欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    八年級數(shù)學教案

    時間:2023-02-23 08:23:37 教案 投訴 投稿

    八年級數(shù)學教案集錦15篇

      作為一名人民教師,常常需要準備教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調(diào)動學生學習的積極性。那么什么樣的教案才是好的呢?以下是小編為大家整理的八年級數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

    八年級數(shù)學教案集錦15篇

    八年級數(shù)學教案1

      教學目標

     。ㄒ唬┙虒W知識點

      1、等腰三角形的概念、

      2、等腰三角形的性質、

      3、等腰三角形的概念及性質的應用、

      1、經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點、

      2、探索并掌握等腰三角形的性質、

     。ㄈ┣楦信c價值觀要求

      通過學生的操作和思考,使學生掌握等腰三角形的相關概念,并在探究等腰三角形性質的過程中培養(yǎng)學生認真思考的習慣、

      教學重點

      1、等腰三角形的概念及性質、

      2、等腰三角形性質的應用、

      教學難點

      等腰三角形三線合一的性質的理解及其應用、

      教學方法

      探究歸納法、

      教具準備

      師:多媒體課件、投影儀;

      生:硬紙、剪刀、

      教學過程

      1、提出問題,創(chuàng)設情境

     。◣煟┰谇懊娴膶W習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案、這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形、來研究:

     、偃切问禽S對稱圖形嗎?

     、谑裁礃拥娜切问禽S對稱圖形?

     。ㄉ┯械娜切问禽S對稱圖形,有的三角形不是。

     。◣煟┠鞘裁礃拥娜切问禽S對稱圖形?

     。ㄉM足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。

     。◣煟┖芎茫覀冞@節(jié)課就來認識一種成軸對稱圖形的三角形──等腰三角形。

      2、導入新課

     。◣煟┩瑢W們通過自己的思考來做一個等腰三角形。作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形。

     。ㄉ遥┰诩淄瑢W的做法中,A點可以取直線L上的任意一點。

     。◣煟⿲Γ催@種方法我們可以得到一系列的等腰三角形、現(xiàn)在同學們拿出自己準備的硬紙和剪刀,按自己設計的方法,也可以用課本P138探究中的方法,剪出一個等腰三角形。

     。◣煟┌凑瘴覀兊淖龇ǎ梢缘玫降妊切蔚亩x:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。

     。◣煟┯辛松鲜龈拍睿瑢W們來想一想。

     。ㄑ菔菊n件)

      1、等腰三角形是軸對稱圖形嗎?請找出它的`對稱軸。

      2、等腰三角形的兩底角有什么關系?

      3、頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

      4、底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

     。ㄉ祝┑妊切问禽S對稱圖形、它的對稱軸是頂角的平分線所在的直線、因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。

     。◣煟┩瑢W們把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系。

     。ㄉ遥┪野炎约鹤龅牡妊切握郫B后,發(fā)現(xiàn)等腰三角形的兩個底角相等。

      (生丙)我把等腰三角形折疊,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗證等腰三角形的對稱軸是頂角的平分線所在的直線。

     。ㄉ。┪野训妊切窝氐走吷系闹芯對折,可以看到它兩旁的部分互相重合,說明底邊上的中線所在的直線是等腰三角形的對稱軸。

     。ㄉ欤├蠋煟野l(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對稱軸。

     。◣煟┠銈冋f的是同一條直線嗎?大家來動手折疊、觀察。

      (生齊聲)它們是同一條直線。

     。◣煟┖芎、現(xiàn)在同學們來歸納等腰三角形的性質。。

     。ㄉ┪已氐妊切蔚捻斀堑钠椒志對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。

     。◣煟┖芎,大家看屏幕。

     。ㄑ菔菊n件)

      等腰三角形的性質:

      1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)

      2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、

     。◣煟┯缮厦嬲郫B的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質、同學們現(xiàn)在就動手來寫出這些證明過程)

     。ㄍ队皟x演示學生證明過程)

     。ㄉ祝┤缬覉D,在ABC中,AB=AC,作底邊BC的中線AD,因為

      所以BAD≌CAD(SSS)、

      所以∠B=∠C、

      (生乙)如右圖,在ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

      所以BAD≌CAD、

      所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

     。◣煟┖芎,甲、乙兩同學給出了等腰三角形兩個性質的證明,過程也寫得很條理、很規(guī)范、下面我們來看大屏幕。

     。ㄑ菔菊n件)

     。ɡ1)如圖,在ABC中,AB=AC,點D在AC上,且BD=BC=AD,求:ABC各角的度數(shù)、

     。◣煟┩瑢W們先思考一下,我們再來分析這個題、

      (生)根據(jù)等邊對等角的性質,我們可以得到

      ∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形內(nèi)角和為180°,就可求出ABC的三個內(nèi)角。

      (師)這位同學分析得很好,對我們以前學過的定理也很熟悉、如果我們在解的過程中把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷。

     。ㄕn件演示)

      (例)因為AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等邊對等角)、

      設∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x、

      于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

      在ABC中,∠A=35°,∠ABC=∠C=72°、

      (師)下面我們通過練習來鞏固這節(jié)課所學的知識、

      3、隨堂練習

     。ㄒ唬┱n本P141練習1、2、3。

      練習

      1、如下圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)、

      答案:(1)72°(2)30°

      2、如右圖,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標出∠B、∠C、∠BAD、∠DAC的度數(shù),圖中有哪些相等線段?

