欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    高三數(shù)學知識點總結(jié)

    時間:2022-08-26 03:01:04 總結(jié) 投訴 投稿

    高三數(shù)學知識點總結(jié)【熱】

      總結(jié)是指社會團體、企業(yè)單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認識的一種書面材料,通過它可以全面地、系統(tǒng)地了解以往的學習和工作情況,讓我們抽出時間寫寫總結(jié)吧。但是總結(jié)有什么要求呢?以下是小編為大家整理的高三數(shù)學知識點總結(jié),歡迎閱讀與收藏。

    高三數(shù)學知識點總結(jié)【熱】

    高三數(shù)學知識點總結(jié)1

      考點一:集合與簡易邏輯

      集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理。

      考點二:函數(shù)與導(dǎo)數(shù)

      函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。

      考點三:三角函數(shù)與平面向量

      一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型、

      考點四:數(shù)列與不等式

      不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進行考查、在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目、

      考點五:立體幾何與空間向量

      一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

      考點六:解析幾何

      一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

      考點七:算法復(fù)數(shù)推理與證明

      高考對算法的考查以選擇題或填空題的'形式出現(xiàn),或給解答題披層“外衣”、考查的熱點是流程圖的識別與算法語言的閱讀理解、算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流、復(fù)數(shù)考查的重點是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學歸納法可能作為解答題的一小問、

    高三數(shù)學知識點總結(jié)2

      1.課程內(nèi)容:

      必修課程由5個模塊組成:

      必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))

      必修2:立體幾何初步、平面解析幾何初步。

      必修3:算法初步、統(tǒng)計、概率。

      必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

      必修5:解三角形、數(shù)列、不等式。

      以上是每一個高中學生所必須學習的。

      上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時,進一步強調(diào)了這些知識的發(fā)生、發(fā)展過程和實際應(yīng)用,而不在技巧與難度上做過高的要求。

      此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。

      2.重難點及考點:

      重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

      難點:函數(shù)、圓錐曲線

      高考相關(guān)考點:

     、偶吓c簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

     、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用

      ⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

     、热呛瘮(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

      ⑸平面向量:有關(guān)概念與初等運算、坐標運算、數(shù)量積及其應(yīng)用

     、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用

     、酥本和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

     、虉A錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

     、椭本、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

      ⑽排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用

      ⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

     、袑(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

     、褟(fù)數(shù):復(fù)數(shù)的概念與運算

     、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

     、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.

     、翘厥饫忮F的頂點在底面的射影位置:

     、倮忮F的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.

     、诶忮F的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

      ③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

     、芾忮F的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

     、萑忮F有兩組對棱垂直,則頂點在底面的射影為三角形垂心.

     、奕忮F的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.

      ⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

     、嗝總四面體都有內(nèi)切球,球心

      是四面體各個二面角的平分面的交點,到各面的距離等于半徑.

      [注]:i.各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側(cè)面的等腰三角形不知是否全等)

      ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

      簡證:AB⊥CD,AC⊥BD

      BC⊥AD.令得,已知則.

      iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形.

      iv.若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形.

      簡證:取AC中點,則平面90°易知EFGH為平行四邊形

      EFGH為長方形.若對角線等,則為正方形.

      立體幾何初步

      (1)棱柱:

      定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

      幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的.多邊形。

      (2)棱錐

      定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

      分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點字母,如五棱錐

      幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

      (3)棱臺:

      定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

      分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

      表示:用各頂點字母,如五棱臺

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

      (4)圓柱:

      定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

      (5)圓錐:

      定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

      幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

      (6)圓臺:

      定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

      幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

      (7)球體:

      定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

      (1)先看“充分條件和必要條件”

      當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

      但為什么說q是p的必要條件呢?

