欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    高中數學教案

    時間:2022-11-08 09:32:03 教案 投訴 投稿

    高中數學教案合集15篇

      作為一名教職工,有必要進行細致的教案準備工作,教案是教學藍圖,可以有效提高教學效率。來參考自己需要的教案吧!下面是小編精心整理的高中數學教案,希望能夠幫助到大家。

    高中數學教案合集15篇

    高中數學教案1

      兩角差的余弦公式

      【使用說明】 1、復習教材P124-P127頁,40分鐘時間完成預習學案

      2、有余力的學生可在完成探究案中的部分內容。

      【學習目標】

      知識與技能:理解兩角差的余弦公式的推導過程及其結構特征并能靈活運用。

      過程與方法:應用已學知識和方法思考問題,分析問題,解決問題的能力。

      情感態(tài)度價值觀:通過公式推導引導學生發(fā)現數學規(guī)律,培養(yǎng)學生的創(chuàng)新意識和學習數學的興趣。

      【重點】通過探索得到兩角差的余弦公式以及公式的靈活運用

      【難點】兩角差余弦公式的推導過程

      預習自學案

      一、知識鏈接

      1、寫出的三角函數線:

      2、向量,的數量積,

      ①定義:

     、谧鴺诉\算法則:

      3、,,那么是否等于呢?

      下面我們就探討兩角差的余弦公式

      二、教材導讀

      1、、兩角差的余弦公式的推導思路

      如圖,建立單位圓O

     。1)利用單位圓上的三角函數線

      設

      則

      又OM=OB+BM

      =OB+CP

      =OA_____ +AP_____

      =

      從而得到兩角差的余弦公式:

      ____________________________________

      (2)利用兩點間距離公式

      如圖,角的終邊與單位圓交于A( )

      角的終邊與單位圓交于B( )

      角的終邊與單位圓交于P( )

      點T( )

      AB與PT關系如何?

      從而得到兩角差的余弦公式:

      ____________________________________

     。3)利用平面向量的知識

      用表示向量,

      =(,)=(,)

      則。 =

      設與的'夾角為

     、佼敃r:

      =

      從而得出

     、诋敃r顯然此時已經不是向量的夾角,在范圍內,是向量夾角的補角。我們設夾角為,則+ =

      此時=

      從而得出

      2、兩角差的余弦公式

      ____________________________

      三、預習檢測

      1、利用余弦公式計算的值。

      2、怎樣求的值

      你的疑惑是什么?

      ________________________________________________________

      ______________________________________________________

      探究案

      例1.利用差角余弦公式求的值。

      例2.已知,是第三象限角,求的值。

      訓練案

      一、基礎訓練題

      1、

      2、

      3、

      二、綜合題

    高中數學教案2

      第一章:空間幾何體

      1.1.1柱、錐、臺、球的結構特征

      一、教學目標

      1.知識與技能

     。1)通過實物操作,增強學生的直觀感知。

     。2)能根據幾何結構特征對空間物體進行分類。

      (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

     。4)會表示有關于幾何體以及柱、錐、臺的分類。

      2.過程與方法

     。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

      (2)讓學生觀察、討論、歸納、概括所學的知識。

      3.情感態(tài)度與價值觀

     。1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

     。2)培養(yǎng)學生的空間想象能力和抽象括能力。

      二、教學重點、難點

      重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

      難點:柱、錐、臺、球的結構特征的概括。

      三、教學用具

     。1)學法:觀察、思考、交流、討論、概括。

     。2)實物模型、投影儀

      四、教學思路

     。ㄒ唬﹦(chuàng)設情景,揭示課題

      1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

      2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。

     。ǘ⒀刑叫轮

      1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

      2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

      3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

      4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。

      5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

      6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

      7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。

      8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

      9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

      10.現實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的'物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

      (三)質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

      1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

      2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

      3.課本P8,習題1.1A組第1題。

      4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

      5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

      四、鞏固深化

      練習:課本P7練習1、2(1)(2)

      課本P8習題1.1第2、3、4題

      五、歸納整理

      由學生整理學習了哪些內容

      六、布置作業(yè)

      課本P8練習題1.1B組第1題

      課外練習課本P8習題1.1B組第2題

      1.2.1空間幾何體的三視圖(1課時)

      一、教學目標

      1.知識與技能

     。1)掌握畫三視圖的基本技能

     。2)豐富學生的空間想象力

      2.過程與方法

      主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

      3.情感態(tài)度與價值觀

     。1)提高學生空間想象力

      (2)體會三視圖的作用

      二、教學重點、難點

      重點:畫出簡單組合體的三視圖

      難點:識別三視圖所表示的空間幾何體

      三、學法與教學用具

      1.學法:觀察、動手實踐、討論、類比

      2.教學用具:實物模型、三角板

      四、教學思路

     。ㄒ唬﹦(chuàng)設情景,揭開課題

      “橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

      在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

      (二)實踐動手作圖

      1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;

      2.教師引導學生用類比方法畫出簡單組合體的三視圖

     。1)畫出球放在長方體上的三視圖

     。2)畫出礦泉水瓶(實物放在桌面上)的三視圖

      學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。

      作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。

      3.三視圖與幾何體之間的相互轉化。

     。1)投影出示圖片(課本P10,圖1.2-3)

      請同學們思考圖中的三視圖表示的幾何體是什么?

      (2)你能畫出圓臺的三視圖嗎?

     。3)三視圖對于認識空間幾何體有何作用?你有何體會?

      教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。

      4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

     。ㄈ╈柟叹毩

      課本P12練習1、2P18習題1.2A組1

     。ㄋ模w納整理

      請學生回顧發(fā)表如何作好空間幾何體的三視圖

     。ㄎ澹┱n外練習

      1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。

      2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

      1.2.2空間幾何體的直觀圖(1課時)

      一、教學目標

      1.知識與技能

     。1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。

     。2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

      2.過程與方法

      學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

      3.情感態(tài)度與價值觀

     。1)提高空間想象力與直觀感受。

      (2)體會對比在學習中的作用。

     。3)感受幾何作圖在生產活動中的應用。

      二、教學重點、難點

      重點、難點:用斜二測畫法畫空間幾何值的直觀圖。

      三、學法與教學用具

      1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

      2.教學用具:三角板、圓規(guī)

      四、教學思路

     。ㄒ唬﹦(chuàng)設情景,揭示課題

      1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱

      把實物圓柱放在講臺上讓學生畫。

      2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內容。

     。ǘ┭刑叫轮

      1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。

      畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。

      練習反饋

      根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。

      2.例2,用斜二測畫法畫水平放置的圓的直觀圖

      教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。

      教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。

      3.探求空間幾何體的直觀圖的畫法

     。1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

      教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。

     。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。

      4.平行投影與中心投影

      投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

      5.鞏固練習,課本P16練習1(1),2,3,4

      三、歸納整理

      學生回顧斜二測畫法的關鍵與步驟

      四、作業(yè)

      1.書畫作業(yè),課本P17練習第5題

      2.課外思考課本P16,探究(1)(2)

    高中數學教案3

      教學目標:

      1.結合實際問題情景,理解分層抽樣的必要性和重要性;

      2.學會用分層抽樣的方法從總體中抽取樣本;

      3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關系.

      教學重點:

      通過實例理解分層抽樣的方法.

      教學難點:

      分層抽樣的步驟.

      教學過程:

      一、問題情境

      1.復習簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

      2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

      二、學生活動

      能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?

      指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

      由于樣本的容量與總體的個體數的比為100∶2500=1∶25,

      所以在各年級抽取的個體數依次是,,,即40,32,28.

      三、建構數學

      1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

      說明:①分層抽樣時,由于各部分抽取的個體數與這一部分個體數的比等于樣本容量與總體的個體數的比,每一個個體被抽到的可能性都是相等的;

     、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.

      2.三種抽樣方法對照表:

      類別

      共同點

      各自特點

      相互聯系

      適用范圍

      簡單隨機抽樣

      抽樣過程中每個個體被抽取的概率是相同的

      從總體中逐個抽取

      總體中的個體數較少

      系統(tǒng)抽樣

      將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

      在第一部分抽樣時采用簡單隨機抽樣

      總體中的個體數較多

      分層抽樣

      將總體分成幾層,分層進行抽取

      各層抽樣時采用簡單隨機抽樣或系統(tǒng)

      總體由差異明顯的幾部分組成

      3.分層抽樣的步驟:

     。1)分層:將總體按某種特征分成若干部分.

      (2)確定比例:計算各層的個體數與總體的個體數的比.

     。3)確定各層應抽取的樣本容量.

      (4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的.方法抽。,綜合每層抽樣,組成樣本.

      四、數學運用

      1.例題.

      例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

     。2)①教育局督學組到學校檢查工作,臨時在每個班各抽調2人參加座談;

     、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現欲從中抽出8人研討進一步改進教和學;

     、勰嘲嘣┚蹠,要產生兩名“幸運者”.