      答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

      3、如右圖,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、

      答:∠B=77°,∠C=38、5°、

     。ǘ╅喿x課本P138~P140,然后小結、

      4、課時小結

      這節(jié)課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用、等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、

      我們通過這節(jié)課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們、

      5、課后作業(yè)

      (一)課本P147─1、3、4、8題、

     。ǘ1、預習課本P141~P143、

      2、預習提綱:等腰三角形的判定、

      6、活動與探究

      如右圖,在ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E、

      求證:AE=CE、

      過程:通過分析、討論,讓學生進一步了解全等三角形的性質和判定,等腰三角形的性質、

      結果:

      證明:延長CD交AB的延長線于P,如右圖,在ADP和ADC中

      ADP≌ADC、

      ∠P=∠ACD、

      又DE∥AP,

      ∠4=∠P、

      ∠4=∠ACD、

      DE=EC、

      同理可證:AE=DE、

      AE=CE、

      板書設計

    八年級數(shù)學教案2

      教學目標:

      【知識與技能】

      1、理解并掌握等腰三角形的性質。

      2、會用符號語言表示等腰三角形的性質。

      3、能運用等腰三角形性質進行證明和計算。

      【過程與方法】

      1、通過觀察等腰三角形的對稱性,發(fā)展學生的形象思維。

      2、通過實踐、觀察、證明等腰三角形的性質,積累數(shù)學活動經(jīng)驗,感受數(shù)學思考過程的條理性,發(fā)展學生的合情推理能力。

      3、通過運用等腰三角形的性質解決有關問題,提高學生運用幾何語言表達問題的,運用知識和技能解決問題的能力。

      【情感態(tài)度】

      引導學生對圖形的觀察、發(fā)現(xiàn),激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中取得成功的體驗。

      【教學重點】

      等腰三角形的性質及應用。

      【教學難點】

      等腰三角形的證明。

      教學過程:

      一、情境導入,初步認識

      問題1什么叫等腰三角形?它是一個軸對稱圖形嗎?請根據(jù)自己的理解,利用軸對稱的知識,自己做一個等腰三角形。要求學生獨立思考,動手作圖后再互相交流評價。

      可按下列方法做出:

      作一條直線l,在l上取點A,在l外取點B,作出點B關于直線l的對稱點C,連接AB,AC,CB,則可得到一個等腰三角形。

      問題2每位同學請拿出事先準備好的長方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點?

      教師指導:上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

      把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質嗎?說說你的猜想。

      在一張白紙上任意畫一個等腰三角形,把它剪下來,請你試著折一折。你的猜想仍然成立嗎?

      教學說明:通過學生的動手操作與觀察發(fā)現(xiàn),加深學生對等腰三角形性質的理解。

      二、思考探究,獲取新知

      教師依據(jù)學生討論發(fā)言的情況,歸納等腰三角形的性質:

     、佟螧=∠C→兩個底角相等。

     、贐D=CD→AD為底邊BC上的中線。

     、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。

      ∠ADB=∠ADC=90°→AD為底邊BC上的高。

      指導學生用語言敘述上述性質。

      性質1等腰三角形的兩個底角相等(簡寫成:“等邊對等角”)。

      性質2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡記為:“三線合一”)。

      教師指導對等腰三角形性質的證明。

      1、證明等腰三角形底角的性質。

      教師要求學生根據(jù)猜想的結論畫出相應的圖形,寫出已知和求證。在引導學生分析思路時強調(diào):

      (1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個三角形全等,需要添加輔助線構造符合證明要求的兩個三角形。

      (2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。

      2、證明等腰三角形“三線合一”的性質。

      【教學說明】在證明中,設計輔助線是關鍵,引導學生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的,重視這一點,要求學生板書證明過程,以體會一題多解帶來的體驗。

      三、典例精析,掌握新知

      例如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

      解:∵AB=AC,BD=BC=AD,

      ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)。

      設∠A=x,則∠BDC=∠A+∠ABD=2x,

      從而∠ABC=∠C=∠BDC=2x。

      于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

      解得x=36°

      于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

      【教學說明】等腰三角形“等邊對等角”及“三線合一”性質,可以實現(xiàn)由邊到角的轉化,從而可求出相應角的度數(shù)。要在解題過程中,學會從復雜圖形中分解出等腰三角形,用方程思想和數(shù)形結合思想解決幾何問題。

      四、運用新知,深化理解

      第1組練習:

      1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。

      如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的`高,標出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。

      2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。

      第2組練習:

      1、如果△ABC是軸對稱圖形,則它一定是( )

      A、等邊三角形

      B、直角三角形

      C、等腰三角形

      D、等腰直角三角形

      2、等腰三角形的一個外角是100°,它的頂角的度數(shù)是( )

      A、80° B、20°

      C、80°和20° D、80°或50°

      3、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm。求這個等腰三角形的邊長。

      4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。

      【教學說明】

      等腰三角形解邊方面的計算類型較多,引導學生見識不同類型,并適時概括歸納,幫學生形成解題能力,注意提醒學生分類討論思想的應用。

      【答案】

      第1組練習答案:

      1、(1)72°;(2)30°

      2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

      3、∠B=77°,∠C=38、5°

      第2組練習答案:

      1、C

      2、C

      3、設三角形的底邊長為xcm,則其腰長為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三邊長為4cm,6cm和6cm。

      4、延長CD交AB的延長線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。

      四、師生互動,課堂小結

      這節(jié)課主要探討了等腰三角形的性質,并對性質作了簡單的應用。請學生表述性質,提醒每個學生要靈活應用它們。

      學生間可交流體會與收獲。

    八年級數(shù)學教案3

      教學目標

      理解平行四邊形的定義,能根據(jù)定義探究平行四邊形的性質.

