò)的題系統(tǒng)的'整理好,在上面寫上評(píng)析和做錯(cuò)的原因,每過(guò)一段時(shí)間,就把“錯(cuò)題筆記”拿出來(lái)看一看。在看參考書時(shí),也可以把精彩之處或做錯(cuò)的題目做上標(biāo)記,以后再看這本書時(shí)就會(huì)有所側(cè)重。查漏補(bǔ)缺的過(guò)程就是反思的過(guò)程。除了把不同的問(wèn)題弄懂以外,還要學(xué)會(huì)“舉一反三,融會(huì)貫通”,及時(shí)歸納總結(jié)。每次訂正試卷或作業(yè)時(shí),在錯(cuò)題旁邊要寫明做錯(cuò)的原因。

      初三數(shù)學(xué)學(xué)習(xí)建議

      培養(yǎng)良好的學(xué)習(xí)習(xí)慣

      1制定計(jì)劃。從而使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動(dòng)學(xué)生主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。但計(jì)劃一定要切實(shí)可行,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過(guò)程中嚴(yán)格要求自己,磨練學(xué)習(xí)意志。

      2課前自學(xué)。這是上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。自學(xué)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上。

      3專心上課。“學(xué)然后知不足”,這是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。課前自學(xué)過(guò)的學(xué)生上課更能專心聽課,他們知道什么地方該詳細(xì)聽,什么地方可以一帶而過(guò),該記的地方才記下來(lái),而不是全盤抄錄,顧此失彼。

      4及時(shí)復(fù)習(xí)。這是高效率學(xué)習(xí)的重要一環(huán)。通過(guò)反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來(lái),進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。

      5獨(dú)立作業(yè)。這是掌握獨(dú)立思考,分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的必要過(guò)程。這一過(guò)程也是對(duì)學(xué)生意志毅力的考驗(yàn),通過(guò)作業(yè)練習(xí)使學(xué)生對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。

      6解決疑難。這是指對(duì)獨(dú)立完成作業(yè)過(guò)程中暴露出來(lái)對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補(bǔ)遺解答的過(guò)程。解決疑難一定要有鍥而不舍的精神,做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并經(jīng)常把容易錯(cuò)的地方拿來(lái)復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把從老師、同學(xué)處獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”。

      7系統(tǒng)小結(jié)。這是通過(guò)積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過(guò)分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”。

      8課外學(xué)習(xí)。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等。它不僅能豐富學(xué)生的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能夠滿足和發(fā)展學(xué)生的興趣愛(ài)好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。

    【初三數(shù)學(xué)圓的總結(jié)】相關(guān)文章:

    數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)08-27

    初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)03-01

    有關(guān)圓的數(shù)學(xué)日記02-25

    初三數(shù)學(xué)總結(jié)11-19

    數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)7篇08-27

    數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)(7篇)03-07

    初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)歸納09-15

    小學(xué)圓的數(shù)學(xué)教案04-23

    《圓的周長(zhǎng)》數(shù)學(xué)教學(xué)反思04-10