欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    三角函數(shù)公式知識點(diǎn)總結(jié)

    時(shí)間:2022-08-04 14:52:16 總結(jié) 投訴 投稿
    • 相關(guān)推薦

    三角函數(shù)公式知識點(diǎn)總結(jié)

      上學(xué)期間,說起知識點(diǎn),應(yīng)該沒有人不熟悉吧?知識點(diǎn)就是一些常考的內(nèi)容,或者考試經(jīng)常出題的地方。你知道哪些知識點(diǎn)是真正對我們有幫助的嗎?下面是小編收集整理的三角函數(shù)公式知識點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

    三角函數(shù)公式知識點(diǎn)總結(jié)

      三角函數(shù)公式知識點(diǎn)總結(jié)1

      倍角公式

      二倍角公式

      正弦形式:sin2α=2sinαcosα

      正切形式:tan2α=2tanα/(1-tan^2(α))

      余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a=tana·tan(π/3+a)·tan(π/3-a)

      四倍角公式

      sin4A=-4*(cosA*sinA*(2*sinA^2-1))

      cos4A=1+(-8*cosA^2+8*cosA^4)

      tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

      半角公式

      正弦

      sin(A/2)=√((1-cosA)/2)

      sin(A/2)=-√((1-cosA)/2)

      余弦

      cos(A/2)=√((1+cosA)/2)

      cos(A/2)=-√((1+cosA)/2)

      正切

      tan(A/2)=√((1-cosA)/((1+cosA))

      tan(A/2)=-√((1-cosA)/((1+cosA))

      積化和差

      sina*cosb=[sin(a+b)+sin(a-b)]/2

      cosa*sinb=[sin(a+b)-sin(a-b)]/2

      cosa*cosb=[cos(a+b)+cos(a-b)]/2

      sina*sinb=[cos(a-b)-cos(a+b)]/2

      和差化積

      sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

      sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

      cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

      cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

      誘導(dǎo)公式

      任意角α與-α的三角函數(shù)值之間的關(guān)系:

      sin(-α)=-sinα

      cos(-α)=cosα

      tan(-α)=-tanα

      cot(-α)=-cotα

      設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

      sin(π+α)=-sinα

      cos(π+α)=-cosα

      tan(π+α)=tanα

      cot(π+α)=cotα

      利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的.關(guān)系:

      sin(π-α)=sinα

      cos(π-α)=-cosα

      tan(π-α)=-tanα

      cot(π-α)=-cotα

      設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

      sin(2kπ+α)=sinα(k∈Z)

      cos(2kπ+α)=cosα(k∈Z)

      tan(2kπ+α)=tanα(k∈Z)

      cot(2kπ+α)=cotα(k∈Z)

      利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(2π-α)=-sinα

      cos(2π-α)=cosα

      tan(2π-α)=-tanα

      cot(2π-α)=-cotα

      π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

      sin(π/2+α)=cosα

      cos(π/2+α)=-sinα

      tan(π/2+α)=-cotα

      cot(π/2+α)=-tanα

      sin(π/2-α)=cosα

      cos(π/2-α)=sinα

      tan(π/2-α)=cotα

      cot(π/2-α)=tanα

      sin(3π/2+α)=-cosα

      cos(3π/2+α)=sinα

      tan(3π/2+α)=-cotα

      cot(3π/2+α)=-tanα

      sin(3π/2-α)=-cosα

      cos(3π/2-α)=-sinα

      tan(3π/2-α)=cotα

      cot(3π/2-α)=tanα

      (以上k∈Z)

      拓展閱讀:三角函數(shù)常用知識點(diǎn)

      1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

      2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)

      3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

      4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

      5、正弦、余弦的增減性:當(dāng)0°≤α≤90°時(shí),sinα隨α的增大而增大,cosα隨α的增大而減小。

      6、正切、余切的增減性:當(dāng)0°<α<90°時(shí),tanα隨α的增大而增大,cotα隨α的增大而減小。

      三角函數(shù)公式知識點(diǎn)總結(jié)2

      誘導(dǎo)公式的本質(zhì)