      教學思考

      1.通過觀察、實驗、猜想、驗證、推理、交流等數(shù)學活動,發(fā)展學生合情推理能力和動手操作能力及應用數(shù)學的意識與能力.

      2.能夠根據(jù)平行四邊形的性質進行簡單的推理和計算.

      解決問題

      通過平行四邊形性質的探索過程,豐富學生從事數(shù)學活動的經(jīng)驗與體驗,能運用平行四邊形的性質進行有關的推理和計算,發(fā)展應用意識.

      情感態(tài)度

      在應用平行四邊形的性質的過程養(yǎng)成獨立思考的習慣,在數(shù)學學習活動中獲得成功的體驗.

      重點

      平行四邊形的性質的探究和平行四邊形的性質的應用.

      難點

      平行四邊形的性質的應用.

      教學流程安排

      活動流程圖

      活動內(nèi)容和目的

      活動1欣賞圖片,了解生活中的特殊四邊形

      活動2剪三角形紙片,拼凸四邊形

      活動3理解平行四邊形的概念

      活動4探究平行四邊形邊、角的性質

      活動5平行四邊形性質的應用

      活動6評價反思、布置作業(yè)

      熟悉生活中特殊的四邊形,導出課題.

      通過用三角形拼四邊形的過程,滲透轉化思想,激發(fā)探索精神.

      掌握平行四邊形的定義及表示方法.

      探究平行四邊形的性質.

      運用平行四邊形的性質.

      學生交流,內(nèi)化知識,課后鞏固知識.

      教學過程設計

      問題與情景

      師生行為

      設計意圖

    [活動1]

      下面的圖片中,有你熟悉的哪些圖形?

     。ǔ鍪緢D片)

      演示圖片,學生欣賞.

      教師介紹四邊形與我們生活密切聯(lián)系,學生可再補充列舉.

      從實例圖片中,抽象出的`特殊四邊形,培養(yǎng)學生的抽象思維.通過舉例,讓學生感受到數(shù)學與我們的生活緊密聯(lián)系.

      問題與情景

      師生行為

      設計意圖

      [活動2]

      拼一拼

      將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.

     。1)你拼出了怎樣的凸四邊形?與同伴交流.

     。2)一位同學拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關系?說說你的理由.

      學生經(jīng)過實驗操作,開展獨立思考與合作學習.

      教師深入學生之中,觀察學生頻出的方法與過程,接受學生質疑并指導個別學生探究.

      教師待學生充分探究后,請學生展示拼圖的方法和不同的圖形.并引導學生分析(2)中的四邊形的邊的位置特征,從而引出本節(jié)課研究的內(nèi)容

    八年級數(shù)學教案4

      一、教材的地位和作用

      現(xiàn)實生活中,等腰三角形的應用比比皆是、所以,利用“軸對稱”的知識,進一步研究等腰三角形的特殊性質,不僅是現(xiàn)實生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質打下堅實的基礎、

      性質“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結論的重要理論依據(jù)、

      教學重點:

      1、讓學生主動經(jīng)歷思考和探索的過程、

      2、掌握等腰三角形性質及其應用、

      教學難點:等腰三角形性質的理解和探究過程、

      二、學情分析

      本年級的學生已經(jīng)研究過一般三角形的性質,積累了一定的經(jīng)驗,動手能力強,善于與同伴交流,這就為本節(jié)課的學習做好了知識、能力、情感方面的準備、不同層次的學生因為基礎不同,在學習中必然會出現(xiàn)相異構想,這也將是我在教學過程中著重關注的一點、

      三、目標分析

      知識與技能

      1、了解等腰三角形的有關概念和掌握等腰三角形的性質

      2、了解等邊三角形的概念并探索其性質

      3、運用等腰三角形的性質解決問題

      過程與方法

      1、通過觀察等腰三角形的對稱性,發(fā)展學生的形象思維、

      2、探索等腰三角形的性質時,經(jīng)歷了觀察、動手實踐、猜想、驗證等數(shù)學過程,積累數(shù)學活動經(jīng)驗,發(fā)展了學生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運用數(shù)學語言合乎邏輯的進行討論和質疑,提高了數(shù)學語言表達能力、

      情感態(tài)度價值觀:

      1、通過情境創(chuàng)設,使學生感受到等腰三角形就在自己的身邊,從而使學生認識到學習等腰三角形的必要性、

      2、通過等腰三角形的性質的歸納,使學生認識到科學結論的發(fā)現(xiàn),是一個不斷完善的過程,培養(yǎng)學生堅強的意志品質、

      3、通過小組合作,發(fā)展學生互幫互助的精神,體驗合作學習中的樂趣和成就感、

      四、教法分析

      根據(jù)學生已有的認知,采取了激疑引趣——猜想探究——應用體驗——建構延伸的教學模式,并利用多媒體輔助教學、

      設計意圖

      同學們,我們在七年級已研究了一般三角形的性質,今天我們一起來探究特殊的三角形:等腰三角形、

      等腰三角形的定義

      有兩條邊相等的三角形叫做等腰三角形、

      等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、

      提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?