      對這三件事,合適的抽樣方法為()

      A.分層抽樣,分層抽樣,簡單隨機抽樣

      B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

      C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

      D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

      例2某電視臺在因特網上就觀眾對某一節(jié)目的喜愛程度進行調查,參加調查的總人數為12000人,其中持各種態(tài)度的人數如表中所示:

      很喜愛

      喜愛

      一般

      不喜愛

      2435

      4567

      3926

      1072

      電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調查,應怎樣進行抽樣?

      解:抽取人數與總的比是60∶12000=1∶200,

      則各層抽取的人數依次是12.175,22.835,19.63,5.36,

      取近似值得各層人數分別是12,23,20,5.

      然后在各層用簡單隨機抽樣方法抽取.

      答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

      數分別為12,23,20,5.

      說明:各層的抽取數之和應等于樣本容量,對于不能取整數的情況,取其近似值.

     。3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.

      分析:(1)總體容量較小,用抽簽法或隨機數表法都很方便.

     。2)總體容量較大,用抽簽法或隨機數表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數相同,可用系統(tǒng)抽樣.

      (3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.

      五、要點歸納與方法小結

      本節(jié)課學習了以下內容:

      1.分層抽樣的概念與特征;

      2.三種抽樣方法相互之間的區(qū)別與聯系.

    高中數學教案4

      教學目標

      知識與技能目標:

      本節(jié)的中心任務是研究導數的幾何意義及其應用,概念的形成分為三個層次:

      (1)通過復習舊知“求導數的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問題的途徑。

      (2)從圓中割線和切線的變化聯系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

      (3)依據割線與切線的變化聯系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線的斜率。即:

      導數的幾何意義教案=曲線在導數的幾何意義教案處切線的斜率k

      在此基礎上,通過例題和練習使學生學會利用導數的幾何意義解釋實際生活問題,加深對導數內涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數學思想方法。

      過程與方法目標:

      (1)學生通過觀察感知、動手探究,培養(yǎng)學生的動手和感知發(fā)現的能力。

      (2)學生通過對圓的切線和割線聯系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質的本質,有助于數學思維能力的提高。

      (3)結合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發(fā)現新知、應用新知。

      情感、態(tài)度、價值觀:

      (1)通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數學中轉化思想的意義和價值;

      (2)在教學中向他們提供充分的從事數學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發(fā)學生的學習潛能,促進他們真正理解和掌握基本的數學知識技能、數學思想方法,獲得廣泛的數學活動經驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。

      教學重點與難點

      重點:理解和掌握切線的新定義、導數的幾何意義及應用于解決實際問題,體會數形結合、以直代曲的思想方法。

      難點:發(fā)現、理解及應用導數的幾何意義。

      教學過程

      一、復習提問

      1.導數的定義是什么?求導數的三個步驟是什么?求函數y=x2在x=2處的導數.

      定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點處的瞬時變化率。

      求導數的步驟:

      第一步:求平均變化率導數的幾何意義教案;

      第二步:求瞬時變化率導數的幾何意義教案.

      (即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點導數)

      2.觀察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案在圖形中表示什么?

      生:平均變化率表示的是割線PQ的斜率.導數的幾何意義教案

      師:這就是平均變化率(導數的幾何意義教案)的幾何意義,

      3.瞬時變化率(導數的幾何意義教案)在圖中又表示什么呢?

      如圖2-1,設曲線C是函數y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.

      導數的幾何意義教案

      追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數的幾何意義教案,切線PT的傾斜角為導數的幾何意義教案,易知割線PQ的斜率為導數的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數的幾何意義教案,即導數的幾何意義教案。

      由導數的定義知導數的幾何意義教案導數的幾何意義教案。

      導數的幾何意義教案

      由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數f'(x0).今天我們就來探究導數的幾何意義。

      C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數的幾何意義.

      二、新課

      1、導數的幾何意義:

      函數y=f(x)在點x0處的導數f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.

      即:導數的幾何意義教案

      口答練習:

      (1)如果函數y=f(x)在已知點x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點的切線的傾斜角,并說明切線各有什么特征。

      (C層學生做)

      (2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數在各點的導數.(A、B層學生做)

      導數的幾何意義教案

      2、如何用導數研究函數的增減?

      小結:附近:瞬時,增減:變化率,即研究函數在該點處的瞬時變化率,也就是導數。導數的正負即對應函數的`增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數的正負,就可以判斷函數的增減性,體會導數是研究函數增減、變化快慢的有效工具。

      同時,結合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。

      例1函數導數的幾何意義教案上有一點導數的幾何意義教案,求該點處的導數導數的幾何意義教案,并由此解釋函數的增減情況。

      導數的幾何意義教案

      函數在定義域上任意點處的瞬時變化率都是3,函數在定義域內單調遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)

      3、利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程.

      例2求曲線y=x2在點M(2,4)處的切線方程.

      解:導數的幾何意義教案

      ∴y'|x=2=2×2=4.

      ∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

      由上例可歸納出求切線方程的兩個步驟:

      (1)先求出函數y=f(x)在點x0處的導數f'(x0).

      (2)根據直線方程的點斜式,得切線方程為y-y0=f'(x0)(x-x0).

      提問:若在點(x0,f(x0))處切線PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數不存在,不能用上面方法求切線方程。根據切線定義可直接得切線方程導數的幾何意義教案)

      (先由C類學生來回答,再由A,B補充.)

      例3已知曲線導數的幾何意義教案上一點導數的幾何意義教案,求:(1)過P點的切線的斜率;

      (2)過P點的切線的方程。

      解:(1)導數的幾何意義教案,

      導數的幾何意義教案

      y'|x=2=22=4. ∴在點P處的切線的斜率等于4.

      (2)在點P處的切線方程為導數的幾何意義教案即12x-3y-16=0.

      練習:求拋物線y=x2+2在點M(2,6)處的切線方程.

      (答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

      B類學生做題,A類學生糾錯。

      三、小結

      1.導數的幾何意義.(C組學生回答)

      2.利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.

      (B組學生回答)

      四、布置作業(yè)

      1.求拋物線導數的幾何意義教案在點(1,1)處的切線方程。

      2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.

      3.求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角

      4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;

      (C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)

      教學反思:

      本節(jié)內容是在學習了“變化率問題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數的幾何意義及“以直代曲”的思想。

      本節(jié)課主要圍繞著“利用函數圖象直觀理解導數的幾何意義”和“利用導數的幾何意義解釋實際問題”兩個教學重心展開。先回憶導數的實際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線上某點處切線的斜率”。

      完成本節(jié)課第一階段的內容學習后,教師點明,利用導數的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數與切線斜率的關系,并感受導數應用的廣泛性。本節(jié)課注重以學生為主體,每一個知識、每一個發(fā)現,總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業(yè)看來,效果較好。

    高中數學教案5

      整體設計

      教學分析

      我們在初中的學習過程中,已了解了整數指數冪的概念和運算性質。從本節(jié)開始我們將在回顧平方根和立方根的基礎上,類比出正數的n次方根的定義,從而把指數推廣到分數指數。進而推廣到有理數指數,再推廣到實數指數,并將冪的運算性質由整數指數冪推廣到實數指數冪。

      教材為了讓學生在學習之外就感受到指數函數的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題。前一個問題,既讓學生回顧了初中學過的整數指數冪,也讓學生感受到其中的函數模型,并且還有思想教育價值。后一個問題讓學生體會其中的函數模型的同時,激發(fā)學生探究分數指數冪、無理數指數冪的興趣與欲望,為新知識的學習作了鋪墊。

      本節(jié)安排的內容蘊涵了許多重要的數學思想方法,如推廣的思想(指數冪運算律的推廣)、類比的思想、逼近的思想(有理數指數冪逼近無理數指數冪)、數形結合的思想(用指數函數的圖象研究指數函數的性質)等,同時,充分關注與實際問題的結合,體現數學的應用價值。

      根據本節(jié)內容的特點,教學中要注意發(fā)揮信息技術的力量,盡量利用計算器和計算機創(chuàng)設教學情境,為學生的數學探究與數學思維提供支持。

      三維目標

      1、通過與初中所學的知識進行類比,理解分數指數冪的概念,進而學習指數冪的性質。掌握分數指數冪和根式之間的互化,掌握分數指數冪的運算性質。培養(yǎng)學生觀察分析、抽象類比的能力。

      2、掌握根式與分數指數冪的互化,滲透“轉化”的數學思想。通過運算訓練,養(yǎng)成學生嚴謹治學,一絲不茍的學習習慣,讓學生了解數學來自生活,數學又服務于生活的哲理。

      3、能熟練地運用有理指數冪運算性質進行化簡、求值,培養(yǎng)學生嚴謹的思維和科學正確的計算能力。

      4、通過訓練及點評,讓學生更能熟練掌握指數冪的運算性質。展示函數圖象,讓學生通過觀察,進而研究指數函數的性質,讓學生體驗數學的簡潔美和統(tǒng)一美。

      重點難點

      教學重點

      (1)分數指數冪和根式概念的理解。

     。2)掌握并運用分數指數冪的運算性質。

     。3)運用有理指數冪的性質進行化簡、求值。

      教學難點

     。1)分數指數冪及根式概念的理解。

     。2)有理指數冪性質的靈活應用。

      課時安排

      3課時

      教學過程

      第1課時

      作者:路致芳

      導入新課

      思路1.同學們在預習的過程中能否知道考古學家如何判斷生物的發(fā)展與進化,又怎樣判斷它們所處的年代?(考古學家是通過對生物化石的研究來判斷生物的發(fā)展與進化的,第二個問題我們不太清楚)考古學家是按照這樣一條規(guī)律推測生物所處的年代的。教師板書本節(jié)課題:指數函數——指數與指數冪的運算。

      思路2.同學們,我們在初中學習了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數函數——指數與指數冪的運算。

      推進新課

      新知探究

      提出問題

     。1)什么是平方根?什么是立方根?一個數的平方根有幾個,立方根呢?

