欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    《分數(shù)基本性質(zhì)》教學設(shè)計

    時間:2023-04-06 09:41:55 教學資源 投訴 投稿

    《分數(shù)基本性質(zhì)》教學設(shè)計(精選15篇)

      作為一名辛苦耕耘的教育工作者,就難以避免地要準備教學設(shè)計,教學設(shè)計是實現(xiàn)教學目標的計劃性和決策性活動。一份好的教學設(shè)計是什么樣子的呢?以下是小編為大家收集的《分數(shù)基本性質(zhì)》教學設(shè)計,希望能夠幫助到大家。

    《分數(shù)基本性質(zhì)》教學設(shè)計(精選15篇)

    《分數(shù)基本性質(zhì)》教學設(shè)計1

      教學內(nèi)容:蘇教版小學數(shù)學第十冊第95頁至97頁。

      教學目標:

      知識目標:通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

      能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

      情感目標:讓學生在學習過程當中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。

      教學準備:圓形紙片、彩筆、各種卡片。

      教學過程:

      一、創(chuàng)設(shè)情境,激發(fā)興趣

      孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的!必愗、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)

      【通過學生耳熟能詳?shù)娜宋飳υ,給學生設(shè)計一個懸念,抓住學生的好奇心理,由此激發(fā)學生的學習興趣!

      二、動手操作 、導入新課

      師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數(shù)怎么表示呢?我現(xiàn)在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數(shù)怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數(shù)又該怎樣表示呢?這三個分數(shù)大小相等嗎?為什么呢?這節(jié)課,我們就來研究這個數(shù)學問題。

      【通過學生的動手操作,初步感知三個分數(shù)的大小相等,為尋找原因設(shè)置懸念,再次激發(fā)學生的學習興趣。】

      三、觀察對比, 由“數(shù)”變 “式”

      你們?nèi)谓o我的餅大小相等嗎?那么這三個分數(shù)大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)

      四、概括分析,由“式”變 “語”

     、庇^察一下這個式子,3個分數(shù)有什么不同?有什么地方相同?分數(shù)的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數(shù)的分子、分母是怎樣變化的。

     、蚕葟淖笸铱矗窃鯓幼?yōu)榕c它相等的的?

      (1)分母乘2,分子乘2。

      根據(jù)分數(shù)的意義,""表示把單位"1"平均分成2份,取其中的1份,而現(xiàn)在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現(xiàn)在平均分成了2×2=4(份),現(xiàn)在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==

      即原來把單位"1"平均分成2份,取1份,現(xiàn)在把平均分的份數(shù)和取的份數(shù)都擴大2倍,就得到。與的大小相等,分數(shù)值沒變。

      (2)由到,分子、分母又是怎樣變化的?(把平均分的份數(shù)和取的份數(shù)都擴大了4倍。)==

      (3)誰能用一句話說出這兩個式子的變化規(guī)律?

     、吃購挠彝罂

      (1) 是怎樣變化成與之相等的的?

      原來把單位"1"平均分成4份,取其中的2份,現(xiàn)在把同樣的單位"1"平均分成2份,即把原來的每兩份合并成 1份,現(xiàn)在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現(xiàn)在把平均分的份數(shù)和取的份數(shù)都縮小了2倍,得到,分數(shù)的大小沒有變。

     。剑

      (2) 又是怎樣變成的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)

      ==

      (3)誰能用一句話說出這兩個式子的變化規(guī)律?

     、淳C合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?

     、颠@就是今天我們所學的“分數(shù)的基本性質(zhì)”(板書課題,出示“分數(shù)的基本性質(zhì)”)。

      (1)理解概念。

      學生讀一遍,你認為哪幾個字特別重要?(相同的數(shù)、0除外)相同的數(shù),指一些什么數(shù)?為什么零除外?

      (2)瘃木鳥診所。(請說出理由)

      分數(shù)的'分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。( )

      分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。( )

      分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。( )

     、缎〗Y(jié)。

      從判斷題中我們可以看出,分數(shù)的基本性質(zhì)要注意什么?學到這兒,大家想一想,我們以前學過的什么性質(zhì)跟分數(shù)的基本性質(zhì)類似?誰能用整數(shù)除法中商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?

      【此過程主要由學生通過觀察、比較,得出這三個分數(shù)大小相等的規(guī)律,由此牽引到其他的有同等規(guī)律的分數(shù)中,從而引出分數(shù)的基本性質(zhì):分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮。,是同倍變化的(擴大或縮小的倍數(shù)相同)。只有這樣變化,分數(shù)的大小才不會變!

      五、鞏固練習

     、笨ㄆ毩暎

      ⒉做P96“練一練”1、2。

     、橙の队螒颍

      數(shù)學王國開音樂會,分數(shù)大家族的節(jié)目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。

      要求:第一排是分數(shù)值等于的,第二排是分數(shù)值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?

      【通過練習,讓學生加深對分數(shù)的基本性質(zhì)的理解,為下節(jié)課分數(shù)的基本性質(zhì)的應(yīng)用打好堅實的基礎(chǔ)。】

      六、課堂總結(jié)

      這節(jié)課你學到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的?

      七、布置作業(yè)

      做P97練習十八2。

    《分數(shù)基本性質(zhì)》教學設(shè)計2

      教學目標:

      結(jié)合趣味故事經(jīng)歷認識分數(shù)的基本性質(zhì)的過程。

      初步理解分數(shù)的基本性質(zhì),會應(yīng)用分數(shù)的基本性質(zhì)進行分數(shù)的改寫。

      經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣

      教學重點:理解掌握分數(shù)的基本性質(zhì)。

      教學難點:歸納分數(shù)的性質(zhì)。

      學生準備:長方形紙片。

      一、創(chuàng)設(shè)故事情境,激發(fā)學生學習興趣并揭示課題。

      編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創(chuàng)設(shè)問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設(shè)計這個故事的目的是使學生在已有生活經(jīng)驗和分數(shù)知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數(shù)的基本性質(zhì)提供實踐經(jīng)驗。在看完故事后向?qū)W生提問你了解到了哪些數(shù)學信息,想到了什么問題?

      讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數(shù)大小是相等的。而這兩個分數(shù)的分子和分母都不相等,可分數(shù)卻相等,這其中有什么規(guī)律呢,從而來揭示課題。

      二、小組合作,探究新知:

      1、動手操作、形象感知

      出示課件,讓學生觀察討論圖中分數(shù)的涂色部分是多少?

      A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?

      B、追問:你能通過繼續(xù)對折,每次找一個和1/4相等的其他分數(shù)嗎?

      C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數(shù)表示涂色的部分,得到的分數(shù)與1/4是否相等。交流時讓不同對折方法的學生充分展示。

      2、觀察比較、探究規(guī)律

     。1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。

     。2既然這三個分數(shù)相等,那么我們可以用什么符號把它們連接起來?

      (3)這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的?你們能找出它們的變化規(guī)律嗎?請同學們四人為一組,討論這兩個問題

     。4)通過從左到右的.觀察、比較、分析,你發(fā)現(xiàn)了什么?