      所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

      常用的誘導(dǎo)公式

      公式一: 設(shè)為任意角,終邊相同的`角的同一三角函數(shù)的值相等:

      sin(2k)=sin kz

      cos(2k)=cos kz

      tan(2k)=tan kz

      cot(2k)=cot kz

      公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

      sin()=-sin

      cos()=-cos

      tan()=tan

      cot()=cot

      公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

      sin(-)=-sin

      cos(-)=cos

      tan(-)=-tan

      cot(-)=-cot

      公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

      sin()=sin

      cos()=-cos

      tan()=-tan

      cot()=-cot

      三角函數(shù)公式知識點(diǎn)總結(jié)3

      兩角和公式

      sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      倍角公式

      tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

      cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

      半角公式

      sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

      ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

      和差化積

      2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

      某些數(shù)列前n項(xiàng)和

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

      13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

      三角函數(shù)公式知識點(diǎn)總結(jié)4

      萬能公式推導(dǎo)

      sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)……*,

     。ㄒ?yàn)閏os^2(α)+sin^2(α)=1)

      再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

      然后用α/2代替α即可。

      同理可推導(dǎo)余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。

      三倍角公式推導(dǎo)

      tan3α=sin3α/cos3α

      =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

      =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

      上下同除以cos^3(α),得:

      tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

      sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

      =2sinαcos^2(α)+(1-2sin^2(α))sinα

      =2sinα-2sin^3(α)+sinα-2sin^3(α)

      =3sinα-4sin^3(α)

      cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

      =(2cos^2(α)-1)cosα-2cosαsin^2(α)

      =2cos^3(α)-cosα+(2cosα-2cos^3(α))

      =4cos^3(α)-3cosα

      即

      sin3α=3sinα-4sin^3(α)

      cos3α=4cos^3(α)-3cosα

      和差化積公式推導(dǎo)

      首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

      我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

      所以,sina*cosb=(sin(a+b)+sin(a-b))/2

      同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

      同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

      所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

      所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

      同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

      這樣,我們就得到了積化和差的.四個(gè)公式:

      sina*cosb=(sin(a+b)+sin(a-b))/2

      cosa*sinb=(sin(a+b)-sin(a-b))/2

      cosa*cosb=(cos(a+b)+cos(a-b))/2

      sina*sinb=-(cos(a+b)-cos(a-b))/2

      好,有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式。

      我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2

      把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:

      sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

      sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

      cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

      cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

      三角函數(shù)公式知識點(diǎn)總結(jié)5

      三角形與三角函數(shù)

      1、正弦定理:在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R 。(其中R為外接圓的半徑)

      2、第一余弦定理:三角形中任意一邊等于其他兩邊以及對應(yīng)角余弦的交叉乘積的和,即a=c cosB + b cosC

      3、第二余弦定理:三角形中任何一邊的平方等于其它兩邊的`平方之和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2—2bc·cosA

      4、正切定理(napier比擬):三角形中任意兩邊差和的比值等于對應(yīng)角半角差和的正切比值,即(a—b)/(a+b)=tan[(A—B)/2]/tan[(A+B)/2]=tan[(A—B)/2]/cot(C/2)

      5、三角形中的恒等式:

      對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC

      證明:

      已知(A+B)=(π—C)

      所以tan(A+B)=tan(π—C)

      則(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/(1+tanπtanC)