     。2)如x4=a,x5=a,x6=a,根據上面的結論我們又能得到什么呢?

     。3)根據上面的結論我們能得到一般性的結論嗎?

     。4)可否用一個式子表達呢?

      活動:教師提示,引導學生回憶初中的時候已經學過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結論進行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學生,具體問題一般化,歸納類比出n次方根的概念,評價學生的思維。

      討論結果:(1)若x2=a,則x叫做a的平方根,正實數的平方根有兩個,它們互為相反數,如:4的平方根為±2,負數沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數的立方根只有一個,如:-8的立方根為-2.

     。2)類比平方根、立方根的定義,一個數的四次方等于a,則這個數叫a的四次方根。一個數的五次方等于a,則這個數叫a的五次方根。一個數的六次方等于a,則這個數叫a的六次方根。

     。3)類比(2)得到一個數的n次方等于a,則這個數叫a的n次方根。

     。4)用一個式子表達是,若xn=a,則x叫a的n次方根。

      教師板書n次方根的意義:

      一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數集。

      可以看出數的平方根、立方根的概念是n次方根的概念的特例。

      提出問題

     。1)你能根據n次方根的意義求出下列數的n次方根嗎?(多媒體顯示以下題目)。

     、4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

     。2)平方根,立方根,4次方根,5次方根,7次方根,分別對應的方根的指數是什么數,有什么特點?4,±8,16,-32,32,0,a6分別對應什么性質的數,有什么特點?

     。3)問題(2)中,既然方根有奇次的也有偶次的,數a有正有負,還有零,結論有一個的,也有兩個的,你能否總結一般規(guī)律呢?

     。4)任何一個數a的偶次方根是否存在呢?

      活動:教師提示學生切實緊扣n次方根的概念,求一個數a的n次方根,就是求出的那個數的n次方等于a,及時點撥學生,從數的分類考慮,可以把具體的數寫出來,觀察數的特點,對問題(2)中的結論,類比推廣引申,考慮要全面,對回答正確的學生及時表揚,對回答不準確的學生提示引導考慮問題的思路。

      討論結果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.

     。2)方根的指數是2,3,4,5,7…特點是有奇數和偶數?偟膩砜,這些數包括正數,負數和零。

     。3)一個數a的奇次方根只有一個,一個正數a的偶次方根有兩個,是互為相反數。0的任何次方根都是0.

     。4)任何一個數a的偶次方根不一定存在,如負數的偶次方根就不存在,因為沒有一個數的偶次方是一個負數。

      類比前面的平方根、立方根,結合剛才的討論,歸納出一般情形,得到n次方根的性質:

     、佼攏為偶數時,正數a的n次方根有兩個,是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。

      ②n為奇數時,正數的n次方根是一個正數,負數的n次方根是一個負數,這時a的n次方根用符號na表示。

     、圬摂禌]有偶次方根;0的任何次方根都是零。

      上面的文字語言可用下面的式子表示:

      a為正數:n為奇數,a的n次方根有一個為na,n為偶數,a的n次方根有兩個為±na.

      a為負數:n為奇數,a的n次方根只有一個為na,n為偶數,a的n次方根不存在。

      零的n次方根為零,記為n0=0.

      可以看出數的平方根、立方根的性質是n次方根的性質的特例。

      思考

      根據n次方根的性質能否舉例說明上述幾種情況?

      活動:教師提示學生對方根的性質要分類掌握,即正數的奇偶次方根,負數的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學生,隨機給出一個數,我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學生在舉例過程中的問題。

      解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現在我們給式子na一個名稱——根式。

      根式的概念:

      式子na叫做根式,其中a叫做被開方數,n叫做根指數。

      如3-27中,3叫根指數,-27叫被開方數。

      思考

      nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?

      活動:教師讓學生注意討論n為奇偶數和a的符號,充分讓學生多舉實例,分組討論。教師點撥,注意歸納整理。

      〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

      解答:根據n次方根的意義,可得:(na)n=a.

      通過探究得到:n為奇數,nan=a.

      n為偶數,nan=|a|=a,-a,a≥0,a<0.

      因此我們得到n次方根的`運算性質:

     、(na)n=a.先開方,再乘方(同次),結果為被開方數。

      ②n為奇數,nan=a.先奇次乘方,再開方(同次),結果為被開方數。

      n為偶數,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結果為被開方數的絕對值。

      應用示例

      思路1

      例求下列各式的值:

     。1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。

      活動:求某些式子的值,首先考慮的應是什么,明確題目的要求是什么,都用到哪些知識,關鍵是啥,搞清這些之后,再針對每一個題目仔細分析。觀察學生的解題情況,讓學生展示結果,抓住學生在解題過程中出現的問題并對癥下藥。求下列各式的值實際上是求數的方根,可按方根的運算性質來解,首先要搞清楚運算順序,目的是把被開方數的符號定準,然后看根指數是奇數還是偶數,如果是奇數,無需考慮符號,如果是偶數,開方的結果必須是非負數。

      解:(1)3(-8)3=-8;

     。2)(-10)2=10;

     。3)4(3-π)4=π-3;

     。4)(a-b)2=a-b(a>b)。

      點評:不注意n的奇偶性對式子nan的值的影響,是導致問題出現的一個重要原因,要在理解的基礎上,記準,記熟,會用,活用。

      變式訓練

      求出下列各式的值:

      (1)7(-2)7;

      (2)3(3a-3)3(a≤1);

      (3)4(3a-3)4.

      解:(1)7(-2)7=-2,

      (2)3(3a-3)3(a≤1)=3a-3,

      (3)4(3a-3)4=

      點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解。

      思路2

      例1下列各式中正確的是()

      A.4a4=a

      B.6(-2)2=3-2

      C.a0=1

      D.10(2-1)5=2-1

      活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質,應首先考慮根據方根的意義和運算性質來解,既要考慮被開方數,又要考慮根指數,嚴格按求方根的步驟,體會方根運算的實質,學生先思考哪些地方容易出錯,再回答。

      解析:(1)4a4=a,考查n次方根的運算性質,當n為偶數時,應先寫nan=|a|,故A項錯。

      (2)6(-2)2=3-2,本質上與上題相同,是一個正數的偶次方根,根據運算順序也應如此,結論為6(-2)2=32,故B項錯。

      (3)a0=1是有條件的,即a≠0,故C項也錯。

      (4)D項是一個正數的偶次方根,根據運算順序也應如此,故D項正確。所以答案選D.

      答案:D

      點評:本題由于考查n次方根的運算性質與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細心。

      例2 3+22+3-22=__________.

      活動:讓同學們積極思考,交流討論,本題乍一看內容與本節(jié)無關,但仔細一想,我們學習的內容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據方根的運算求出結果是解題的關鍵,因此將根號下面的式子化成一個完全平方式就更為關鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關鍵,教師提示,引導學生解題的思路。

      解析:因為3+22=1+22+(2)2=(1+2)2=2+1,

      3-22=(2)2-22+1=(2-1)2=2-1,

      所以3+22+3-22=22.

      答案:22

      點評:不難看出3-22與3+22形式上有些特點,即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式。

      思考

      上面的例2還有別的解法嗎?

      活動:教師引導,去根號常常利用完全平方公式,有時平方差公式也可,同學們觀察兩個式子的特點,具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消。同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法。

      另解:利用整體思想,x=3+22+3-22,

      兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

      點評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解。

      變式訓練

      若a2-2a+1=a-1,求a的取值范圍。

      解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

      即a-1≥0,

      所以a≥1.

      點評:利用方根的運算性質轉化為去絕對值符號,是解題的關鍵。

      知能訓練

     。ń處熡枚嗝襟w顯示在屏幕上)

      1、以下說法正確的是()

      A.正數的n次方根是一個正數

      B.負數的n次方根是一個負數

      C.0的n次方根是零

      D.a的n次方根用na表示(以上n>1且n∈正整數集)

      答案:C

      2、化簡下列各式:

      (1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

      答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

      3、計算7+40+7-40=__________.