      首先讓學生明確:本學段的幾何圖形都是按一般的到特殊的順序研究的

      通過學生描述等腰三角形在生活中的應用,讓學生感受到數(shù)學就在我們身邊,以及研究等腰三角形的必要性、

      剪紙游戲

      你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!

      學情分析:

      大部分學生會有自己的想法,根據(jù)軸對稱圖形的性質,利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;

      可能還有的同學會利用正方形的折法,獲得特殊的等腰直角三角形;

      可能還有同學先畫圖,再依線條剪得、

      在這個過程中,注重落實三維目標、讓學生在獲取新知的過程中更好的認識自我,建立自信、我不失時機的對學生給予鼓勵和表揚,使活動更加深入,課堂充滿愉悅和溫馨、

      知其然,更重要的是知其所以然、因此,我力求讓學生關注剪法的理性思考、

      我設計了問題:你是如何想到的?為的`是剖析學生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、

      提出問題:

      等腰三角形還有什么性質?請?zhí)岢瞿愕牟孪,驗證你的猜想?并填寫在學案上、

      合作小組活動規(guī)則:

      1、有主記錄員記錄小組的結論;

      2、定出小組的主發(fā)言人(其它同學可作補充);

      3、小組探究出的結論是什么?

      4、說明你們小組所獲得結論的理由、

      等腰三角形的性質:

      性質一:等腰三角形的兩個底角相等(簡稱“等邊對等角”)、

      性質二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、

      學情分析:這個環(huán)節(jié)是本節(jié)課的重點,也是教學難點、盡管在教學過程中,因為學生的相異構想,數(shù)學猜想的初始敘述不準確,甚至不正確,但我不會立即去糾正他們,而是讓同學們不斷地質疑﹑辨析、研討和歸納,逐漸完善結論、讓他們真正經(jīng)歷數(shù)學知識的形成過程,真正的體現(xiàn)以人為本的教學理念,努力創(chuàng)設和諧的教育教學的生態(tài)環(huán)境、

      通過設置恰當?shù)膭邮謱嵺`活動,引導學生經(jīng)歷觀察、動手實踐、猜想、驗證等數(shù)學探究活動,這種探究的學習過程,恰恰是研究幾何圖形性質的一般規(guī)律和方法、

      (1)在此環(huán)節(jié)中,我的教學要充分把握好“四讓”:能讓學生觀察的,盡量讓學生觀察;能讓學生思考的,盡量讓學生思考;能讓學生表達的,盡量讓學生表達;能讓學生作結論的,盡量讓學生作結論、

      這種教學方式,把學習的過程真正還給學生,不怕學生說不好,不怕學生出問題,其實學生說不好的地方、學生出問題的地方都正是我們應該教的地方,是教學的切入點、著眼點、增長點、

      (2)教師在這個過程中,充分聽取和參與學生的小組討論,對有困難的學生,及時指導、

      鞏固知識

      1、等腰三角形頂角為70°,它的另外兩個內(nèi)角的度數(shù)分別為________;

      2、等腰三角形一個角為70°,它的另外兩個內(nèi)角的度數(shù)分別為_____;

      3、等腰三角形一個角為100°,它的另外兩個內(nèi)角的度數(shù)分別為_____、

      內(nèi)化知識

      1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?

      知識遷移

      等邊三角形有什么特殊的性質?簡單地敘述理由、

      等邊三角形的性質定理:

      等邊三角形的各角都相等,并且每一個角都等于60°、

      拓展延伸

      如圖2,在△ABC中,AB=AC,點D,E在BC上,AD=AE,你能說明BD=EC?

      由于學生之間存在知識基礎、經(jīng)驗和能力的差異,我為學生提供了層次分明的反饋練習、將練習從易到難,從簡到繁,以適應不同階段、不同層次的學生的需要、讓學生拾階而上,逐步掌握知識,使學困生達到簡單運用水平,中等生達到綜合運用水平,優(yōu)等生達到創(chuàng)建水平、

      暢談收獲

      總結活動情況,重在肯定與鼓勵、引導學生從本課學習中所得到的新知識,運用的數(shù)學思想方法,新舊知識的聯(lián)系等方面進行反思,提高學生自主建構知識網(wǎng)絡、分析解決問題的能力、

      幫助學生梳理知識,回顧探究過程中所用到的從特殊到一般的數(shù)學方法,啟發(fā)學生更深層次的思考,為學生的下一步學習做好鋪墊、

      反思過程不僅是學生學習過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、

      基礎性作業(yè):P65習題1、2、3、4

    八年級數(shù)學教案5

      一、教學目標:

      1、加深對加權平均數(shù)的理解

      2、會根據(jù)頻數(shù)分布表求加權平均數(shù),從而解決一些實際問題

      3、會用計算器求加權平均數(shù)的值

      二、重點、難點和難點的突破方法:

      1、重點:根據(jù)頻數(shù)分布表求加權平均數(shù)