      使學生認識到這四個正方形同樣大,雖然平均分的份數(shù)不一樣,但陰影部分的面積相等,四個分數(shù)也相等。課件出示連等式子。

      【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維!

      3引導觀察:請大家觀察每個等式中的兩個分數(shù),它們的分子、分母是怎樣變化的?

      觀察思考后。在課文上填空,再在小組內(nèi)交流。然后教師再集中指導觀察:

      先從左往右看:1/4是怎樣變?yōu)榕c它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規(guī)律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規(guī)律?

      4、歸納規(guī)律

      提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?

      學生交流歸納,最后全班反饋“分數(shù)的分子和分母同時乘或除以相同的數(shù)﹙0除外﹚,分數(shù)的大小不變,這是分數(shù)的基本性質(zhì)”

      6、小結(jié)

      同學們在這節(jié)課的學習中表現(xiàn)得很出色,說一說你有什么收獲或體會?

      【通過小結(jié),既對整個課堂學習的內(nèi)容有一個總結(jié),又能讓學生產(chǎn)生后續(xù)學習和探究的欲望,將學生的學習興趣延伸到了下節(jié)課】

      四、鞏固強化,拓展應(yīng)用

      多樣的練習可以讓學生及時鞏固所學知識,又調(diào)動了學生學習的積極性。

      五、游戲找朋友。

      六、布置作業(yè):

      在上這課之前,認真?zhèn)湔n,精心設(shè)計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農(nóng)村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創(chuàng)設(shè)情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發(fā)言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規(guī)律,最后也都一一的解答并歸納分數(shù)的性質(zhì)。對于從左到右的變化,分子分母都變大了,但分數(shù)大小不變。從右到左,分子分母都變小,分數(shù)大小不變。從而得出規(guī)律。對于這分數(shù)的性質(zhì)要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數(shù)”“零除外”重點讓學生熟記分數(shù)的性質(zhì)。多層的鞏固練習。加深學生的理解。并且能運用分數(shù)的性質(zhì)完成作業(yè)。最后,讓學生輕松愉快地應(yīng)用著這節(jié)課所學的知識進行找朋友的游戲。

    《分數(shù)基本性質(zhì)》教學設(shè)計3

      教學要求

     、偈箤W生理解分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

      ②培養(yǎng)學生觀察、分析和抽象概括能力。③滲透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。

      教學重點理解分數(shù)的基本性質(zhì)。

      教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

      教學過程

      一、創(chuàng)設(shè)情境

      1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

      2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關(guān)系是什么?

      3.填空。

      1÷2=(1×2)÷(2×2)==。

      二、揭示課題

      讓學生大膽猜測:在除法里有商不變的性質(zhì),在分數(shù)里會不會也有類似的性質(zhì)存在呢?這個性質(zhì)是什么呢?

      隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。

      三、探索研究

      1.動手操作,驗證性質(zhì)。

      (1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。

     。2)觀察比較后引導學生得出:==

     。3)從左往右看:==

      由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?

      把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。

      把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。

      引導學生初步小結(jié)得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

     。4)從右往左看:==

      引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

      板書:====

      讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

      (5)引導學生概括出分數(shù)的基本性質(zhì),并與前面的猜想相回應(yīng)。

     。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

      2.分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。

      在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。

      想一想:根據(jù)分數(shù)與除法的關(guān)系以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?

      3.學習把分數(shù)化成指定分母而大小不變的分數(shù)。

     。1)出示例2,幫助學生理解題意。

      (2)啟發(fā):要把和化成分母是12而大小不變的.分數(shù),分子應(yīng)該怎樣變化?變化的根據(jù)是什么?

     。3)讓學生在書上填空,請一名學生口答。教師板書:

      ====

      4.練習。教材第108頁的做一做。

      四、課堂實踐。

      練習二十三的1、3題。

      五、課堂小結(jié)

      1.這節(jié)課我們學習了什么內(nèi)容?

      2.什么是分數(shù)的基本性質(zhì)?

      六、課堂作業(yè)

      練習二十三的第2題。

      七、思考練習

      練習二十三的第10題。

      教學反思:

      “分數(shù)的基本性質(zhì)”是西師版小學數(shù)學五年級下冊的內(nèi)容,它是約分,通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點課。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學基本知識,更重要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。目的是讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應(yīng)未來生活必須的基本素質(zhì)。

      這節(jié)課是在學生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行的,我是這樣設(shè)計教學的:

      1、通過商不變的性質(zhì)、除法與分數(shù)的關(guān)系的復(fù)習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。讓學生根據(jù)商不變的性質(zhì)大膽猜想,分數(shù)的基本性質(zhì)是什么?說出自己的想法。

      2、充分發(fā)揮學生主體作用,引導學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數(shù)表示,從而培養(yǎng)學生的動手能力,以及觀察問題、解決問題的能力。

      3、運用知識,解決實際問題。為了把知識轉(zhuǎn)化為能力,練習的設(shè)計注意了典型性、多樣性、深刻性、靈活性。歸納總結(jié)出分數(shù)的基本性質(zhì)后,先進行基本練習,深化對分數(shù)的基本性質(zhì)認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應(yīng)用拓展,使學生加深對分數(shù)的基本性質(zhì)的理解,并培養(yǎng)學生運用所學的知識解決實際問題的能力。

      4、0除外的環(huán)節(jié)設(shè)計。在學生歸納出分數(shù)的基不性質(zhì)后,缺少0除外這個難點,我設(shè)計了判斷一個分數(shù)的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數(shù),在分數(shù)中分母不能為0,引出:分子和分母同時乘或除以相同的數(shù),必須0除外,突破難點。

    《分數(shù)基本性質(zhì)》教學設(shè)計4

      一、教學目標

      1、使學生理解和掌握分數(shù)的基本性質(zhì),能應(yīng)用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母而大小不變的分數(shù)。

      2、學生通過觀察、比較、發(fā)現(xiàn)、歸納、應(yīng)用等過程,經(jīng)歷探究分數(shù)的基本性質(zhì)的過程,初步學習歸納概括的方法。

      3、激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。

      二、教學重點

      1、理解、掌握分數(shù)的基本性質(zhì),能正確應(yīng)用分數(shù)的基本性質(zhì)。

      2、自主探究出分數(shù)的基本性質(zhì)。

      三、教學準備

      課件、正方形的紙

      四、教學設(shè)計過程

      (一)遷移舊知.提出猜想

      1、回憶舊知

      根據(jù)“288÷24=12”填空

      28.8÷2.4=

      2880÷240=

      2.88÷0.24=

      0.288÷()=12

      被除數(shù)÷除數(shù)=()

      說一說你是根據(jù)什么算的?引導學生回憶商不變的性質(zhì)?媒體出示:商不變的性質(zhì):

      被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。

      2、提出猜想

      既然分數(shù)與除法的關(guān)系這么緊密.除法有商不變性質(zhì),那分數(shù)是否也會有這樣的性質(zhì),請大家大膽猜想一下。(學生可能根據(jù)商不變性質(zhì)推導出分數(shù)的基本性質(zhì),學生匯報后投影出示:分數(shù)的'分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)

      (二)驗證猜想,建構(gòu)新知

      1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)

      2、出示學習提示。

      學習提示

      A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。

      B、驗證結(jié)束后,把你的驗證方法和結(jié)論與小組同學交流。

      3、匯報交流

      指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。

      C、總結(jié)規(guī)律

      1、師:請同學們看黑板上的兩組分數(shù),說說它們的分子和分母分別是按什么規(guī)律變化的。指名回答,教師板書。

      2、總結(jié):對于任何一個分數(shù),只要滿足:分數(shù)的分子和分母同時乘或除以相同的數(shù),分數(shù)的大小就不會發(fā)生變化。

      3、強調(diào)0除外。哪位同學將分數(shù)的分子和分母同時乘或除以0進行驗證的?