      解析:7+40+7-40

      =(5)2+25?2+(2)2+(5)2-25?2+(2)2

      =(5+2)2+(5-2)2

      =5+2+5-2

      =25.

      答案:25

      拓展提升

      問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明。

      活動:組織學生結合前面的例題及其解答,進行分析討論,解決這一問題要緊扣n次方根的定義。

      通過歸納,得出問題結果,對a是正數和零,n為偶數時,n為奇數時討論一下。再對a是負數,n為偶數時,n為奇數時討論一下,就可得到相應的結論。

      解:(1)(na)n=a(n>1,n∈N)。

      如果xn=a(n>1,且n∈N)有意義,則無論n是奇數或偶數,x=na一定是它的一個n次方根,所以(na)n=a恒成立。

      例如:(43)4=3,(3-5)3=-5.

      (2)nan=a,|a|,當n為奇數,當n為偶數。

      當n為奇數時,a∈R,nan=a恒成立。

      例如:525=2,5(-2)5=-2.

      當n為偶數時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

      即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。

      點評:實質上是對n次方根的概念、性質以及運算性質的深刻理解。

      課堂小結

      學生仔細交流討論后,在筆記上寫出本節(jié)課的學習收獲,教師用多媒體顯示在屏幕上。

      1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數集。用式子na表示,式子na叫根式,其中a叫被開方數,n叫根指數。

     。1)當n為偶數時,a的n次方根有兩個,是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。

      (2)n為奇數時,正數的n次方根是一個正數,負數的n次方根是一個負數,這時a的n次方根用符號na表示。

      (3)負數沒有偶次方根。0的任何次方根都是零。

      2、掌握兩個公式:n為奇數時,(na)n=a,n為偶數時,nan=|a|=a,-a,a≥0,a<0.

      作業(yè)

      課本習題2.1A組1.

      補充作業(yè):

      1、化簡下列各式:

      (1)681;(2)15-32;(3)6a2b4.

      解:(1)681=634=332=39;

      (2)15-32=-1525=-32;

      (3)6a2b4=6(|a|?b2)2=3|a|?b2.

      2、若5

      解析:因為5

      答案:2a-13

      3.5+26+5-26=__________.

      解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,

      不難看出5+26=(3+2)2=3+2.

      同理5-26=(3-2)2=3-2.

      所以5+26+5-26=23.

      答案:23

      設計感想

      學生已經學習了數的平方根和立方根,根式的內容是這些內容的推廣,本節(jié)課由于方根和根式的概念和性質難以理解,在引入根式的概念時,要結合已學內容,列舉具體實例,根式na的講解要分n是奇數和偶數兩種情況來進行,每種情況又分a>0,a<0,a=0三種情況,并結合具體例子講解,因此設計了大量的類比和練習題目,要靈活處理這些題目,幫助學生加以理解,所以需要用多媒體信息技術服務教學。

      第2課時

      作者:郝云靜

      導入新課

      思路1.碳14測年法。原來宇宙射線在大氣層中能夠產生放射性碳14,并與氧結合成二氧化碳后進入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機體內保持一定的水平。而當有機體死亡后,即會停止吸收碳14,其組織內的碳14便以約5 730年的半衰期開始衰變并消失。對于任何含碳物質只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經過一定的時間,變?yōu)樵瓉淼囊话耄R霰竟?jié)課題:指數與指數冪的運算之分數指數冪。

      思路2.同學們,我們在初中學習了整數指數冪及其運算性質,那么整數指數冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內容,教師板書本節(jié)課題——指數與指數冪的運算之分數指數冪。

      推進新課

      新知探究

      提出問題

      (1)整數指數冪的運算性質是什么?

     。2)觀察以下式子,并總結出規(guī)律:a>0,

      ①;

     、赼8=(a4)2=a4=,;

     、4a12=4(a3)4=a3=;

     、2a10=2(a5)2=a5= 。

      (3)利用(2)的規(guī)律,你能表示下列式子嗎?

      ,,,(x>0,m,n∈正整數集,且n>1)。

      (4)你能用方根的意義來解釋(3)的式子嗎?

      (5)你能推廣到一般的情形嗎?

      活動:學生回顧初中學習的整數指數冪及運算性質,仔細觀察,特別是每題的開始和最后兩步的指數之間的關系,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發(fā)學生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他學生鼓勵提示。

      討論結果:(1)整數指數冪的運算性質:an=a?a?a?…?a,a0=1(a≠0);00無意義;

      a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

     。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實質上①5a10=,②a8=,③4a12=,④2a10=結果的a的指數是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質沒變。

      根據4個式子的最后結果可以總結:當根式的被開方數的指數能被根指數整除時,根式可以寫成分數作為指數的形式(分數指數冪形式)。

     。3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。

      (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

      結果表明方根的結果和分數指數冪是相通的。

     。5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數集,n>1)。

      綜上所述,我們得到正數的正分數指數冪的意義,教師板書:

      規(guī)定:正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1)。

      提出問題

     。1)負整數指數冪的意義是怎樣規(guī)定的?

     。2)你能得出負分數指數冪的意義嗎?

     。3)你認為應怎樣規(guī)定零的分數指數冪的意義?

     。4)綜合上述,如何規(guī)定分數指數冪的意義?

     。5)分數指數冪的意義中,為什么規(guī)定a>0,去掉這個規(guī)定會產生什么樣的后果?

     。6)既然指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質是否也適用于有理數指數冪呢?

      活動:學生回想初中學習的情形,結合自己的學習體會回答,根據零的整數指數冪的意義和負整數指數冪的意義來類比,把正分數指數冪的意義與負分數指數冪的意義融合起來,與整數指數冪的運算性質類比可得有理數指數冪的運算性質,教師在黑板上板書,學生合作交流,以具體的實例說明a>0的必要性,教師及時作出評價。

      討論結果:(1)負整數指數冪的意義是:a-n=1an(a≠0),n∈N+。

     。2)既然負整數指數冪的意義是這樣規(guī)定的,類比正數的正分數指數冪的意義可得正數的負分數指數冪的意義。

      規(guī)定:正數的負分數指數冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。

     。3)規(guī)定:零的分數指數冪的意義是:零的正分數次冪等于零,零的負分數指數冪沒有意義。

      (4)教師板書分數指數冪的意義。分數指數冪的意義就是:

      正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是= =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒有意義。

     。5)若沒有a>0這個條件會怎樣呢?

      如=3-1=-1,=6(-1)2=1具有同樣意義的兩個式子出現了截然不同的結果,這只說明分數指數冪在底數小于零時是無意義的。因此在把根式化成分數指數時,切記要使底數大于零,如無a>0的條件,比如式子3a2=,同時負數開奇次方是有意義的,負數開奇次方時,應把負號移到根式的外邊,然后再按規(guī)定化成分數指數冪,也就是說,負分數指數冪在有意義的情況下總表示正數,而不是負數,負數只是出現在指數上。

     。6)規(guī)定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數。

      有理數指數冪的運算性質:對任意的有理數r,s,均有下面的運算性質:

      ①ar?as=ar+s(a>0,r,s∈Q),

      ②(ar)s=ars(a>0,r,s∈Q),

     、(a?b)r=arbr(a>0,b>0,r∈Q)。

      我們利用分數指數冪的意義和有理數指數冪的運算性質可以解決一些問題,來看下面的例題。

      應用示例

      例1求值:(1);(2);(3)12-5;(4) 。

      活動:教師引導學生考慮解題的方法,利用冪的運算性質計算出數值或化成最簡根式,根據題目要求,把底數寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數冪的運算性質可以解答,完成后,把自己的答案用投影儀展示出來。

      解:(1) =22=4;

     。2)=5-1=15;

      (3)12-5=(2-1)-5=2-1×(-5)=32;

      (4)=23-3=278.

      點評:本例主要考查冪值運算,要按規(guī)定來解。在進行冪值運算時,要首先考慮轉化為指數運算,而不是首先轉化為熟悉的根式運算,如=382=364=4.

      例2用分數指數冪的形式表示下列各式。

      a3?a;a2?3a2;a3a(a>0)。

      活動:學生觀察、思考,根據解題的順序,把根式化為分數指數冪,再由冪的運算性質來運算,根式化為分數指數冪時,要由里往外依次進行,把握好運算性質和順序,學生討論交流自己的解題步驟,教師評價學生的解題情況,鼓勵學生注意總結。

      解:a3?a=a3? =;

      a2?3a2=a2? =;

      a3a= 。

      點評:利用分數指數冪的意義和有理數指數冪的運算性質進行根式運算時,其順序是先把根式化為分數指數冪,再由冪的運算性質來運算。對于計算的結果,不強求統(tǒng)一用什么形式來表示,沒有特別要求,就用分數指數冪的形式來表示,但結果不能既有分數指數又有根式,也不能既有分母又有負指數。

      例3計算下列各式(式中字母都是正數)。

     。1);

     。2)。

      活動:先由學生觀察以上兩個式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內的,整數冪的運算性質及運算規(guī)律擴充到分數指數冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進行計算,熟悉后可以簡化步驟。

      解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

      (2)=m2n-3=m2n3.