      2、難點:根據(jù)頻數(shù)分布表求加權平均數(shù)

      3、難點的突破方法:

      首先應先復習組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因為在根據(jù)頻數(shù)分布表求加權平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復習組中值定義。

      應給學生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的`范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計算量。

      為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。

      三、例習題的意圖分析

      1、教材P140探究欄目的意圖。

      (1)、主要是想引出根據(jù)頻數(shù)分布表求加權平均數(shù)近似值的計算方法。

      (2)、加深了對“權”意義的理解:當利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權。

      這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。

      2、教材P140的思考的意圖。

      (1)、使學生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題

      (2)、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數(shù)據(jù)的能力。

      3、P141利用計算器計算平均值

      這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。

      四、課堂引入

      采用教材原有的引入問題,設計的幾個問題如下:

      (1)、請同學讀P140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息

      (2)、這里的組中值指什么,它是怎樣確定的?

      (3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?

      (4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關系。

      五、隨堂練習

      1、某校為了了解學生作課外作業(yè)所用時間的情況,對學生作課外作業(yè)所用時間進行調(diào)查,下表是該校初二某班50名學生某一天做數(shù)學課外作業(yè)所用時間的情況統(tǒng)計表

      所用時間t(分鐘)人數(shù)

      0

      0<≤ 6

      20

      30

      40

      50

      (1)、第二組數(shù)據(jù)的組中值是多少?

      (2)、求該班學生平均每天做數(shù)學作業(yè)所用時間

      2、某班40名學生身高情況如下圖,

      請計算該班學生平均身高

      答案1.(1).15. (2)28. 2. 165

      六、課后練習:

      1、某公司有15名員工,他們所在的部門及相應每人所創(chuàng)的年利潤如下表

      部門A B C D E F G

      人數(shù)1 1 2 4 2 2 5

      每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2

      該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元?

      2、下表是截至到20xx年費爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡?

      年齡頻數(shù)

      28≤X<30 4

      30≤X<32 3

      32≤X<34 8

      34≤X<36 7

      36≤X<38 9

      38≤X<40 11

      40≤X<42 2

      3、為調(diào)查居民生活環(huán)境質量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調(diào)查,結果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。

      答案:1.約2.95萬元2.約29歲3.60.54分貝

    八年級數(shù)學教案6

      一、教學目標

      1.使學生理解并掌握分式的概念,了解有理式的概念;

      2.使學生能夠求出分式有意義的條件;

      3.通過類比分數(shù)研究分式的教學,培養(yǎng)學生運用類比轉化的思想方法解決問題的能力;

      4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認識.

      二、重點、難點、疑點及解決辦法

      1.教學重點和難點 明確分式的分母不為零.

      2.疑點及解決辦法 通過類比分數(shù)的意義,加強對分式意義的理解.

      三、教學過程

      【新課引入】

      前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數(shù)的經(jīng)驗,可猜想到分式)

      【新課】

      1.分式的定義

      (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:

      用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

      (2)由學生舉幾個分式的例子.

      (3)學生小結分式的概念中應注意的問題.

     、俜帜钢泻凶帜.

     、谌缤謹(shù)一樣,分式的'分母不能為零.

      (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

      2.有理式的分類

      請學生類比有理數(shù)的分類為有理式分類:

      例1 當取何值時,下列分式有意義?

      (1);

      解:由分母得.

      ∴當時,原分式有意義.

      (2);

      解:由分母得.

      ∴當時,原分式有意義.

      (3);

      解:∵恒成立,

      ∴取一切實數(shù)時,原分式都有意義.

      (4).

      解:由分母得.

      ∴當且時,原分式有意義.

      思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

      例2 當取何值時,下列分式的值為零?

      (1);

      解:由分子得.

      而當時,分母.

      ∴當時,原分式值為零.

      小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

      (2);

      解:由分子得.

      而當時,分母,分式無意義.

      當時,分母.

      ∴當時,原分式值為零.

      (3);

      解:由分子得.

      而當時,分母.

      當時,分母.

      ∴當或時,原分式值都為零.

      (4).

      解:由分子得.

      而當時,,分式無意義.

      ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

      (四)總結、擴展

      1.分式與分數(shù)的區(qū)別.

      2.分式何時有意義?

      3.分式何時值為零?

      (五)隨堂練習

      1.填空題:

      (1)當時,分式的值為零

      (2)當時,分式的值為零

      (3)當時,分式的值為零

      2.教材P55中1、2、3.

      八、布置作業(yè)

      教材P56中A組3、4;B組(1)、(2)、(3).

      九、板書設計

      課題 例1

      1.定義例2

      2.有理式分類

    八年級數(shù)學教案7

      教學目標

      1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

      2.會綜合運用平行四邊形的判定方法和性質來解決問題

      教學重點:平行四邊形的判定方法及應用

      教學難點:平行四邊形的判定定理與性質定理的靈活應用

      一.引

      小明的父親手中有一些木條,他想通過適當?shù)臏y量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

      二.探

      閱讀教材P44至P45

      利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:

      (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

      (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

      (3)你能說出你的做法及其道理嗎?

      (4)能否將你的探索結論作為平行四邊形的.一種判別方法?你能用文字語言表述出來嗎?

      (5)你還能找出其他方法嗎?