      如果有,問他是否驗證出猜想,驗證過程中出現(xiàn)了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規(guī)律:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

      師:為什么要0除外?

      師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

      教師以3/4為例說明分數(shù)的分子和分母同時乘或除以0是沒有意義的。

      師:再次出示分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。這叫做分數(shù)的基本性質(zhì)。(板書課題)

      D教學例2

      把2/3和10/24都化為分母為12而大小不變的分數(shù)。

      學生獨立完成,集體訂正。

      (三)練習升華

      1、填空

      2、下面算式對嗎?如果有錯,錯在哪里?

      3、把相等的分數(shù)寫在同一個圈里。

      4、老師給出一個分數(shù),同學們迅速說出和它相等的分數(shù)。

      (四)作業(yè)

      教材59頁第9題。

      (五)思維拓展

      (六)總結(jié)延伸

      師:這節(jié)課你有什么收獲?

      六、板書設(shè)計

      分數(shù)基本性質(zhì)

      分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

    《分數(shù)基本性質(zhì)》教學設(shè)計5

      一、教學內(nèi)容

      分數(shù)的基本性質(zhì)。(課本第75-76頁的例1、例2及“做一做”、第77頁練習十四的第1-3題)

      二、教材簡析

      《分數(shù)的基本性質(zhì)》是人教版小學數(shù)學教材第十冊的內(nèi)容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質(zhì)的基礎(chǔ)。分數(shù)的基本性質(zhì)是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。

      三、教材處理

      以前,教師通常把《分數(shù)的基本性質(zhì)》看作一種靜態(tài)的數(shù)學知識,教學時先用幾個例子讓學生較快地概括出規(guī)律,然后更多地通過精心設(shè)計的練習鞏固應(yīng)用規(guī)律,著眼于規(guī)律的結(jié)論和應(yīng)用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現(xiàn)象:問題較碎,步子較小,放手不夠,探究的過程體現(xiàn)不夠充分!斗謹(shù)的基本性質(zhì)》可不可以有別的教學思路呢?新的課程標準提出:“教師應(yīng)向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法”。根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設(shè)一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質(zhì),從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結(jié)論和應(yīng)用,而應(yīng)有意識地突出思想和方法;谝陨纤伎,我以讓學生探究發(fā)現(xiàn)分數(shù)基本性質(zhì)的過程為教學重點,創(chuàng)設(shè)了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質(zhì)疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。

      四、設(shè)計意圖:

      本課主要本著遵循小學數(shù)學課程標準“創(chuàng)設(shè)問題情境提出問題解決問題建立數(shù)學模型解釋數(shù)學模型運用數(shù)學模型拓展數(shù)學模型”的指導思想而設(shè)計的。

      1、通過故事創(chuàng)設(shè)問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。

      2、從故事情境中提出問題,體現(xiàn)數(shù)學來源于生活。

      3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產(chǎn)生的過程。

      4、從幾組分數(shù)中分析,找到分數(shù)的基本性質(zhì),從而初步建立數(shù)學模型。

      5、設(shè)計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。

      6、在游戲活動中對數(shù)學知識進行拓展運用。

      五、教學目標

      1、知識與技能

      (1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。

      (2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的.分數(shù)。

      2、情感態(tài)度與價值觀

      (1)經(jīng)歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。(2)體驗數(shù)學與日常生活密切相關(guān)。

      3、過程與方法

      (1) 經(jīng)歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分

      數(shù)的基本性質(zhì)作出簡要的、合理的說明。

      (2) 培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力。

      (3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。

      六、教學重點

      理解分數(shù)的基本性質(zhì)

      七、教學難點

      能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)

      八、教學準備

      教師:電腦課件

      學生:圓紙片 長方形紙

      九、教學過程:

     。ㄒ唬┗仡檹(fù)習,舊知鋪墊。

      課件出示復(fù)習題

      1、商不變的性質(zhì)

      12÷3=( )

      (12×10)÷(3×10)=( )

     。12÷3)÷(3÷3)=( )

      利用什么知識填空的?

      2、除法與分數(shù)的關(guān)系

      30 ÷ 120 =( )/( )

      ( )÷( ) =17/51

      利用什么知識填空的?

     。ǘ┕适乱,揭示課題。

      課件出示故事(動畫):從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦不對,是三個小和尚。小和尚最喜歡吃老和尚做的餅啦。有一天,老和尚做三塊大小一樣的餅,想給小和尚吃,還沒給,小和尚就叫開了,“我要一塊”,“我要兩塊”,“嘻嘻,我不要多,只要四塊。”老和尚二話沒說,把第一塊餅平均分成4塊,取出其中1塊給第一個和尚;把第二塊餅平均分成8塊,取其中2塊給高和尚。把第三塊餅平均分成16塊,取其中的4塊給了胖和尚。小朋友,你知道哪個和尚分得多嗎?

      生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……

      師:到底誰回答得對呢?我們一起動手分餅來求證吧

      1、合作探究

      師:請同學們以兩人一組,拿出三個大小相等的圓,分別用陰影部分表示每個和尚分得的餅(教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契。)

      師:比較一下陰影部分的大小,結(jié)果怎樣?

      生:陰影部分的大小相等。

      師:陰影部分相等說明每個和尚分的餅相等.

      師:請同學們用分數(shù)表示陰影部分

      師:陰影部分相等說明這三個分數(shù)怎樣?

      生:三個分數(shù)相等。(隨著學生的回答,老師將板書的三個分數(shù)用“=”連接。)

      2、組織討論。

      師:仔細觀察這三個分數(shù)什么變了,什么沒有變?

      讓學生小組討論后答出:它們分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

      師:它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

      3、比較歸納

      同學們:從左往右觀察,這三個分數(shù)的分子和分母是按照什么規(guī)律變化的才保證了分數(shù)的大小不變的?

      集體討論幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)

      師:從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)

      4、揭示規(guī)律

      教師小結(jié):“剛才大家都觀察得很仔細,像分數(shù)的分子、分母發(fā)生的這種有規(guī)律的變化,它的大小不變。就是我們這節(jié)課學習的新知識。(板書課題:分數(shù)的基本性質(zhì))

      師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,能把它歸納成一句話嗎?(小組討論發(fā)言)

      師:剛才同學們都用自己的語言說了分數(shù)的基本性質(zhì),我們的書上也總結(jié)了分數(shù)的基本性質(zhì),現(xiàn)在請打開書看到75頁?纯春臀覀兛偨Y(jié)的有什么不同,并用波浪線表出關(guān)鍵的詞。(如:同時,相同,0除外等)

      全班討論:為什么要規(guī)定0除外”?