      點評:分數指數冪不表示相同因式的積,而是根式的另一種寫法。有了分數指數冪,就可把根式轉化成分數指數冪的形式,用分數指數冪的運算法則進行運算了。

      本例主要是指數冪的運算法則的綜合考查和應用。

      變式訓練

      求值:(1)33?33?63;

      (2)627m3125n64.

      解:(1)33?33?63= =32=9;

      (2)627m3125n64= =9m225n4=925m2n-4.

      例4計算下列各式:

      (1)(325-125)÷425;

      (2)a2a?3a2(a>0)。

      活動:先由學生觀察以上兩個式子的特征,然后分析,化為同底。利用分數指數冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分數指數冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉化為分數指數冪后再由運算法則計算,最后寫出解答。

      解:(1)原式=

      = =65-5;

      (2)a2a?3a2= =6a5.

      知能訓練

      課本本節(jié)練習1,2,3

      【補充練習】

      教師用實物投影儀把題目投射到屏幕上讓學生解答,教師巡視,啟發(fā),對做得好的同學給予表揚鼓勵。

      1、(1)下列運算中,正確的是()

      A.a2?a3=a6 B.(-a2)3=(-a3)2

      C.(a-1)0=0 D.(-a2)3=-a6

     。2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()

      A.①② B.①③ C.①②③④ D.①③④

     。3)(34a6)2?(43a6)2等于()

      A.a B.a2 C.a3 D.a4

      (4)把根式-25(a-b)-2改寫成分數指數冪的形式為()

      A. B.

      C. D.

     。5)化簡的結果是()

      A.6a B.-a C.-9a D.9a

      2、計算:(1) --17-2+ -3-1+(2-1)0=__________.

     。2)設5x=4,5y=2,則52x-y=__________.

      3、已知x+y=12,xy=9且x

      答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

      3、解:。

      因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

      又因為x

      所以原式= =12-6-63=-33.

      拓展提升

      1、化簡:。

      活動:學生觀察式子特點,考慮x的指數之間的關系可以得到解題思路,應對原式進行因式分解,根據本題的特點,注意到:

      x-1= -13=;

      x+1= +13=;

      。

      構建解題思路教師適時啟發(fā)提示。

      解:

      =

      =

      =

      = 。

      點撥:解這類題目,要注意運用以下公式,

      =a-b,

      =a± +b,

      =a±b.

      2、已知,探究下列各式的值的求法。

      (1)a+a-1;(2)a2+a-2;(3) 。

      解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;

      (2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;

     。3)由于,

      所以有=a+a-1+1=8.

      點撥:對“條件求值”問題,一定要弄清已知與未知的聯系,然后采取“整體代換”或“求值后代換”兩種方法求值。

      課堂小結

      活動:教師,本節(jié)課同學們有哪些收獲?請把你的學習收獲記錄在你的筆記本上,同學們之間相互交流。同時教師用投影儀顯示本堂課的知識要點:

     。1)分數指數冪的意義就是:正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是= =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒有意義。

     。2)規(guī)定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數。

     。3)有理數指數冪的運算性質:對任意的有理數r,s,均有下面的運算性質:

      ①ar?as=ar+s(a>0,r,s∈Q),

     、(ar)s=ars(a>0,r,s∈Q),

      ③(a?b)r=arbr(a>0,b>0,r∈Q)。

     。4)說明兩點:

     、俜謹抵笖祪绲囊饬x是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關系。

     、谡麛抵笖祪绲倪\算性質對任意的有理數指數冪也同樣適用。因而分數指數冪與根式可以互化,也可以利用=am來計算。

      作業(yè)

      課本習題2.1A組2,4.

      設計感想

      本節(jié)課是分數指數冪的意義的引出及應用,分數指數是指數概念的又一次擴充,要讓學生反復理解分數指數冪的意義,教學中可以通過根式與分數指數冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習,強化訓練,鞏固知識,要輔助以信息技術的手段來完成大容量的課堂教學任務。

      第3課時

      作者:鄭芳鳴

      導入新課

      思路1.同學們,既然我們把指數從正整數推廣到整數,又從整數推廣到正分數到負分數,這樣指數就推廣到有理數,那么它是否也和數的推廣一樣,到底有沒有無理數指數冪呢?回顧數的擴充過程,自然數到整數,整數到分數(有理數),有理數到實數。并且知道,在有理數到實數的擴充過程中,增添的數是無理數。對無理數指數冪,也是這樣擴充而來。既然如此,我們這節(jié)課的主要內容是:教師板書本堂課的課題〔指數與指數冪的運算(3)〕之無理數指數冪。

      思路2.同學們,在初中我們學習了函數的知識,對函數有了一個初步的了解,到了高中,我們又對函數的概念進行了進一步的學習,有了更深的理解,我們僅僅學了幾種簡單的函數,如一次函數、二次函數、正比例函數、反比例函數、三角函數等,這些遠遠不能滿足我們的需要,隨著科學的發(fā)展,社會的進步,我們還要學習許多函數,其中就有指數函數,為了學習指數函數的知識,我們必須學習實數指數冪的運算性質,為此,我們必須把指數冪從有理數指數冪擴充到實數指數冪,因此我們本節(jié)課學習:指數與指數冪的運算(3)之無理數指數冪,教師板書本節(jié)課的課題。

      推進新課

      新知探究

      提出問題

     。1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

      (2)多媒體顯示以下圖表:同學們從上面的兩個表中,能發(fā)現什么樣的規(guī)律?

      2的過剩近似值

      的近似值

      1.5 11.180 339 89

      1.42 9.829 635 328

      1.415 9.750 851 808

      1.414 3 9.739 872 62

      1.414 22 9.738 618 643

      1.414 214 9.738 524 602

      1.414 213 6 9.738 518 332

      1.414 213 57 9.738 517 862

      1.414 213 563 9.738 517 752

      … …

      的近似值

      2的不足近似值

      9.518 269 694 1.4

      9.672 669 973 1.41

      9.735 171 039 1.414

      9.738 305 174 1.414 2

      9.738 461 907 1.414 21

      9.738 508 928 1.414 213

      9.738 516 765 1.414 213 5

      9.738 517 705 1.414 213 56

      9.738 517 736 1.414 213 562

      … …

     。3)你能給上述思想起個名字嗎?

     。4)一個正數的無理數次冪到底是一個什么性質的數呢?如,根據你學過的知識,能作出判斷并合理地解釋嗎?

     。5)借助上面的結論你能說出一般性的結論嗎?

      活動:教師引導,學生回憶,教師提問,學生回答,積極交流,及時評價學生,學生有困惑時加以解釋,可用多媒體顯示輔助內容:

      問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。

      問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關聯。

      問題(3)上述方法實際上是無限接近,最后是逼近。

      問題(4)對問題給予大膽猜測,從數軸的觀點加以解釋。

      問題(5)在(3)(4)的基礎上,推廣到一般的情形,即由特殊到一般。

      討論結果:(1)1.41,1.414,1.414 2,1.414 21,…這些數都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數都大于2,稱2的過剩近似值。

      (2)第一個表:從大于2的方向逼近2時,就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。

      第二個表:從小于2的方向逼近2時,就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。

      從另一角度來看這個問題,在數軸上近似地表示這些點,數軸上的數字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個方向無限地接近,即逼近,所以是一串有理數指數冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數指數冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結果,事實上表示這些數的點從兩個方向向表示的點靠近,但這個點一定在數軸上,由此我們可得到的結論是一定是一個實數,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

      充分表明是一個實數。

     。3)逼近思想,事實上里面含有極限的思想,這是以后要學的知識。

     。4)根據(2)(3)我們可以推斷是一個實數,猜測一個正數的無理數次冪是一個實數。

     。5)無理數指數冪的意義:

      一般地,無理數指數冪aα(a>0,α是無理數)是一個確定的實數。

      也就是說無理數可以作為指數,并且它的結果是一個實數,這樣指數概念又一次得到推廣,在數的擴充過程中,我們知道有理數和無理數統(tǒng)稱為實數。我們規(guī)定了無理數指數冪的意義,知道它是一個確定的實數,結合前面的有理數指數冪,那么,指數冪就從有理數指數冪擴充到實數指數冪。

      提出問題

     。1)為什么在規(guī)定無理數指數冪的意義時,必須規(guī)定底數是正數?

      (2)無理數指數冪的運算法則是怎樣的?是否與有理數指數冪的運算法則相通呢?

     。3)你能給出實數指數冪的運算法則嗎?