      從探究中得到:

      平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

      平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

      證一證

      平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

      證明:(畫出圖形)

      平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

    八年級數(shù)學教案8

      菱形

      學習目標(學習重點):

      1.經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習慣;

      2.運用菱形的識別方法進行有關推理.

      補充例題:

      例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

      例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.

      四邊形AFCE是菱形嗎?說明理由.

      例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

      (1)試說明四邊形AECG是平行四邊形;

      (2)若AB=4cm,BC=3cm,求線段EF的長;

      (3)當矩形兩邊AB、BC具備怎樣的'關系時,四邊形AECG是菱形.

      課后續(xù)助:

      一、填空題

      1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

      2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

      且DE∥BA,DF∥ CA

      (1)要使四邊形AFDE是菱形,則要增加條件______________________

      (2)要使四邊形AFDE是矩形,則要增加條件______________________

      二、解答題

      1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

      2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

      (1) AC,BD互相垂直嗎?為什么?

      (2) 四邊形ABCD是菱形 嗎?

      3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

      4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

     、徘笞C:ABF≌

      ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

    八年級數(shù)學教案9

      一、學習目標

      1.多項式除以單項式的運算法則及其應用。

      2.多項式除以單項式的運算算理。

      二、重點難點

      重點:多項式除以單項式的運算法則及其應用。

      難點:探索多項式與單項式相除的運算法則的過程。

      三、合作學習

     。ㄒ唬┗仡檰雾検匠詥雾検椒▌t

      (二)學生動手,探究新課

      1.計算下列各式:

      (1)(am+bm)÷m;

      (2)(a2+ab)÷a;

      (3)(4x2y+2xy2)÷2xy。

      2.提問:

     、僬f說你是怎樣計算的;

      ②還有什么發(fā)現(xiàn)嗎?

      (三)總結法則

      1.多項式除以單項式:先把這個多項式的每一項除以XXXXXXXXXXX,再把所得的商XXXXXX

      2.本質:把多項式除以單項式轉化成XXXXXXXXXXXXXX

      四、精講精練

      例:(1)(12a3—6a2+3a)÷3a;

     。2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

     。3)[(x+y)2—y(2x+y)—8x]÷2x;

     。4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

      隨堂練習:教科書練習。

      五、小結

      1、單項式的除法法則

      2、應用單項式除法法則應注意:

      A、系數(shù)先相除,把所得的結果作為商的系數(shù),運算過程中注意單項式的'系數(shù)飽含它前面的符號;

      B、把同底數(shù)冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

      C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏;

      D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行;

      E、多項式除以單項式法則。

    八年級數(shù)學教案10

      教學目標

     、俳(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結果都是整式),培養(yǎng)學生獨立思考、集體協(xié)作的能力。

     、诶斫庹匠ǖ乃憷,發(fā)展有條理的思考及表達能力。

      教學重點與難點

      重點:整式除法的運算法則及其運用。

      難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。

      教學準備

      卡片及多媒體課件。

      教學設計

      情境引入

      教科書第161頁問題:木星的質量約為1.90×1024噸,地球的質量約為5.98×1021噸,你知道木星的質量約為地球質量的多少倍嗎?

      重點研究算式(1.90×1024)÷(5.98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的'模型。

      注:教科書從實際問題引入單項式的除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數(shù)學與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。

      探究新知

     。1)計算(1.90×1024)÷(5.98×1021),說說你計算的根據(jù)是什么?

      (2)你能利用(1)中的方法計算下列各式嗎?

      8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2

     。3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?

      注:教師可以鼓勵學生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。

      單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質,并能運用乘除互逆的關系加以說明,也可類比分數(shù)的約分進行。在這些活動過程中,學生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標所強調(diào)的。

      歸納法則

      單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

      注:通過總結法則,培養(yǎng)學生的概括能力,養(yǎng)成用數(shù)學語言表達自己想法的數(shù)學學習習慣。

      應用新知

      例2計算:

     。1)28x4y2÷7x3y;

     。2)—5a5b3c÷15a4b。

      首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成?谑龊桶鍟紤⒁庹故痉▌t的應用,計算過程要詳盡,使學生盡快熟悉法則。

      注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現(xiàn)照看不全的情況,所以更應督促學生細心解答問題。

      鞏固新知教科書第162頁練習1及練習2。

      學生自己嘗試完成計算題,同桌交流。

      注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學生良好的思維習慣和主動參與學習的習慣。

      作業(yè)

      1、必做題:教科書第164頁習題15.3第1題;第2題。

      2、選做題:教科書第164頁習題15.3第8題

    八年級數(shù)學教案11

      一、課堂導入

      回顧平行四邊的性質定理及定義

      1.什么叫平行四邊形?平行四邊形有什么性質?

      2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)

      根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?

      二、新課講解

      平行四邊形的判定:

      (定義法):兩組對邊分別平行的四邊形的平邊形。

      幾何語言表達定義法:

      ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

      解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。

      活動:用做好的紙條拼成一個四邊形,其中強調(diào)兩組對邊分別相等。

      (平行四邊形判定定理):

      (一)兩組對邊分別相等的四邊形是平行四邊形。

      設問:這個命題的前提和結論是什么?

      已知:四邊形ABCD中,AB=CD,BC=DA。

      求證:四邊ABCD是平行四邊形。

      分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。

      板書證明過程。

      小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:

      平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

      (二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?