      引導:現(xiàn)在同學們知道了聰明的老和尚是用運用什么規(guī)律來分餅,既滿足小和尚的要求,又分得那么公平?

      (三)梳理溝通,靈活運用。

      1、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的聯(lián)系。

      想一想,根據(jù)分數(shù)與除法的關(guān)系,以及整數(shù)除法中商不變的規(guī)律,你能說明分數(shù)的基本性質(zhì)嗎?

      啟發(fā)學生說出它們之間的聯(lián)系:

     。1)分子相當于被除數(shù),分母相當于除數(shù);

     。2)被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除

      以相同的數(shù);

     。3)“相同的數(shù)”中要求“0除外”;

     。4)商不變相當于分數(shù)的大小不變。

      2、分數(shù)基本性質(zhì)的應(yīng)用

     。1)出示課本第76頁例2,把2/3 和10/24 分別轉(zhuǎn)化成分母是12而大小不變的分數(shù)。

     。2)認真審題,弄清題意。

      要求學生讀題后歸納出題目的要求。

      a.分母都變成12

      b.分數(shù)的大小不變

     。3)想一想:怎么化,根據(jù)什么?

      過程要求:

      a.學生獨立思考,完成題目要求;

      b.全班反饋,教師課件顯示;

     。ㄋ模┒鄬泳毩,鞏固深化。

      1、完成教科書第77頁練習十四的第1-3題。

      (1)第1題

      此題著重練習分數(shù)的相等和不等。練習時,讓學生按照題目的要求涂色。

     。2)第2題

      此題是運用分數(shù)的基本性質(zhì)比較分數(shù)大小的實際問題,學生在練習中將2/5化成4/10,或者把4/10化成2/5,再作比較,都是可以的。

      (3)第3題,說出相等的分數(shù)(對口令)

      此題是運用分數(shù)基本性質(zhì)的游戲練習.游戲時,讓學生以同桌為單位.仿照第3題的樣子,一個人先說一個分數(shù),另一個人回答一個相等的分數(shù),然后交換先后順序。

      2、教科書76頁 “做一做”

      (1)由學生獨立完成,然后同學交流.

     。2)全班反饋,說一說思維過程.

      (五)小結(jié)

      教師:同學們,通過今天的學習,你有什么收獲?

      ,題界知家數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除

      (六)動腦筋出教室游戲(機動)

      讓學生拿出課前發(fā)的寫有分數(shù)的紙片,要求學生看清手中的分數(shù)。與 相等的,報出自已的分數(shù)后先離場,與相等的再離場,與相等的最后離場。

      十、板書設(shè)計

      商不變的性質(zhì)

      被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。

      分數(shù)與除法的關(guān)系

      a÷b =a/b(b≠0)

      分數(shù)的基本性質(zhì)

      分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

    《分數(shù)基本性質(zhì)》教學設(shè)計6

      【教學內(nèi)容】:

      【教學目標】:

      1、使學生理解和掌握分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

      2、通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。

      3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。

      【教學重點】:經(jīng)歷質(zhì)疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質(zhì)。

      【教學難點】:理解和掌握分數(shù)的基本性質(zhì)。

      【教學方法】:

      本節(jié)課我綜合采用了談話法,情境創(chuàng)設(shè)法、引導探究法、直觀演示法,組織學生經(jīng)歷觀察,猜測,得出結(jié)論。

      【學法指導】:

      為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。

      【教學準備】:

      1、媒體準備:白板

      2、資源準備:PPT

      【資源運用】:

      1、導入——課件出示問題-——喚醒舊知

      2、探究新知——PPT課件——突破重點、分解難點

      3、拓展延伸

      【教學過程】:

      一、聯(lián)系舊知,質(zhì)疑引思。

      1、在自然數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?

      2、在小數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?

      3、在分數(shù)的范圍內(nèi),可以找到兩個大小相等但分子和分母又都不相同的'分數(shù)嗎?

      誰能說一個與《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等,你準備怎么證明?

      【喚醒學生已有知識經(jīng)驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力!

      二、自主操作,驗證猜想

      1、初步驗證

     。1)提出問題

      誰能說一個與《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?

      如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等,你準備怎么證明?

     。2)匯報方法

      2、深入驗證:

     。1)在紙上寫上一組你認為可能相等的分數(shù);

     。2)用你喜歡的方法來證明。

     。3)學生操作。

      (4)匯報交流。

      3、概括性質(zhì),深化理解

     。1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?

      (2)歸納概括,總結(jié)規(guī)律,揭示課題。

     。3)根據(jù)我們以前學過的分數(shù)與除法的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),來說明分數(shù)的基本性質(zhì)嗎?

      4、運用規(guī)律,完成例2。

     。1)理解題意

     。2)要把他們化成分母是12而大小不變的分數(shù),分子應(yīng)該怎么變化?變化的根據(jù)是什么?

     。3)獨立完成,交流匯報

      【給學生提供開放的探究空間,滿足學生的探索欲望!

      三、知識應(yīng)用,鞏固提升

      1、判斷

     。1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。

      (2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。

     。3)《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的分子乘以3,分母除以3,分數(shù)的大小不變。

      2、五年級有《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的學生參加手工活動,參加哪個小組的人數(shù)多?

      3、把《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的分子加上10,分母怎樣變化,

      才能使分數(shù)的大小不變?

      四、回顧總結(jié),完善認知

      通過本節(jié)課的學習,你有什么收獲?

      【教學反思】:

      1、課前準備不足,我用的20xx版做的,結(jié)果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。

      2、教學機智不足,沒有關(guān)注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。

      3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結(jié)束語言有歧義。

    《分數(shù)基本性質(zhì)》教學設(shè)計7

      教學內(nèi)容:

      蘇教版數(shù)學五年級下冊第60~61頁例1、例2,試一試及練習十一1~3題。

      預(yù)設(shè)目標:

      1、使學生經(jīng)歷探索分數(shù)基本性質(zhì)的過程,初步理解和掌握分數(shù)的基本性質(zhì),知道它與商不變規(guī)律之間的聯(lián)系。

      2、使學生能應(yīng)用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。

      3、使學生在觀察、操作、思考和交流等活動中,培養(yǎng)分析、綜合和抽象、概括能力,體驗數(shù)學學習的樂趣。

      教學重點:

      探索、發(fā)現(xiàn)、歸納和理解分數(shù)的基本性質(zhì)。

      教學過程:

      一、導入

      猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。

      二、學習新知

      1、提供例證

     。1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據(jù)是什么?你能接著往下再寫一個除法算式嗎?

      板書:1/3=2/6=3/9(得出三個相等的分數(shù))

     。2)學生折紙找與1/2相等的分數(shù)。

      你能先對折,涂色表示它的1/2嗎?你能通過繼續(xù)對折,找出和1/2相等的其他分數(shù)嗎?

      展示與1/2相等的分數(shù),并逐步板書:1/2=2/4=4/8=8/16

      2、誘導探索

      提問:這些分數(shù)的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規(guī)律呢?分數(shù)的分子、分母怎樣變化分數(shù)的大小不變呢?