      活動:教師組織學生互助合作,交流探討,引導他們用反例說明問題,注意類比,歸納。

      對問題(1)回顧我們學習分數指數冪的意義時對底數的規(guī)定,舉例說明。

      對問題(2)結合有理數指數冪的運算法則,既然無理數指數冪aα(a>0,α是無理數)是一個確定的實數,那么無理數指數冪的運算法則應當與有理數指數冪的運算法則類似,并且相通。

      對問題(3)有了有理數指數冪的運算法則和無理數指數冪的運算法則,實數的運算法則自然就得到了。

      討論結果:(1)底數大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數是正數后,無理數指數冪aα是一個確定的實數,就不會再造成混亂。

     。2)因為無理數指數冪是一個確定的實數,所以能進行指數的運算,也能進行冪的運算,有理數指數冪的運算性質,同樣也適用于無理數指數冪。類比有理數指數冪的運算性質可以得到無理數指數冪的運算法則:

      ①ar?as=ar+s(a>0,r,s都是無理數)。

      ②(ar)s=ars(a>0,r,s都是無理數)。

     、郏╝?b)r=arbr(a>0,b>0,r是無理數)。

     。3)指數冪擴充到實數后,指數冪的運算性質也就推廣到了實數指數冪。

      實數指數冪的運算性質:

      對任意的實數r,s,均有下面的運算性質:

      ①ar?as=ar+s(a>0,r,s∈R)。

      ②(ar)s=ars(a>0,r,s∈R)。

     、(a?b)r=arbr(a>0,b>0,r∈R)。

      應用示例

      例1利用函數計算器計算。(精確到0.001)

      (1)0.32.1;(2)3.14-3;(3);(4) 。

      活動:教師教會學生利用函數計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數,算出數值,對于(1),可先按底數0.3,再按xy鍵,再按冪指數2.1,最后按=,即可求得它的值;

      對于(2),先按底數3.14,再按xy鍵,再按負號-鍵,再按3,最后按=即可;

      對于(3),先按底數3.1,再按xy鍵,再按3÷4,最后按=即可;

      對于(4),這種無理指數冪,可先按底數3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時也可按2ndf或shift鍵,使用鍵上面的功能去運算。

      學生可以相互交流,挖掘計算器的用途。

      解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

      點評:熟練掌握用計算器計算冪的值的方法與步驟,感受現代技術的威力,逐步把自己融入現代信息社會;用四舍五入法求近似值,若保留小數點后n位,只需看第(n+1)位能否進位即可。

      例2求值或化簡。

      (1)a-4b23ab2(a>0,b>0);

      (2)(a>0,b>0);

      (3)5-26+7-43-6-42.

      活動:學生觀察,思考,所謂化簡,即若能化為常數則化為常數,若不能化為常數則應使所化式子達到最簡,對既有分數指數冪又有根式的式子,應該把根式統(tǒng)一化為分數指數冪的形式,便于運算,教師有針對性地提示引導,對(1)由里向外把根式化成分數指數冪,要緊扣分數指數冪的意義和運算性質,對(2)既有分數指數冪又有根式,應當統(tǒng)一起來,化為分數指數冪,對(3)有多重根號的式子,應先去根號,這里是二次根式,被開方數應湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學生作及時的評價,注意總結解題的方法和規(guī)律。

      解:(1)a-4b23ab2= =3b46a11 。

      點評:根式的運算常;蓛绲倪\算進行,計算結果如沒有特殊要求,就用根式的形式來表示。

    高中數學教案6

      1. 你能遵守學校的規(guī)章制度,按時上學,按時完成作業(yè),書寫比較端正,課堂上你也坐得比較端正。如果在學習上能夠更加主動一些,尋找適合自己的學習

      2. 你尊敬老師、團結同學、熱愛勞動、關心集體,所以大家都喜歡你。能嚴格遵守學校的各項規(guī)章制度。學習不夠刻苦,有畏難情緒。學習方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學習成績比上學期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

      3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學友愛相處,待人有禮,能虛心接受老師的教導。大多數的時候你都能遵守紀律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學老師就發(fā)現你的.作業(yè)干凈又整齊,你的字清秀又漂亮。但學習成績不容樂觀,需努力提高學習成績。希望能從根本上認識到自己的不足,在課堂上能認真聽講,開動腦筋,遇到問題敢于請教。

      4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學們及時安靜,對學習態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的人生!

      5. 學習態(tài)度端正,效率高,合理分配時間,學習生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學相處關系融洽。能嚴格遵守學校的各項規(guī)章制度。上課能專心聽講,認真做好筆記,課后能按時完成作業(yè)。記憶力好,自學能力較強。希望你能更主動地學習,多思,多問,多練,大膽向老師和同學請教,注意采用科學的學習方法,提高學習效率,一定能取得滿意的成績!

      6. 作為本班的班長,你對待班級工作能夠認真負責,積極配合老師和班委工作,集體榮譽感很強,人際關系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領全班不僅在班級管理上有進步,而且能在學習上也能成為全班的領頭雁,在下學期能取得更大的進步!

      7. 身為班委的你,對工作認真負責,以身作則,性格和善,與同學關系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學習上,你認真聽課,及時完成各科作業(yè),但是我總覺得你的學習還不夠主動,沒有形成自己的一套方法,若從被動的學習中解脫出來,應該穩(wěn)定在班級前五名啊!加油!

      8. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠專心聽講,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!

      9. 你為人熱情大方,能和同學友好相處。你為人正直誠懇,尊敬老師,關心班集體,待人有禮,能認真聽從老師的教導,自覺遵守學校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學習刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認真做好筆記。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

      10. 記得和你說過,你是個太聰明的孩子,你反應敏捷,活潑靈動。但是做學問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學期重新抖擻精神早日進入狀態(tài),不辜負關愛你的人對你的殷殷期盼。

    高中數學教案7

      一、教學目標:

      掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

      二、教學重點:

      向量的性質及相關知識的'綜合應用。

      三、教學過程:

      (一)主要知識:

      1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

      (二)例題分析:略

      四、小結:

      1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

      2、滲透數學建模的思想,切實培養(yǎng)分析和解決問題的能力。

      五、作業(yè):

      略

    高中數學教案8

      教學準備

      教學目標

      熟悉兩角和與差的正、余公式的'推導過程,提高邏輯推理能力。

      掌握兩角和與差的正、余弦公式,能用公式解決相關問題。

      教學重難點

      熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

      教學過程

      復習

      兩角差的余弦公式

      用- B代替B看看有什么結果?

    高中數學教案9

      教學目標:

      1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關系.

      2.會求一些簡單函數的反函數.

      3.在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識.

      4.進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.

      教學重點:求反函數的方法.

      教學難點:反函數的概念.

      教學過程

      教學活動

      設計意圖一、創(chuàng)設情境,引入新課

      1.復習提問

     、俸瘮档母拍

     、趛=f(x)中各變量的意義

      2.同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數.在這種情況下,我們說t=是函數S=vt的反函數.什么是反函數,如何求反函數,就是本節(jié)課學習的內容.

      3.板書課題

      由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.

      二、實例分析,組織探究

      1.問題組一:

      (用投影給出函數與;與()的圖象)

      (1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱.是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

      (2)由,已知y能否求x?

      (3)是否是一個函數?它與有何關系?

      (4)與有何聯系?

      2.問題組二:

      (1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

      (2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

      (3)函數 ()的定義域與函數()的值域有什么關系?

      3.滲透反函數的概念.

      (教師點明這樣的函數即互為反函數,然后師生共同探究其特點)

      從學生熟知的函數出發(fā),抽象出反函數的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力.

      通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎.

      三、師生互動,歸納定義

      1.(根據上述實例,教師與學生共同歸納出反函數的定義)

      函數y=f(x)(x∈A) 中,設它的值域為 C.我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數.這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數.記作: .考慮到"用 x表示自變量, y表示函數"的`習慣,將中的x與y對調寫成.

      2.引導分析:

      1)反函數也是函數;

      2)對應法則為互逆運算;

      3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;

      4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

      5)函數y=f(x)與x=f(y)互為反函數;

      6)要理解好符號f;

      7)交換變量x、y的原因.

      3.兩次轉換x、y的對應關系

      (原函數中的自變量x與反函數中的函數值y 是等價的,原函數中的函數值y與反函數中的自變量x是等價的)

      4.函數與其反函數的關系

      函數y=f(x)

      函數

      定義域

      A

      C

      值 域

      C

      A

      四、應用解題,總結步驟

      1.(投影例題)

      【例1】求下列函數的反函數

      (1)y=3x-1 (2)y=x 1

      【例2】求函數的反函數.

      (教師板書例題過程后,由學生總結求反函數步驟.)

      2.總結求函數反函數的步驟:

      1° 由y=f(x)反解出x=f(y).

      2° 把x=f(y)中 x與y互換得.

      3° 寫出反函數的定義域.