      事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

      (2)再看“充要條件”

      若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

      (3)定義與充要條件

      數(shù)學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

      顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

      “充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。

      (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

      1.函數(shù)的奇偶性

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

      (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

      2.復(fù)合函數(shù)的有關(guān)問題

      (1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

      (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

      3.函數(shù)圖像(或方程曲線的對稱性)

      (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

      (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

      (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

      4.函數(shù)的周期性

      (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

      (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

      (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

      (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

      (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

      (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

      5.方程k=f(x)有解k∈D(D為f(x)的值域);

      6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

      7.(1)(a>0,a≠1,b>0,n∈R+);

      (2)logaN=(a>0,a≠1,b>0,b≠1);

      (3)logab的符號由口訣“同正異負”記憶;

      (4)alogaN=N(a>0,a≠1,N>0);

      8.判斷對應(yīng)是否為映射時,抓住兩點:

      (1)A中元素必須都有象且;

      (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

      9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

      10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

      (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

      (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

      (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

      (4)周期函數(shù)不存在反函數(shù);

      (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

      (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

      11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

      二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

      12.依據(jù)單調(diào)性

      利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

      13.恒成立問題的處理方法

      (1)分離參數(shù)法;

      (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

    高三數(shù)學知識點總結(jié)3

      付正軍:高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的`一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

      第二個是平面向量和三角函數(shù)。重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

      第三,是數(shù)列,數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

      第四,空間向量和立體幾何。在里面重點考察兩個方面:一個是證明;一個是計算。

      第五,概率和統(tǒng)計,這一板塊主要是屬于數(shù)學應(yīng)用問題的范疇,當然應(yīng)該掌握下面幾個方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

      第六,解析幾何,這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

      第七,押軸題,考生在備考復(fù)習時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

    高三數(shù)學知識點總結(jié)4

      任一x=A,x=B,記做AB

      AB,BAA=B

      AB={x|x=A,且x=B}

      AB={x|x=A,或x=B}

      Card(AB)=card(A)+card(B)—card(AB)

     。1)命題

      原命題若p則q

      逆命題若q則p

      否命題若p則q

      逆否命題若q,則p

      (2)AB,A是B成立的充分條件

      BA,A是B成立的必要條件

      AB,A是B成立的`充要條件

      1、集合元素具有

     、俅_定性;

     、诨ギ愋;

     、蹮o序性

      2、集合表示方法

     、倭信e法;

     、诿枋龇ǎ

      ③韋恩圖;

     、軘(shù)軸法

     。3)集合的運算

      ①A∩(B∪C)=(A∩B)∪(A∩C)

     、贑u(A∩B)=CuA∪CuB

      Cu(A∪B)=CuA∩CuB

     。4)集合的性質(zhì)

      n元集合的字集數(shù):2n

      真子集數(shù):2n—1;

      非空真子集數(shù):2n—2

    高三數(shù)學知識點總結(jié)5

      等式的性質(zhì):

      ①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。

      不等式基本性質(zhì)有:

      (1)a>bb

      (2)a>b,b>ca>c(傳遞性)

      (3)a>ba+c>b+c(c∈R)

      (4)c>0時,a>bac>bc

      c<0時,a>bac

      運算性質(zhì)有:

      (1)a>b,c>da+c>b+d。

      (2)a>b>0,c>d>0ac>bd。

      (3)a>b>0an>bn(n∈N,n>1)。

      (4)a>b>0>(n∈N,n>1)。

      應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

      ②關(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:

      (1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

      (2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。

      (3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

      高中數(shù)學集合復(fù)習知識點

      任一A,B,記做AB

      AB,BA ,A=B

      AB={|A|,且|B|}

      AB={|A|,或|B|}

      Card(AB)=card(A)+card(B)-card(AB)

      (1)命題

      原命題若p則q

      逆命題若q則p

      否命題若p則q

      逆否命題若q,則p

      (2)AB,A是B成立的充分條件

      BA,A是B成立的必要條件

      AB,A是B成立的充要條件

      1.集合元素具有①確定性;②互異性;③無序性

      2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

      (3)集合的運算

      ①A∩(B∪C)=(A∩B)∪(A∩C)

     、贑u(A∩B)=CuA∪CuB

      Cu(A∪B)=CuA∩CuB

      (4)集合的性質(zhì)

      n元集合的字集數(shù):2n

      真子集數(shù):2n-1;