      3、探究新知

     。1)獨立思考或小組交流。

     。2)探究驗證。

      你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數(shù)中任意選一組具體說說分數(shù)的分子、分母怎樣變化以后,分數(shù)的大小不變?

      教師根據(jù)學生的回答進行板書。

      4、揭示結(jié)論:出示分數(shù)的基本性質(zhì)的內(nèi)容,并揭示課題。

      5、深究結(jié)論:

     。1)在分數(shù)的基本性質(zhì)中,你認為哪些字詞比較重要,為什么?

     。2)齊讀并理解記憶分數(shù)的基本性質(zhì)。

      三、多層練習

      1、填一填。(在○里填運算符號,在□里填數(shù)或字母)。

      4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14

      5/8=5○□/8○67/12=7○□/12○□

      2、判斷。

      3/4=3+4/4+4()12/15=12÷n/15÷n()

      5/25=5×5/25÷5()5/6=25/30()

      四、課堂作業(yè):

      1、第62頁“練一練”2。

      2、第63頁第3題。

      3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?

      反思

      “分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分、通分的.依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以分數(shù)的基本性質(zhì)是本單元的教學重點。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,

      從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感,讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應(yīng)未來生活必須的基本素質(zhì)。學生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行的,這節(jié)課我是這樣設(shè)計教學的:

      1、通過商不變的性質(zhì)、除法與分數(shù)的關(guān)系的復(fù)習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。

      2、學生在自主探索中科學驗證。

      在學生大膽猜想的基礎(chǔ)上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設(shè)自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學以學生為本的特性。每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、問題讓學生自主解決,使學生獲得成功的體驗,增強學習的自信心。

      3、讓學生在多層練習中鞏固深化。

      在練習的設(shè)計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3、4題是在第1、2題的基礎(chǔ)上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題是開放題,加深學生對分數(shù)的基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

      反思教學的主要過程,覺得在讓學生用各種方法驗證結(jié)論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

    《分數(shù)基本性質(zhì)》教學設(shè)計8

      一、故事引人,揭示課題。

      1.教師講故事。猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑牵锿跤职训谌龎K餅平均切成十二塊,分給猴3三塊。同學們,你知道哪只猴子分得多嗎?

      討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結(jié)論:三只猴子分得的餅一樣多。

      引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)

      [一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設(shè)疑,激起了學生探求新知的欲望。]

      2.組織討論。

     。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關(guān)系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關(guān)系,1/4=2/8=3/12,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

     。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:3/4=6/8=9/12。

     。3)我們班有50名同學,分成了五組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:1/2=2/4=20/40。

      3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

      分數(shù)的分子和分母變化了, 分數(shù)的大小不變。

      它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

      3.出示例2:把1/2和10/24化成分母是12而大小不變的分數(shù)。

      思考:要把1/2和10/24化成分母是12而大小不變的分數(shù),分子怎么不變?變化的依據(jù)是什么?

      4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

      [得出性質(zhì)后,再讓學生說出猴王的想法,并回答如果小猴子要四塊,猴王怎么辦?既前后照應(yīng),又讓學生在輕松愉快的幫猴王想辦法的過程中,運用新知解決實際問題。]

      5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

      通過舉例,溝通分數(shù)的基本性質(zhì)與商不變性質(zhì)之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的.基本性質(zhì)。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

      [有助于學生順利地運用分數(shù)與除法的關(guān)系,以及整數(shù)除法中商不變性質(zhì)說明分數(shù)的基本性質(zhì),實現(xiàn)新知化歸舊知。]它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

      二、比較歸納,揭示規(guī)律。

      1.出示思考題。

      2.比較每組分數(shù)的分子和分母:

     。1)從左往右看,是按照什么規(guī)律變化的?

     。2)從右往左看,又是按照什么規(guī)律變化的?

      讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

      2.集體討論,歸納性質(zhì)。(1)從左往右看,由3/4到6/8,分子、分母是怎么變化的?引導學生回答出:把3/4的分子、分母都乘以2,就得到6/8。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到6/8。

      板書:

      (2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。

     。3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數(shù)的大小不變。

      (4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

     。ò鍟憾汲艘 相同的數(shù))

      (5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

     。ò鍟憾汲 )

     。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?

     。ò鍟毫愠猓

      (7)齊讀分數(shù)的基本性質(zhì)。先讓學生找出性質(zhì)中關(guān)鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關(guān)鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。

      [新知識力求讓學生主動探索,逐步獲取。“猴王分餅”和分析班級學生人數(shù)得出的三組相等的分數(shù)為學生探索新知提供材料,出示的思考題是學生探求新知、獨立思考的指南,教師環(huán)緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結(jié)論。]

    《分數(shù)基本性質(zhì)》教學設(shè)計9

      教材分析

      1.分數(shù)基本性質(zhì)是約分和通分的基礎(chǔ),而約分、通分又是分數(shù)四則運算的重要基礎(chǔ),因此,理解分數(shù)基本性質(zhì)顯得尤為重要。而分數(shù)與除法的關(guān)系以及除法中的商不變規(guī)律,與這部分知識緊密聯(lián)系,是學習這部分內(nèi)容的基礎(chǔ)。

      2.教材安排了兩個學習活動,讓學生尋找相等的分數(shù),通過活動使學生初步體驗分數(shù)的大小相等關(guān)系,為觀察發(fā)現(xiàn)分數(shù)的基本性質(zhì)提供的豐富的學習資料,然后引導學生分別觀察這兩組相等的分數(shù),尋找每組分數(shù)的分子、分母的變化規(guī)律,并展開充分的交流討論,在此基礎(chǔ)上歸納出:分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。

      學情分析

      學生已明確商不變規(guī)律,分數(shù)與除法的關(guān)系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經(jīng)初步養(yǎng)成了合作學習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導下完成“質(zhì)疑—探索——釋疑——應(yīng)用”這一完整的學習過程。

      因此在教學中,我主要采用引導學生探索以及小組合作學習相結(jié)合的方法,讓學生探索出分數(shù)的基本性質(zhì),并會運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同但大小相等的分數(shù),能有效地提高教學效率。

      教學目標

      經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)基本性質(zhì)。

      能運用分數(shù)基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

      經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

      教學重點和難點

      理解分數(shù)基本性質(zhì),能運用分數(shù)基本性質(zhì)轉(zhuǎn)化分數(shù)。

      教學過程

      一、復(fù)習導入

      二、探究新知

      實踐操作,探究規(guī)律

      觀察發(fā)現(xiàn):初步概括分數(shù)基本性質(zhì)

      括歸納分數(shù)基本性質(zhì)

      三、課堂練習

      四、課堂小結(jié)

      出示復(fù)習題口答卡片, 復(fù)習商不變的規(guī)律、分數(shù)與除法的關(guān)系。1、 講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”

      提出問題: 這些分數(shù)都相等嗎?

      觀察這組相等的分數(shù),你發(fā)現(xiàn)了什么?把你的發(fā)現(xiàn)說給同伴聽。

      分子、分母都乘或除以一個數(shù),這個數(shù)可以是0嗎?為什么?