      活動:課本探究內(nèi)容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的.端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?

      設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)

    八年級數(shù)學教案12

      一、學生起點分析

      學生已經(jīng)了勾股定理,并在先前其他內(nèi)容學習中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結論?

      反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經(jīng)具備這樣的意識,但具體研究中

      可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。

      二、學習任務分析

      本節(jié)課是北師大版數(shù)學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理

      并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學目標:

      ● 知識與技能目標

      1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

      2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

      ● 過程與方法目標

      1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;

      2.經(jīng)歷從實驗到驗證的過程,發(fā)展學生的數(shù)學歸納能力。

      ● 情感與態(tài)度目標

      1.體驗生活中的數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣;

      2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

      教學重點

      理解勾股定理逆定理的具體內(nèi)容。

      三、教法學法

      1.教學方法:實驗猜想歸納論證

      本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學結論已有一定的體驗

      但數(shù)學思維嚴謹?shù)耐瑢W總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:

      (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;

      (2)從學生活動出發(fā),通過以舊引新,順勢教學過程;

      (3)利用探索,研究手段,通過思維深入,領悟教學過程。

      2.課前準備

      教具:教材、電腦、多媒體課件。

      學具:教材、筆記本、課堂練習本、文具。

      四、教學過程設計

      本節(jié)課設計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

      登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè)。

      第一環(huán)節(jié):情境引入

      內(nèi)容:

      情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

      2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

      意圖:

      通過情境的創(chuàng)設引入新課,激發(fā)學生探究熱情。

      效果:

      從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎。

      第二環(huán)節(jié):合作探究

      內(nèi)容1:探究

      下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

      1.這三組數(shù)都滿足 嗎?

      2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

      意圖:

      通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

      效果:

      經(jīng)過學生充分討論后,匯總各小組實驗結果發(fā)現(xiàn):①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

      從上面的分組實驗很容易得出如下結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      內(nèi)容2:說理

      提問:有同學認為測量結果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

      意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

      如果一個三角形的`三邊長 ,滿足 ,那么這個三角形是直角三角形

      滿足 的三個正整數(shù),稱為勾股數(shù)。

      注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

      活動3:反思總結

      提問:

      1.同學們還能找出哪些勾股數(shù)呢?

      2.今天的結論與前面學習勾股定理有哪些異同呢?

      3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

      4.通過今天同學們合作探究,你能體驗出一個數(shù)學結論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

      意圖:進一步讓學生認識該定理與勾股定理之間的關系

      第三環(huán)節(jié):小試牛刀

      內(nèi)容:

      1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

     、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

      解答:①②

      2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

      A 250 B 150 C 200 D 不能確定

      解答:B

      3.如圖1:在 中, 于 , ,則 是( )

      A 等腰三角形 B 銳角三角形

      C 直角三角形 D 鈍角三角形

      解答:C

      4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)

      得到的三角形是( )

      A 直角三角形 B 銳角三角形

      C 鈍角三角形 D 不能確定

      解答:A

      意圖:

      通過練習,加強對勾股定理及勾股定理逆定理認識及應用

      效果

      每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

      第四環(huán)節(jié):登高望遠

      內(nèi)容:

      1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

      解答:符合要求 , 又 ,

      2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?

      解答:由題意畫出相應的圖形

      AB=240海里,BC=70海里,,AC=250海里;在△ABC中

      =(250+240)(250-240)

      =4900= = 即 △ABC是Rt△

      答:船轉彎后,是沿正西方向航行的。

      意圖:

      利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

      效果:

      學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形( ),以便于計算。

      第五環(huán)節(jié):鞏固提高

      內(nèi)容:

      1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

      解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

      2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

      圖4 圖5

      解答:④⑤是直角三角形,①②③⑥不是直角三角形

      意圖:

      第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網(wǎng)格進行計算,從而解決問題。

      效果:

      學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應用。

      第六環(huán)節(jié):交流小結

      內(nèi)容:

      師生相互交流總結出:

      1.今天所學內(nèi)容①會利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

      2.從今天所學內(nèi)容及所作練習中總結出的經(jīng)驗與方法:①數(shù)學是源于生活又服務于生活的;②數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形, 便于計算。

      意圖:

      鼓勵學生結合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識。

      效果:

      學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

      第七環(huán)節(jié):布置作業(yè)

      課本習題1.4第1,2,4題。

      五、教學反思:

      1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。

      2.注重引導學生積極參與實驗活動,從中體驗任何一個數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

      3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

      4.注重對學習新知理解應用偏困難的學生的進一步關注。

      5.對于勾股定理的逆定理的論證可根據(jù)學生的實際情況做適當調(diào)整,不做要求。

      由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據(jù)自己班級學生的狀況進行適當?shù)膭h減或調(diào)整。

      附:板書設計

      能得到直角三角形嗎

      情景引入 小試牛刀: 登高望遠

    八年級數(shù)學教案13

      一、素質教育目標

      (一)知識教學點

      1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用.

      2.使學生理解判定定理與性質定理的區(qū)別與聯(lián)系.

      3.會根據(jù)簡單的.條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.

      (二)能力訓練點

      1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.

      2.通過教學,使學生逐步學會分別從題設或結論出發(fā)尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.

      (三)德育滲透點

      通過一題多解激發(fā)學生的學習興趣.