      非空真子集數(shù):2n-2

      高中數(shù)學集合知識點歸納

      1、集合的概念

      集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

      集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

      2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

      元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

      3、集合中元素的特性

      (1)確定性:設(shè)A是一個給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

      (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

      (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。

      4、集合的`分類

      集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

      有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

      無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

      特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。

      5、特定的集合的表示

      為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

      (1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。

      (2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

      (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

      (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

      (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

    高三數(shù)學知識點總結(jié)6

      高三上冊數(shù)學知識點整理

      1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

      2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

      方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

      3、函數(shù)零點的求法:

      求函數(shù)的零點:

      (1)(代數(shù)法)求方程的實數(shù)根;

      (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

      4、二次函數(shù)的'零點:

      二次函數(shù).

      1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

      2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

      3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

      人教版高三數(shù)學知識點總結(jié)

      1.定義:

      用符號〉,=,〈號連接的式子叫不等式。

      2.性質(zhì):

     、俨坏仁降膬蛇叾技由匣驕p去同一個整式,不等號方向不變。

     、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。

      ③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

      3.分類:

      ①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

     、谝辉淮尾坏仁浇M:

      a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

      b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

      4.考點:

      ①解一元一次不等式(組)

     、诟鶕(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實際問題

     、塾脭(shù)軸表示一元一次不等式(組)的解集

    高三數(shù)學知識點總結(jié)7

      1、圓柱體:

      表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

      2、圓錐體:

      表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

      3、正方體

      a-邊長,S=6a2,V=a3

      4、長方體

      a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

      5、棱柱

      S-底面積h-高V=Sh

      6、棱錐

      S-底面積h-高V=Sh/3

      7、棱臺

      S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

      8、擬柱體

      S1-上底面積,S2-下底面積,S0-中截面積

      h-高,V=h(S1+S2+4S0)/6

      9、圓柱

      r-底半徑,h-高,C—底面周長

      S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

      S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

      10、空心圓柱

      R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

      11、直圓錐

      r-底半徑h-高V=πr^2h/3

      12、圓臺

      r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

      13、球

      r-半徑d-直徑V=4/3πr^3=πd^3/6

      14、球缺

      h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

    高三數(shù)學知識點總結(jié)8

      1、函數(shù)的奇偶性

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

      (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

      2、復(fù)合函數(shù)的有關(guān)問題

      (1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

      (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

      3、函數(shù)圖像(或方程曲線的對稱性)

      (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

      (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

      (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

      4、函數(shù)的周期性

      (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

      (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

      (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

      (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

      (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的`周期函數(shù);

      (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

      5、方程k=f(x)有解k∈D(D為f(x)的值域);

      6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

      7、(1)(a>0a≠1,b>0,n∈R+);

      (2)logaN=(a>0,a≠1,b>0,b≠1);

      (3)logab的符號由口訣“同正異負”記憶;

      (4)alogaN=N(a>0,a≠1,N>0);

      8、判斷對應(yīng)是否為映射時,抓住兩點:

      (1)A中元素必須都有象且;

      (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

      9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

      10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

      (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

      (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

      (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

      (4)周期函數(shù)不存在反函數(shù);

      (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

      (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

      11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

      二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

      12、依據(jù)單調(diào)性

      利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

      13、恒成立問題的處理方法

      (1)分離參數(shù)法;

      (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

      a(1)=a,a(n)為公差為r的等差數(shù)列

      通項公式:

      a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

      可用歸納法證明。

      n=1時,a(1)=a+(1-1)r=a。成立。

      假設(shè)n=k時,等差數(shù)列的通項公式成立。a(k)=a+(k-1)r

      則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

      通項公式也成立。

      因此,由歸納法知,等差數(shù)列的通項公式是正確的。

      求和公式:

      S(n)=a(1)+a(2)+、、、+a(n)

      =a+(a+r)+、、、+[a+(n-1)r]

      =na+r[1+2+、、、+(n-1)]