      1、課本P43的“試一試”2、數(shù)學游戲:說出相等的分數(shù)3、課本P44的“練一練”第1~2、4

      通過這節(jié)課的學習、你學會了那些知識

      口答

      小組討論

      拿出準備好的圓形紙片,折一折,畫一畫、涂一涂

      小組討論、交流

      小組討論、交流

      做練習,完成后集體交流。

      說說,讀分數(shù)基本性質(zhì)

      復(fù)習舊知,為學習新知識作鋪墊。

      將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續(xù)探究營造良好氛圍。

      讓學生通過實踐操作,激發(fā)學生參與學習探究的興趣,通過合作探究,初步感知有些分數(shù)的分子、分母不同,但分數(shù)的大小卻相等。

      引導學生通過不同形式的觀察,逐步總結(jié)出存在的規(guī)律,這樣由淺入深,循序漸進,有利于學生探究學習知識。

      在學生初步發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,進一步理解分數(shù)的基本性質(zhì),并對分數(shù)的基本性質(zhì)進行全面概括。

      讓學生利用分數(shù)的基本性質(zhì)解決問題,使學生對分數(shù)的基本性質(zhì)理解的更深刻,同時體驗解決問題的樂趣。

      對本節(jié)課的所學知識的回顧,及所學知識點的'總結(jié)。

      板書設(shè)計(需要一直留在黑板上主板書)分數(shù)基本性質(zhì)被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(零除外),商不變,這就是商不變的規(guī)律分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變,這叫做分數(shù)基本性質(zhì)。

      教學反思:

      分數(shù)的基本性質(zhì)在小學階段是數(shù)運算的又一次質(zhì)的飛躍與擴展,是重要的一個環(huán)節(jié)。我在引導學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數(shù)的分子、分母是按一定的規(guī)律變化而分數(shù)大小不變。體現(xiàn)了理解與掌握數(shù)與數(shù)之間聯(lián)系、變化的觀點。

      在本節(jié)課中,由于我對學困生關(guān)注度不高,,使得他們在分數(shù)基本性質(zhì)應(yīng)用的過程中產(chǎn)生了困難。小組合作探究中的小組學習亦要不斷地完善。

    《分數(shù)基本性質(zhì)》教學設(shè)計10

      教學內(nèi)容:人教版小學數(shù)學第十冊第107頁至108頁。

      教學目標:

      1、知識目標:通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

      2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

      3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。

      教學準備:長方形紙片、彩筆、各種分數(shù)卡片。

      教學過程

      一、創(chuàng)設(shè)情境,激發(fā)興趣

      1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。

      【六一節(jié)到了,猴山上張燈結(jié)彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄

      “同學們,猴王真的分得不公平嗎?”

      二、動手操作、導入新課

      同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。

      任選一小組的同學臺前展示實驗報告,并匯報結(jié)論。

      教師根據(jù)學生匯報板書:14=28=312

      2.組織討論。

      (1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關(guān)系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

      (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?學生通過觀察演示得出結(jié)論教師板書:34=68=912。

      3.引入新課:黑板上二組相等的分數(shù)有什么共同的特點?學生回答后板書:分數(shù)的分子和分母, 分數(shù)的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。

      三、比較歸納,揭示規(guī)律。

      請每組拿出探究報告,任意選擇黑板上的二組相等分數(shù)中的一組,共同討論、探究,并完成探究報告。

      1.課件出示探究報告。

      2.分組匯報,歸納性質(zhì)。

     。1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

      (根據(jù)學生回答板書:同時乘上 相同的數(shù))

     。2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?

     。ǜ鶕(jù)學生的回答板書:除以 )

      (3)有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?

     。4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?

      根據(jù)學生的回答,揭示課題,

     。ā@叫做板書:分數(shù)的基本性質(zhì))

      對這句話你還有什么要補充的?(補充“零除外”)

      討論:為什么性質(zhì)中要規(guī)定“零除外”?

     。t筆板書:零除外)

     。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應(yīng)的字下面點上著重號。

      師生共同讀出黑板上板書的`分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。

      3、智慧眼(下列的式子是否正確?為什么?)

     。1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數(shù)的大小改變。)

     。2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)

     。3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)

      (4)25=2×x5×x=2x5x (生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)

      4、示課件討論:現(xiàn)在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數(shù)表示為?如果要五塊呢?

      三、回歸書本,探源獲知

      1、瀏覽課本第107—108頁的內(nèi)容。

      2、看了書,你又有什么收獲?還有什么疑問嗎?

      3、師生答疑。

      你會運用分數(shù)與除數(shù)的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)嗎?

      4、自主學習并完成例2,請二名學生說出思路。

      四、多層練習,鞏固深化。

      1、熱身房。35=3×()5×()=9()

      824=8÷()24÷()=()3

      學生口答后,要求說出是怎樣想的?

    《分數(shù)基本性質(zhì)》教學設(shè)計11

      教學內(nèi)容:人教版五年級數(shù)學下冊57頁內(nèi)容及58、59頁練習。

      教學目標:

      知識與技能:通過教學使學生理解的掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母(或分子)相同而大小不變的分數(shù),并能應(yīng)用這一性質(zhì)解決簡單的實際問題。

      過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據(jù)地思考、探究問題,培養(yǎng)學生的抽象概括能力。

      情感、態(tài)度和價值觀:使學生受到數(shù)學思想方法的熏陶,培養(yǎng)樂于探究的學習態(tài)度。

      教學重點:理解和掌握分數(shù)的基本性質(zhì)。

      教學難點:應(yīng)用分數(shù)的基本性質(zhì)解決問題。

      教學準備:預(yù)習生成單、作業(yè)紙、課件

      教學課時:一課時

      教學過程:

      一、導入新課,揭示課題

      1、師:通過昨天的預(yù)習,你知道我們今天要學習什么內(nèi)容?(生:分數(shù)的基本性質(zhì))

      2、師:針對這個內(nèi)容,同學們做了充分的預(yù)習,相信你們一定提出了不同的數(shù)學問題,現(xiàn)在請組長帶領(lǐng)組員提煉出你們組最想研究的問題。

      3、指名學生匯報。

      4、師:同學們,不管你們提出什么樣的問題,都與分數(shù)的基本性質(zhì)有關(guān),今天我們就帶著這些問題走進課堂。

      二、檢查預(yù)習,自主探究

      1.出示預(yù)習生成單:(師:我們已經(jīng)預(yù)習了這部分內(nèi)容,請同學們組內(nèi)交流一下你們的預(yù)習成果,形成統(tǒng)一意見準備匯報。)

      2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)

      3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數(shù)的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應(yīng)及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數(shù)嗎?教師及時的板演,

      4.師:其他同學還有補充嗎?你們得出這個結(jié)論了嗎?

      三、合作交流,探究新知

      1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數(shù)的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規(guī)律呢?我們通過合作交流來探究這個問題。

      2.出示合作要求(課件),指名學生讀一讀。

      3.學生合作交流,探究學習。

      4.學生匯報中教師要及時糾正學生的語言要規(guī)范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數(shù)的分子和分母之間的變化規(guī)律是怎樣?