      整理可得

      tanA+tanB+tanC=tanAtanBtanC

      類似地,我們同樣也可以求證:當(dāng)α+β+γ=nπ(n∈Z)時(shí),總有tanα+tanβ+tanγ=tanαtanβtanγ

      三角函數(shù)公式知識點(diǎn)總結(jié)6

      三角函數(shù)公式表

      同角三角函數(shù)的基本關(guān)系式

      倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系:

      tan cot=1

      sin csc=1

      cos sec=1 sin/cos=tan=sec/csc

      cos/sin=cot=csc/sec sin2+cos2=1

      1+tan2=sec2

      1+cot2=csc2

      (六邊形記憶法:圖形結(jié)構(gòu)上弦中切下割,左正右余中間1記憶方法對角線上兩個(gè)函數(shù)的積為1;陰影三角形上兩頂點(diǎn)的三角函數(shù)值的平方和等于下頂點(diǎn)的三角函數(shù)值的`平方;任意一頂點(diǎn)的三角函數(shù)值等于相鄰兩個(gè)頂點(diǎn)的三角函數(shù)值的乘積。)

      誘導(dǎo)公式(口訣:奇變偶不變,符號看象限。)

      sin(-)=-sin

      cos(-)=cos tan(-)=-tan

      cot(-)=-cot

      sin(/2-)=cos

      cos(/2-)=sin

      tan(/2-)=cot

      cot(/2-)=tan

      sin(/2+)=cos

      cos(/2+)=-sin

      tan(/2+)=-cot

      cot(/2+)=-tan

      sin()=sin

      cos()=-cos

      tan()=-tan

      cot()=-cot

      sin()=-sin

      cos()=-cos

      tan()=tan

      cot()=cot

      sin(3/2-)=-cos

      cos(3/2-)=-sin

      tan(3/2-)=cot

      cot(3/2-)=tan

      sin(3/2+)=-cos

      cos(3/2+)=sin

      tan(3/2+)=-cot

      cot(3/2+)=-tan

      sin(2)=-sin

      cos(2)=cos

      tan(2)=-tan

      cot(2)=-cot

      sin(2k)=sin

      cos(2k)=cos

      tan(2k)=tan

      cot(2k)=cot

      sin(+)=sincos+cossin

      sin(-)=sincos-cossin

      cos(+)=coscos-sinsin

      cos(-)=coscos+sinsin

      tan+tan

      tan(+)=

      1-tan tan

      tan-tan

      tan(-)=

      1+tan tan

      2tan(/2)

      sin=

      1+tan2(/2)

      1-tan2(/2)

      cos=

      1+tan2(/2)

      2tan(/2)

      tan=

      1-tan2(/2)

      sin2=2sincos

      cos2=cos2-sin2=2cos2-1=1-2sin2

      2tan

      tan2=

      1-tan2

      sin3=3sin-4sin3

      cos3=4cos3-3cos

      3tan-tan3

      tan3=

      1-3tan2

      三角函數(shù)公式知識點(diǎn)總結(jié)7

      銳角三角函數(shù)公式

      sin α=∠α的對邊 / 斜邊

      cos α=∠α的鄰邊 / 斜邊

      tan α=∠α的對邊 / ∠α的鄰邊

      cot α=∠α的`鄰邊 / ∠α的對邊

      三倍角公式推導(dǎo)

      sin3a

      =sin(2a+a)

      =sin2acosa+cos2asina

      輔助角公式

      Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

      sint=B/(A^2+B^2)^(1/2)

      cost=A/(A^2+B^2)^(1/2)

      tant=B/A

      Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

      降冪公式

      sin^2(α)=(1-cos(2α))/2=versin(2α)/2

      cos^2(α)=(1+cos(2α))/2=covers(2α)/2

      tan^2(α)=(1-cos(2α))/(1+cos(2α))

    【三角函數(shù)公式知識點(diǎn)總結(jié)】相關(guān)文章:

    文科數(shù)學(xué)三角函數(shù)知識點(diǎn)09-22

    初中物理公式總結(jié)08-10

    初三物理公式總結(jié)03-06

    (實(shí)用)初中物理公式總結(jié)07-06

    物理公式高二總結(jié)03-17

    初中物理公式知識總結(jié)03-09

    初三物理公式總結(jié)03-10

    初中數(shù)學(xué)公式總結(jié)03-09

    高二物理公式總結(jié)02-09