      (簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?

      (2)的反函數是________.

      (3)(x<0)的反函數是__________.

      在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數.在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握.

      通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解.

      通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養(yǎng)學生分析、思考的習慣,以及歸納總結的能力.

      題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進.并體現了對定義的反思理解.學生思考練習,師生共同分析糾正.

      五、鞏固強化,評價反饋

      1.已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)

      (1)y=-2x 3(xR) (2)y=-(xR,且x)

      ( 3 ) y=(xR,且x)

      2.已知函數f(x)=(xR,且x)存在反函數,求f(7)的值.

      五、反思小結,再度設疑

      本節(jié)課主要研究了反函數的定義,以及反函數的求解步驟.互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.

      (讓學生談一下本節(jié)課的學習體會,教師適時點撥)

      進一步強化反函數的概念,并能正確求出反函數.反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性."問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.

      六、作業(yè)

      習題2.4第1題,第2題

      進一步鞏固所學的知識.

      教學設計說明

      "問題是數學的心臟".一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念.

      反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念.為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維.使學生自然成為學習的主人。

    高中數學教案10

      教學目標

      (1)了解算法的含義,體會算法思想。

      (2)會用自然語言和數學語言描述簡單具體問題的算法;

      (3)學習有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力。

      教學重難點

      重點:算法的含義、解二元一次方程組的算法設計。

      難點:把自然語言轉化為算法語言。

      情境導入

      電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:

      第一步:觀察、等待目標出現(用望遠鏡或瞄準鏡);

      第二步:瞄準目標;

      第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;

      第四步:根據第三步的結果修正彈著點;

      第五步:開槍;

      第六步:迅速轉移(或隱蔽)

      以上這種完成狙擊任務的方法、步驟在數學上我們叫算法。

      課堂探究

      預習提升

      1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。

      2、描述方式

      自然語言、數學語言、形式語言(算法語言)、框圖。

      3、算法的要求

      (1)寫出的算法,必須能解決一類問題,且能重復使用;

      (2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經過有限步后能得出結果。

      4、算法的特征

      (1)有限性:一個算法應包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結束。

      (2)確定性:算法的計算規(guī)則及相應的計算步驟必須是唯一確定的。

      (3)可行性:算法中的每一個步驟都是可以在有限的時間內完成的基本操作,并能得到確定的結果。

      (4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。

      (5)不唯一性:解決同一問題的算法可以是不唯一的

      課堂典例講練

      命題方向1對算法意義的理解

      例1、下列敘述中,

     、僦矘湫枰\苗、挖坑、栽苗、澆水這些步驟;

     、诎错樞蜻M行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;

     、蹚那鄭u乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;

     、3x>x+1;

     、萸笏心鼙3整除的正數,即3,6,9,12。

      能稱為算法的.個數為(  )

      A、2

      B、3

      C、4

      D、5

      【解析】根據算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

      【答案】B

      [規(guī)律總結]

      1、正確理解算法的概念及其特點是解決問題的關鍵、

      2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內解決這一問題、

      【變式訓練】下列對算法的理解不正確的是________

     、僖粋算法應包含有限的步驟,而不能是無限的

     、谒惴ǹ梢岳斫鉃橛苫具\算及規(guī)定的運算順序構成的完整的解題步驟

     、鬯惴ㄖ械拿恳徊蕉紤斢行У貓(zhí)行,并得到確定的結果

     、芤粋問題只能設計出一個算法

      【解析】由算法的有限性指包含的步驟是有限的故①正確;

      由算法的明確性是指每一步都是確定的故②正確;

      由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;

      由對于同一個問題可以有不同的算法故④不正確。

      【答案】④

      命題方向2解方程(組)的算法

      例2、給出求解方程組的一個算法。

      [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質的差別,為了適用于解一般的線性方程組,以便于在計算機上實現,我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

      [規(guī)范解答]方法一:算法如下:

      第一步,①×(-2)+②,得(-2+5)y=-14+11

      即方程組可化為

      第二步,解方程③,可得y=-1,④

      第三步,將④代入①,可得2x-1=7,x=4

      第四步,輸出4,-1

      方法二:算法如下:

      第一步,由①式可以得到y(tǒng)=7-2x,⑤

      第二步,把y=7-2x代入②,得x=4

      第三步,把x=4代入⑤,得y=-1

      第四步,輸出4,-1

      [規(guī)律總結]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調對“通法、通解”的理解,又要強調對所學知識的靈活運用。

      2、設計算法時,經常遇到解方程(組)的問題,一般是按照數學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據求解步驟設計算法步驟。

      【變式訓練】

      【解】算法如下:S1,①+2×②得5x=1;③

      S2,解③得x=;

      S3,②-①×2得5y=3;④

      S4,解④得y=;

      命題方向3篩選問題的算法設計

      例3、設計一個算法,對任意3個整數a、b、c,求出其中的最小值、

      [思路分析]比較a,b比較m與c―→最小數

      [規(guī)范解答]算法步驟如下:

      1、比較a與b的大小,若a

      2、比較m與c的大小,若m

      [規(guī)律總結]求最小(大)數就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數中篩選出滿足要求的一個。

      【變式訓練】在下列數字序列中,寫出搜索89的算法:

      21,3,0,9,15,72,89,91,93

      [解析]1、先找到序列中的第一個數m,m=21;

      2、將m與89比較,是否相等,如果相等,則搜索到89;

      3、如果m與89不相等,則往下執(zhí)行;

      4、繼續(xù)將序列中的其他數賦給m,重復第2步,直到搜索到89。

      命題方向4非數值性問題的算法

      例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數量不少于羚羊的數量,狼就會吃掉羚羊。

      (1)設計安全渡河的算法;

      (2)思考每一步算法所遵循的共同原則是什么?

    高中數學教案11

      教學目標

     。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

     。2)理解直線與二元一次方程的關系及其證明

     。3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點.

      教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

      教學用具:計算機

      教學方法:啟發(fā)引導法,討論法

      教學過程

      下面給出教學實施過程設計的簡要思路:

      教學設計思路

      (一)引入的設計

      前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

      問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

      答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

      肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:

      問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

      答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

      肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

      啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

      學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:

      【問題1】“任意直線的方程都是二元一次方程嗎?”

     。ǘ┍竟(jié)主體內容教學的設計

      這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

      學生或獨立研究,或合作研究,教師巡視指導.

      經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

      思路一:…

      思路二:…

      ……

      教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:

      按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

      當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

      當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

      學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

      平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區(qū)別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

      綜合兩種情況,我們得出如下結論:

      在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的'關于 、 的二元一次方程.

      至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

      同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

      學生們不難得出:二者可以概括為統(tǒng)一的形式.

      這樣上邊的結論可以表述如下:

      在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

      啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

      【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

      不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

      師生共同討論,評價不同思路,達成共識:

      回顧上邊解決問題的思路,發(fā)現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

     。1)當 時,方程可化為

      這是表示斜率為 、在 軸上的截距為 的直線.

     。2)當 時,由于 、 不同時為0,必有 ,方程可化為

      這表示一條與 軸垂直的直線.

      因此,得到結論:

      在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

      為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

      【動畫演示】

      演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.

      至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

     。ㄈ┚毩曥柟、總結提高、板書和作業(yè)等環(huán)節(jié)的設計

      略

    高中數學教案12

      【課題名稱】

      《等差數列》的導入

      【授課年級】

      高中二年級

      【教學重點】

      理解等差數列的概念,能夠運用等差數列的定義判斷一個數列是否為等差數列。

      【教學難點】

      等差數列的性質、等差數列“等差”特點的理解,

      【教具準備】多媒體課件、投影儀

      【三維目標】

      ㈠知識目標:

      了解公差的概念,明確一個等差數列的限定條件,能根據定義判斷一個等差數列是否是一個等差數列;

      ㈡能力目標:

      通過尋找等差數列的共同特征,培養(yǎng)學生的觀察力以及歸納推理的能力;

      ㈢情感目標:

      通過對等差數列概念的歸納概括,培養(yǎng)學生的觀察、分析資料的能力。

      【教學過程】

      導入新課

      師:上兩節(jié)課我們已經學習了數列的定義以及給出表示數列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數列的特點。下面我們觀察以下的幾個數列的例子:

      (1)我們經常這樣數數,從0開始,每個5個數可以得到數列:0,5,10,15,20,()

      (2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設置了7個級別,其中較輕的4個級別體重組成的數列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

      (3)為了保證優(yōu)質魚類有良好的生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的.雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數列:18,15.5,13,10.5,8,(),則第六個數應為多少?

      (4)10072,10144,10216,(),10360

      請同學們回答以上的四個問題

      生:第一個數列的第6項為25,第二個數列的第5個數為68,第三個數列的第6個數為5.5,第四個數列的第4個數為10288。

      師:我來問一下,你是依據什么得到了這幾個數的呢?請以第二個數列為例說明一下。

      生:第二個數列的后一項總比前一項多5,依據這個規(guī)律我就得到了這個數列的第5個數為68.