      =na+n(n-1)r/2

      同樣,可用歸納法證明求和公式。

      a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

      通項公式:

      a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

      可用歸納法證明等比數(shù)列的通項公式。

      求和公式:

      S(n)=a(1)+a(2)+、、、+a(n)

      =a+ar+、、、+ar^(n-1)

      =a[1+r+、、、+r^(n-1)]

      r不等于1時,

      S(n)=a[1-r^n]/[1-r]

      r=1時,

      S(n)=na、

      同樣,可用歸納法證明求和公式。

    高三數(shù)學知識點總結(jié)9

      第一部分集合

     。1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

      (2)注意:討論的時候不要遺忘了的情況。

      第二部分函數(shù)與導(dǎo)數(shù)

      1、映射:注意

      ①第一個集合中的元素必須有象;

     、谝粚σ,或多對一。

      2、函數(shù)值域的求法:

      ①分析法;

     、谂浞椒;

     、叟袆e式法;

     、芾煤瘮(shù)單調(diào)性;

      ⑤換元法;

     、蘩镁挡坏仁;

      ⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的.意義等);

     、嗬煤瘮(shù)有界性;

     、釋(dǎo)數(shù)法

      3、復(fù)合函數(shù)的有關(guān)問題

     。1)復(fù)合函數(shù)定義域求法:

      ①若f(x)的定義域為〔a,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

     、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

     。2)復(fù)合函數(shù)單調(diào)性的判定:

     、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

     、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

     、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

      注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

      4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

      5、函數(shù)的奇偶性

     。1)函數(shù)的定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件;

      (2)是奇函數(shù);

      (3)是偶函數(shù);

     。4)奇函數(shù)在原點有定義,則;

     。5)在關(guān)于原點對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

     。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價變形,再判斷其奇偶性;

    高三數(shù)學知識點總結(jié)10

      第一部分集合

     。1)含n個元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

      (2)注意:討論的時候不要遺忘了的情況。

      第二部分函數(shù)與導(dǎo)數(shù)

      1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。

      2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

      3、復(fù)合函數(shù)的有關(guān)問題

     。1)復(fù)合函數(shù)定義域求法:

     、偃鬴(x)的定義域為〔a,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

      ②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

     。2)復(fù)合函數(shù)單調(diào)性的判定:

      ①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

      ②分別研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

      ③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

      注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

      4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

      5、函數(shù)的.奇偶性

     、藕瘮(shù)的定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件;

      ⑵是奇函數(shù);

     、鞘桥己瘮(shù);

      ⑷奇函數(shù)在原點有定義,則;

      ⑸在關(guān)于原點對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

     。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價變形,再判斷其奇偶性;

      1、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

      2、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

      3、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(a,b)成中心對稱;

      4、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱。

      5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

      6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則—x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)。

    高三數(shù)學知識點總結(jié)11

      三角函數(shù)。

      注意歸一公式、誘導(dǎo)公式的正確性。

      數(shù)列題。

      1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

      2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當前的式子轉(zhuǎn)化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證;

      3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

      立體幾何題。

      1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

      2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

      3、注意向量所成的角的余弦值(范圍)與所求角的'余弦值(范圍)的關(guān)系。

      概率問題。

      1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

      2、搞清是什么概率模型,套用哪個公式;

      3、記準均值、方差、標準差公式;

      4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

      5、注意計數(shù)時利用列舉、樹圖等基本方法;

      6、注意放回抽樣,不放回抽樣;

      正弦、余弦典型例題。

      1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

      2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

      3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

      4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

      5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

      正弦、余弦解題訣竅。

      1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

      2、已知三邊,或兩邊及其夾角用余弦定理

      3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

    高三數(shù)學知識點總結(jié)12

     、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

     、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形。

     、翘厥饫忮F的頂點在底面的射影位置:

     、倮忮F的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的`外心。

      ②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。

     、劾忮F的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心。

     、芾忮F的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心。

     、萑忮F有兩組對棱垂直,則頂點在底面的射影為三角形垂心。

      ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。

     、呙總四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

     、嗝總四面體都有內(nèi)切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑。

      [注]:

      i、各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個側(cè)面的等腰三角形不知是否全等)

      ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。

      簡證:AB⊥CD,AC⊥BD

      BC⊥AD。令得,已知則。

      iii、空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形。

      iv、若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形。

      簡證:取AC中點,則平面90°易知EFGH為平行四邊形

      EFGH為長方形。若對角線等,則為正方形。

    高三數(shù)學知識點總結(jié)13

      1、三類角的求法:

     、僬页龌蜃鞒鲇嘘P(guān)的角。

     、谧C明其符合定義,并指出所求作的角。

     、塾嬎愦笮。ń庵苯侨切危蛴糜嘞叶ɡ恚。

      2、正棱柱——底面為正多邊形的直棱柱

      正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

      正棱錐的計算集中在四個直角三角形中:

      3、怎樣判斷直線l與圓C的位置關(guān)系?

      圓心到直線的距離與圓的半徑比較。

      直線與圓相交時,注意利用圓的“垂徑定理”。

      4、對線性規(guī)劃問題:

      作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。

      培養(yǎng)興趣是關(guān)鍵。學生對數(shù)學產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

     。1)欣賞數(shù)學的美感

      比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

      通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。

      (2)注意到數(shù)學在實際生活中的應(yīng)用。

      例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的'知識就可以理解、學好數(shù)學,是現(xiàn)代公民的基本素養(yǎng)之一啊

      (3)采用靈活的教學手段,與時俱進。

      利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學生也更容易接受,理解更深。

      (4)適當看一些科普類的書籍和文章。

      比如:學圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質(zhì)的應(yīng)用,這方面的文章也不少。

    高三數(shù)學知識點總結(jié)14

      復(fù)數(shù)的概念:

      形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

      復(fù)數(shù)的表示:

      復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。

      復(fù)數(shù)的幾何意義:

      (1)復(fù)平面、實軸、虛軸:

      點Z的橫坐標是a,縱坐標是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的'點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

      (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即

      這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。

      這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

      復(fù)數(shù)的模:

      復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

      虛數(shù)單位i:

      (1)它的平方等于-1,即i2=-1;

      (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

      (3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

      (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

      復(fù)數(shù)模的性質(zhì):

      復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

      對于復(fù)數(shù)a+bi(a、b∈R),當且僅當b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。

    高三數(shù)學知識點總結(jié)15

      1.不等式的定義

      在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

      2.比較兩個實數(shù)的大小

      兩個實數(shù)的.大小是用實數(shù)的運算性質(zhì)來定義的,

      有a-b>0?;a-b=0?;a-b<0?.

      另外,若b>0,則有>1?;=1?;<1?.

      概括為:作差法,作商法,中間量法等.

      3.不等式的性質(zhì)

      (1)對稱性:a>b?;

      (2)傳遞性:a>b,b>c?;

      (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

      (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

      (5)可乘方:a>b>0?(n∈N,n≥2);

      (6)可開方:a>b>0?(n∈N,n≥2).

      復(fù)習指導(dǎo)

      1.“一個技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方.

      2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍.

      3.“兩條常用性質(zhì)”

      (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

     、踑>b>0,0;④0

      (2)若a>b>0,m>0,則

     、僬娣謹(shù)的性質(zhì):<;>(b-m>0);

    【高三數(shù)學知識點總結(jié)】相關(guān)文章:

    高三數(shù)學知識點總結(jié)09-21

    高三數(shù)學重要知識點總結(jié)11-05

    高三數(shù)學復(fù)習知識點總結(jié)10-21

    【精】高三數(shù)學知識點總結(jié)12-29

    【熱門】高三數(shù)學知識點總結(jié)12-29

    【熱】高三數(shù)學知識點總結(jié)12-29

    【推薦】高三數(shù)學知識點總結(jié)12-29

    高三數(shù)學復(fù)習知識點歸納總結(jié)09-16

    高三數(shù)學知識點歸納總結(jié)04-20

    高三數(shù)學知識點總結(jié)最新10-21