      5.指導匯報,總結(jié)規(guī)律。誰能完整的說一下你們剛才總結(jié)出的規(guī)律?

      6.教師歸納板書:分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。

      7.請同學們讀一讀這句話,想一想:還有需要補充的內(nèi)容嗎?(0除外)

      8.再讀一讀,說說這句話中哪個詞比較關(guān)鍵。

      9.拓展深化,加深理解,完成練習,思考:分數(shù)的基本性質(zhì)與商不變的性質(zhì)之間的聯(lián)系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。

      9.教師小結(jié):通過剛才的學習,孩子們的.表現(xiàn)特別出彩,老師相信你們接下來的表現(xiàn)會更棒。

      四、應(yīng)用拓展,新知內(nèi)化

      1.出示例2,指名讀題,理解題意。

      2.師:你覺得解決這道題應(yīng)該利用什么知識?(生:分數(shù)的基本性質(zhì))

      3.學生獨立在練習本上完成,指名板演,集體訂正。

      4.小結(jié):剛才,我們通過自主學習、小組探究知道了什么是分數(shù)的基本性質(zhì),下面就應(yīng)用分數(shù)的基本性來解決一些實際問題。

      五、當堂檢測

     。ㄒ唬、下面每組中的兩個分數(shù)是否相等?相等的在括號里畫“√”,不相等的畫“X”。

      和()和()和()和()

      (二)、填空。

     。剑剑剑剑剑

      (三)、把下列分數(shù)化成分母是10而大小不變的分數(shù)。

      ===

     。ㄋ模、涂色表示出與給定分數(shù)相等的分數(shù)。

     。ㄎ澹⑷绻惶谜n40分鐘,哪個班做練習用的時間長?

      六、課堂小結(jié):通過這節(jié)課的學習,你學會了什么?

      板書設(shè)計:

      分數(shù)的基本性質(zhì)

      分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

      這節(jié)課最多的考慮就是分數(shù)的基本性質(zhì)這個規(guī)律怎樣才能讓學生真正的夯實,怎樣設(shè)計才能讓學生水到渠成的加深了理解。在練習的設(shè)計和過渡語的設(shè)計都是關(guān)鍵。

    《分數(shù)基本性質(zhì)》教學設(shè)計12

      【教材依據(jù)】

      《分數(shù)的基本性質(zhì)》是九年義務(wù)教育北師大版五年級上冊第三單元的內(nèi)容。

      【設(shè)計理念】

      根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設(shè)情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結(jié)果”的開放式教學流程。讓學生在問題情境中激活內(nèi)在要求,大膽猜想,使實驗成為內(nèi)在需求。通過觀察操作、經(jīng)歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。

      【學情與教材分析】

      《分數(shù)的基本性質(zhì)》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內(nèi)容,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是約分和通分的基礎(chǔ),而約分和通分又是分數(shù)四則運算的重要基礎(chǔ),因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。學生之前已經(jīng)掌握了商不變的性質(zhì),在教學之后將其與分數(shù)的基本性質(zhì)進行聯(lián)系,有意識地加強分數(shù)與除法的關(guān)系,以便把舊知識遷移到新的知識中來。

      【教學目標】

      1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。

      2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。

      3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。

      【教學重點】

      運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

      【教學難點】

      聯(lián)系分數(shù)與除法的關(guān)系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。

      【教學準備】

      多媒體課件長方形白紙、圓片,彩色筆等。

      【教學過程】

      一、創(chuàng)設(shè)情境,激趣導入

      師:同學們,新的學期到來了,你們剛?cè)胄@時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農(nóng)場),說到開心農(nóng)場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預(yù)習告訴老師校長笑什么?

      生1:四、五、六年級分的地一樣多。

      生2:……

      師:到底校長分的公平不公平,我們來做個實驗吧?

      二、動手操作,探究新知

      1,小組合作,實驗探究。

      師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。

      2,匯報結(jié)果

      師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。

      生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

      生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

      生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

      生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。

      生5:……

      3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)

     。ㄔO(shè)計意圖:這樣設(shè)計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)

      4、探索分數(shù)的基本性質(zhì)。

      師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?

      生:相等。

      師:同學們請看這組分數(shù)有什么特點?(板書=)

      生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。

      師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?

      生:分子分母同時乘2,……

      師:誰能用一句換來描述一下這個規(guī)律?

      生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)

      師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?

      生:分數(shù)的分子分母同時除以相同的數(shù)。

      師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質(zhì))。

      師:結(jié)合我們的預(yù)習,對于分數(shù)的基本性質(zhì)同學們還有什么不同的意見?

      生:0除外。

      師:為什么0要除外?

      生:因為分數(shù)的分母不能為0.

      師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?

      生:同時相同0除外

      師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?

      生:商不變的性質(zhì)。

      師:為什么?

      生:我們學過分數(shù)與除法的關(guān)系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。

      師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。

      三:應(yīng)用新知,練習鞏固。

      (一)練一練

     。ǘ┟蛴螒颉@蠋熓种杏幸粋箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。

      (二)判斷(搶答)

      1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。

      2、把的分子縮小5倍,分母也縮小5倍分數(shù)的'大小不變。

      3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。

      (四)測一測

      1、把和都化成分母是10而大小不變的分數(shù)。

      2、把和都化成分子是4而大小不變的分數(shù)。

      3、的分子增加2,要是分數(shù)大小不變,分母應(yīng)增加幾?

      四:總結(jié)。

      1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?

      2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)

      五:作業(yè)練習冊2、4題

      【板書設(shè)計】

      分數(shù)的基本性質(zhì)

      給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。

      【教學反思】

      本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!

      這樣的設(shè)計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。

      本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經(jīng)驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。

      在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設(shè)計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設(shè)計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。

    《分數(shù)基本性質(zhì)》教學設(shè)計13

      一、教學目標

      1.經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。

      2.能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

      3.經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

      二、 教學重、難點

      教學重點是:分數(shù)的基本性質(zhì)。

      教學難點是:對分數(shù)的基本性質(zhì)的理解。

      三、教學方法

      采用了動手做一做、觀察、比較、歸納和直觀演示的方法

      四、教學過程

     。ㄒ唬、故事引入,揭示課題

      1.教師講故事。

      猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

      討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結(jié)論:三只猴子分得的餅一樣多。

      引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)

      2.組織討論。

     。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關(guān)系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關(guān)系,14=28=312,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

      (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:34=68=912。

     。3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:12=24=20xx。

      3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

      分數(shù)的分子和分母變化了,

      分數(shù)的大小不變。

      它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

     。 二)、比較歸納,揭示規(guī)律

      1.出示思考題。

      比較每組分數(shù)的分子和分母:

     。1)從左往右看,是按照什么規(guī)律變化的?

     。2)從右往左看,又是按照什么規(guī)律變化的?

      讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

      2.集體討論,歸納性質(zhì)。

     。1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。

      板書:

     。2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。

     。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。

      (4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

     。ò鍟憾汲艘

      相同的數(shù))

      (5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。

      (板書:都除以)

     。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?