      師:說的很好!同學們再仔細地觀察一下以上的四個數列,看看以上的四個數列是否有什么共同特征?請注意,是共同特征。

      生1:相鄰的兩項的差都等于同一個常數。

      師:很好!那作差是否有順序?是否可以顛倒?

      生2:作差的順序是后項減去前項,不能顛倒!

      師:正如生1的總結,這四個數列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(即等差)。我們叫這樣的數列為等差數列。這就是我們這節(jié)課要研究的內容。

      推進新課

      等差數列的定義:一般地,如果一個數列從第2項起,每一項與它的前一項的差都等于同一個常數,那么這個數列就叫做等差數列,這個常數就叫做等差數列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

      師:有哪個同學知道定義中的關鍵字是什么?

      生2:“從第二項起”和“同一個常數”

    高中數學教案13

      教學目標

      理解數列的概念,掌握數列的運用

      教學重難點

      理解數列的概念,掌握數列的運用

      教學過程

      【知識點精講】

      1、數列:按照一定次序排列的一列數(與順序有關)

      2、通項公式:數列的第n項an與n之間的函數關系用一個公式來表示an=f(n)。

      (通項公式不)

      3、數列的.表示:

      (1)列舉法:如1,3,5,7,9……;

      (2)圖解法:由(n,an)點構成;

      (3)解析法:用通項公式表示,如an=2n+1

      (4)遞推法:用前n項的值與它相鄰的項之間的關系表示各項,如a1=1,an=1+2an-1

      4、數列分類:有窮數列,無窮數列;遞增數列,遞減數列,擺動數列,常數數列;有界數列,xx數列

      5、任意數列{an}的前n項和的性質

    高中數學教案14

      教學目標:

      1。了解反函數的概念,弄清原函數與反函數的定義域和值域的關系。

      2。會求一些簡單函數的反函數。

      3。在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識。

      4。進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

      教學重點:

      求反函數的方法。

      教學難點:

      反函數的概念。

      教學過程:

      教學活動

      設計意圖一、創(chuàng)設情境,引入新課

      1。復習提問

     、俸瘮档母拍

     、趛=f(x)中各變量的意義

      2。同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數。在這種情況下,我們說t=是函數S=vt的反函數。什么是反函數,如何求反函數,就是本節(jié)課學習的內容。

      3。板書課題

      由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。

      二、實例分析,組織探究

      1。問題組一:

     。ㄓ猛队敖o出函數與;與()的圖象)

     。1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱。是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

     。2)由,已知y能否求x?

     。3)是否是一個函數?它與有何關系?

     。4)與有何聯系?

      2。問題組二:

     。1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

     。2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

      (3)函數 ()的定義域與函數()的值域有什么關系?

      3。滲透反函數的概念。

     。ń處燑c明這樣的函數即互為反函數,然后師生共同探究其特點)

      從學生熟知的函數出發(fā),抽象出反函數的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力。

      通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎。

      三、師生互動,歸納定義

      1。(根據上述實例,教師與學生共同歸納出反函數的定義)

      函數y=f(x)(x∈A) 中,設它的值域為 C。我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數。這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數。記作: ?紤]到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫成。

      2。引導分析:

      1)反函數也是函數;

      2)對應法則為互逆運算;

      3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;

      4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

      5)函數y=f(x)與x=f(y)互為反函數;

      6)要理解好符號f;

      7)交換變量x、y的原因。

      3。兩次轉換x、y的對應關系

     。ㄔ瘮抵械淖宰兞縳與反函數中的函數值y 是等價的,原函數中的函數值y與反函數中的自變量x是等價的)

      4。函數與其反函數的關系

      函數y=f(x)

      函數

      定義域

      A

      C

      值 域

      C

      A

      四、應用解題,總結步驟

      1。(投影例題)

      【例1】求下列函數的反函數

      (1)y=3x—1 (2)y=x 1

      【例2】求函數的反函數。

     。ń處煱鍟}過程后,由學生總結求反函數步驟。)

      2?偨Y求函數反函數的步驟:

      1° 由y=f(x)反解出x=f(y)。

      2° 把x=f(y)中 x與y互換得。

      3° 寫出反函數的.定義域。

      (簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?

     。2)的反函數是________。

     。3)(x<0)的反函數是__________。

      在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數。在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握。

      通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解。

      通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養(yǎng)學生分析、思考的習慣,以及歸納總結的能力。

      題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進。并體現了對定義的反思理解。學生思考練習,師生共同分析糾正。

      五、鞏固強化,評價反饋

      1。已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)

     。1)y=—2x 3(xR) (2)y=—(xR,且x)

     。 3 ) y=(xR,且x)

      2。已知函數f(x)=(xR,且x)存在反函數,求f(7)的值。

      五、反思小結,再度設疑

      本節(jié)課主要研究了反函數的定義,以及反函數的求解步驟;榉春瘮档膬蓚函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

      (讓學生談一下本節(jié)課的學習體會,教師適時點撥)

      進一步強化反函數的概念,并能正確求出反函數。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性。"問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。

      六、作業(yè)

      習題2。4 第1題,第2題

      進一步鞏固所學的知識。

      教學設計說明

      "問題是數學的心臟"。一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念。

      反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念。為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維。使學生自然成為學習的主人。

    高中數學教案15

      教學目的:

     。1)使學生初步理解集合的概念,知道常用數集的概念及記法

     。2)使學生初步了解“屬于”關系的意義

     。3)使學生初步了解有限集、無限集、空集的意義

      教學重點:集合的基本概念及表示方法

      教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

      授課類型:新授課

      課時安排:1課時

      教 具:多媒體、實物投影儀

      內容分析:

      集合是中學數學的一個重要的基本概念 在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數中用到的有數集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎 例如,下一章講函數的概念與性質,就離不開集合與邏輯。

      本節(jié)首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

      這節(jié)課主要學習全章的引言和集合的基本概念 學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義 本節(jié)課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。

      教學過程:

      一、復習引入:

      1、簡介數集的發(fā)展,復習最大公約數和最小公倍數,質數與和數;

      2、教材中的章頭引言;

      3、集合論的創(chuàng)始人——康托爾(德國數學家)(見附錄);

      4.“物以類聚”,“人以群分”;

      5.教材中例子(P4)

      二、講解新課:

      閱讀教材第一部分,問題如下:

     。1)有那些概念?是如何定義的?

     。2)有那些符號?是如何表示的?

      (3)集合中元素的特性是什么?

     。ㄒ唬┘系挠嘘P概念:

      由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。

      定義:一般地,某些指定的對象集在一起就成為一個集合.

      1、集合的概念

     。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

     。2)元素:集合中每個對象叫做這個集合的元素

      2、常用數集及記法

     。1)非負整數集(自然數集):全體非負整數的集合 記作N,

      (2)正整數集:非負整數集內排除0的集 記作N*或N+

     。3)整數集:全體整數的集合 記作Z ,

      (4)有理數集:全體有理數的集合 記作Q ,

     。5)實數集:全體實數的集合 記作R

      注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

     。2)非負整數集內排除0的.集 記作N*或N+ Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*

      3、元素對于集合的隸屬關系

     。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

     。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

      4、集合中元素的特性

     。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

      (2)互異性:集合中的元素沒有重復

     。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

      5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

     、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫

      三、練習題:

      1、教材P5練習1、2

      2、下列各組對象能確定一個集合嗎?

     。1)所有很大的實數 (不確定)

     。2)好心的人 (不確定)

      (3)1,2,2,3,4,5.(有重復)

      3、設a,b是非零實數,那么 可能取的值組成集合的元素是_—2,0,2__

      4、由實數x,-x,|x|, 所組成的集合,最多含( A )

     。ˋ)2個元素 (B)3個元素 (C)4個元素 (D)5個元素

      5、設集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數,求證:

      (1) 當x∈N時, x∈G;

     。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

      證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

      證明(2):∵x∈G,y∈G,

      ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

      ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

      ∵a∈Z, b∈Z,c∈Z, d∈Z

      ∴(a+c) ∈Z, (b+d) ∈Z

      ∴x+y =(a+c)+(b+d) ∈G,

      又∵ =且 不一定都是整數,

      ∴ = 不一定屬于集合G

      四、小結:本節(jié)課學習了以下內容:

      1、集合的有關概念:(集合、元素、屬于、不屬于)

      2、集合元素的性質:確定性,互異性,無序性

      3、常用數集的定義及記法

    【高中數學教案】相關文章:

    高中數學教案04-11

    高中數學教案模板02-02

    高中數學教案15篇07-20

    高中數學教案(精選15篇)02-04

    高中數學教案(精選20篇)01-29

    高中數學教案精選15篇01-29

    高中數學教案(15篇)07-21

    高中數學教案(通用15篇)08-22

    高中數學教案(集合15篇)08-18