      (四)美育滲透點

      通過學習,體會幾何證明的方法美.

      二、學法引導

      構造逆命題,分析探索證明,啟發(fā)講解.

      三、重點·難點·疑點及解決辦法

      1.教學重點:平行四邊形的判定定理1、2、3的應用.

      2.教學難點:綜合應用判定定理和性質定理.

      3.疑點及解決辦法:在綜合應用判定定理及性質定理時,在什么條件下用判定定理,在什么條件下用性質定理

      (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質定理).

    八年級數(shù)學教案14

      教學目標:

      1、了解算術平方根的概念,會用根號表示正數(shù)的算術平方根,并了解算術平方根的非負性。

      2、了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術平方根。

      教學重點:

      算術平方根的概念。

      教學難點:

      根據(jù)算術平方根的概念正確求出非負數(shù)的算術平方根。

      教學過程

      一、情境導入

      請同學們欣賞本節(jié)導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的'邊長應取多少?如果這塊畫布的面積是?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

      這就要用到平方根的概念,也就是本章的主要學習內(nèi)容。這節(jié)課我們先學習有關算術平方根的概念。

      二、導入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

      這個問題相當于在等式擴=25中求出正數(shù)x的值。

      一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術平方根。a的算術平方根記為,讀作根號a,a叫做被開方數(shù)。規(guī)定:0的算術平方根是0。

      也就是,在等式=a(x0)中,規(guī)定x = 。

      2、試一試:你能根據(jù)等式:=144說出144的算術平方根是多少嗎?并用等式表示出來。

      3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值。例如表示25的算術平方根。

      4、例1求下列各數(shù)的算術平方根:

      (1)100;(2)1;(3);(4)0。0001

      三、練習

      P69練習1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

      方法1:課本中的方法,略;

      方法2:

      可還有其他方法,鼓勵學生探究。

      問題:這個大正方形的邊長應該是多少呢?

      大正方形的邊長是,表示2的算術平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

      建議學生觀察圖形感受的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大。┧慕浦滴覀儗⒃谙鹿(jié)課探究。

      五、小結:

      1、這節(jié)課學習了什么呢?

      2、算術平方根的具體意義是怎么樣的?

      3、怎樣求一個正數(shù)的算術平方根

      六、課外作業(yè):

      P75習題13.1活動第1、2、3題

    八年級數(shù)學教案15

      學習目標

      1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。

      2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結構特征,并能從廣義上理解公式中字母的含義。

      3、初步學會運用平方差公式進行計算。

      學習重難點重點:

      平方差公式的推導及應用。

      難點是對公式中a,b的廣泛含義的理解及正確運用。

      自學過程設計教學過程設計

      看一看

      認真閱讀教材,記住以下知識:

      文字敘述平方差公式:_________________

      用字母表示:________________

      做一做:

      1、完成下列練習:

      ①(m+n)(p+q)

     、(a+b)(x-y)

     、(2x+3y)(a-b)

     、(a+2)(a-2)

      ⑤(3-x)(3+x)

     、(2m+n)(2m-n)

      想一想

      你還有哪些地方不是很懂?請寫出來。

      _______________________________

      _______________________________

      ________________________________、

      1、下列計算對不對?若不對,請在橫線上寫出正確結果、

      (1)(x-3)(x+3)=x2-3( ),__________;

      (2)(2x-3)(2x+3)=2x2-9( ),_________;

      (3)(-x-3)(x-3)=x2-9( ),_________;

      (4)(2xy-1)(2xy+1)=2xy2-1( ),________、

      2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

      (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、

      3、計算:50×49=_________、

      應用探究

      1、幾何解釋平方差公式

      展示:邊長a的大正方形中有一個邊長為b的小正方形。

      (1)請計算圖的.陰影部分的面積(讓學生用正方形的面積公式計算)。

      (2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?

      2、用平方差公式計算

      (1)103×93 (2)59、8×60、2

      拓展提高

      1、閱讀題:

      我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:

      原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

      =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

      =(24-1)(24+1)(28+1)(216+1)(232+1)

      =……=264-1

      你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

      2、仔細觀察,探索規(guī)律:

      (x-1)(x+1)=x2-1

      (x-1)(x2+x+1)=x3-1

      (x-1)(x3+x2+x+1)=x4-1

      (x-1)(x4+x3+x2+x+1)=x5-1

      ……

      (1)試求25+24+23+22+2+1的值;

      (2)寫出22006+22005+22004+…+2+1的個位數(shù)、

      堂堂清

      一、選擇題

      1、下列各式中,能用平方差公式計算的是( )

      (1)(a-2b)(-a+2b);

      (2)(a-2b)(-a-2b);

      (3)(a-2b)(a+2b);

      (4)(a-2b)(2a+b)、

    【八年級數(shù)學教案】相關文章:

    八年級數(shù)學教案11-16

    八年級上冊人教版數(shù)學教案02-27

    八年級上冊數(shù)學教案01-13

    關于八年級數(shù)學教案01-11

    八年級數(shù)學教案(15篇)01-31

    八年級數(shù)學教案15篇01-08

    八年級數(shù)學教案通用15篇03-20

    八年級數(shù)學教案(集合15篇)02-23

    八年級數(shù)學教案(通用15篇)01-31

    八年級數(shù)學教案(匯編15篇)02-01