     。ò鍟毫愠猓

     。7)齊讀分數(shù)的基本性質(zhì)。先讓學生找出性質(zhì)中關(guān)鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關(guān)鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。

      3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。

      思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?

      4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

      5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

     。 三)、溝通說明,揭示聯(lián)系

      通過舉例,溝通分數(shù)的基本性質(zhì)與商不變性質(zhì)之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)。

      如:34=3÷4=(3×3)÷(4×3)=9÷12=912

     。 四)、多層練習,鞏固深化

      1.口答。(學生口答后,要求說出是怎樣想的?)

      2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質(zhì)中哪幾個字不相符。)

      教學反思:

      學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。因此數(shù)學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應(yīng)調(diào)動學生的學習積極性,向?qū)W生提供充分從事數(shù)學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的`數(shù)學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性。《分數(shù)的基本性質(zhì)》的教學設(shè)計一個突出的特點就是學法的設(shè)計,從大膽猜想、實驗感知、觀察討論到概括總結(jié),完全是為學生自主探究、合作交流的學習而設(shè)計的。具體表現(xiàn)在:

      1、學生在故事情境中大膽猜想。

      通過創(chuàng)設(shè)“猴王分餅”的故事,讓學生猜測一組三個分數(shù)的大小關(guān)系,為自主探索研究“分數(shù)的基本性質(zhì)”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。

      2、學生在自主探索中科學驗證。

      在學生大膽猜想的基礎(chǔ)上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設(shè)自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

      3、讓學生在分層練習中鞏固深化。

      在練習的設(shè)計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎(chǔ)上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數(shù)的基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

      反思教學的主要過程,覺得在讓學生用各種方法驗證結(jié)論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

    《分數(shù)基本性質(zhì)》教學設(shè)計14

      教學目標

      1. 讓學生通過經(jīng)歷預(yù)測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。

      2. 根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎(chǔ)。

      3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。

      教學重點使學生理解分數(shù)的基本性質(zhì)。

      教學難點讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應(yīng)用它解決相關(guān)的問題。

      教學過程

      一、故事情景引入

      同學們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統(tǒng)風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?

      好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

      同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。

      討論完了請舉手。

      生甲:“我覺得不公平,小紅分得多。”

      生乙:“我覺得小明分得多!

      生丙:“我覺得公平,他們?nèi)齻分得一樣多!

      師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了!

      二、新授

      師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”

      請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

      生:“三張圓片一樣大。”

      1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。”

      首先,請在第一張圓片上表示出它的1/3;

      再在第二張圓片上表示出它的2/6;

      然后在第三張圓片上表示出它的3/9。

      好了,大家動手分一分。(教師巡視指導)

      2. 師:“分完了的請舉手?

      老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)

      下面請哪位同學說一說,你是怎么分的?”

      生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一。”

      生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二!

      師:“那九分之三又是怎么得到的呢?大家一起說。”

      生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”

     。▽W生說的同時,教師操作,分完后把圓片貼在黑板上。)

      3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”

      小結(jié):原來三個圓的陰影部分是同樣大的。

      師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

      生:“奶奶分月餅是公平的,因為他們?nèi)齻分得的月餅一樣多。”

      師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”

      生甲:“通過圖上看起來,這三個分數(shù)應(yīng)該是一樣大的。”

      生乙:“這三個分數(shù)是相等的。”

      師:“剛才的試驗證明,它們的大小是相等的'!保ò鍟,打上等號)

      4. 研究分數(shù)的基本規(guī)律。

      師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”

      生甲:“三個分數(shù)的分子分母都變了,大小沒變!

      師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。

      第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”

      生乙:“它的分子分母都同時擴大了兩倍。”

      師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。

      再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)

      教師小結(jié):“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”

      學生發(fā)言

      小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質(zhì)。

      5. 深入理解分數(shù)的基本性質(zhì)。

      師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說!保▽W生討論后發(fā)言)

      師:剛才同學們都用自己的語言說了分數(shù)的基本性質(zhì),我們的書上也總結(jié)了分數(shù)的基本性質(zhì),現(xiàn)在請打開書看到108頁?纯磿鲜窃趺凑f的,是你說得好,還是書上說得好,為什么?

      齊讀分數(shù)的基本性質(zhì),并用波浪線表出關(guān)鍵的詞。

      生甲:我覺得“零除外”這個詞很重要。

      生乙:我覺得“同時”“相同”這兩個詞很重要。

      師:想一想為什么要加上“零除外”?不加行不行?

      讓學生結(jié)合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。

      教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外!保ㄟ呏v邊板書。)

      三、應(yīng)用

      1.學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。

      2.學生練習課本例題2,兩名學生在黑板上做。

      3.學生自己小結(jié)方法。

      4.按規(guī)律寫出一組相等的分數(shù)。

    《分數(shù)基本性質(zhì)》教學設(shè)計15

      教學目標:

      1、通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

      2、培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

      3、讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。

      重點難點:

      從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。理解分數(shù)的基本性質(zhì)。

      教具學具: 課件,每人一張白紙,一張圓紙片,彩筆

      教學時間:1課時

      教學流程:

      一、復(fù)習引入

      1、120÷30的商是多少?被除數(shù)和除數(shù)同時擴大3倍,商是多少?被除數(shù)和除數(shù)同時縮小10倍,商是多少?

      120÷30=4

     。120×3)÷(30×3)

      =360÷90

      =4

      120÷30=4

      (120÷10)÷(30÷10)

      =12÷3

      =4

      在除法中,被除數(shù)和除數(shù)同時擴大(或縮。┫嗤谋稊(shù)(零除外),商不變。

      除法與分數(shù)之間有什么聯(lián)系?

      被除數(shù)÷ 除數(shù)=被除數(shù)/除數(shù)

      教師板書:分數(shù)的基本性質(zhì)

      二、動手操作

     。1)用分數(shù)表示涂色部分。

     。 )

     。 ) )

     。 ) )

     、僬埓蠹夷贸1張長方形紙片,現(xiàn)在我們把它對折平均分成4份,涂出其中的3份,寫上分數(shù)。

     、诎阉^續(xù)對折平均分成8份,看看原來的3/4現(xiàn)在成了?(6/8)

      ③繼續(xù)折成16份,看看原來的3/4現(xiàn)在又成了?(12/16)

      (2)小結(jié):原來,這張紙的3/4 、6/8、 和它的12/16同樣大!看來不管選擇哪種折法,分到的數(shù)都一樣多!

     。ń處熾S機板書 )3/4=3×2/4×2=6/8=6×2/8×2=12/16

     。2)用分數(shù)表示涂色部分。

      ( ) )

      ( ) )

      ( ) )

      根據(jù)上面的過程,你能得到一組相等的分數(shù)嗎?

      8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

      三、發(fā)現(xiàn)規(guī)律

      1、請大家觀察每個等式中的兩個分數(shù),它們的分子。分母是怎樣變化的?

      學生觀察、思考,完成上面的圖形,再在小組內(nèi)交流。

      學生交流后,教師集中指導觀察,板書這組數(shù)字,說出其中的.規(guī)律。

      3/4=6/8=12/16 8/12=4/6=2/3

      從這些數(shù)字中可以得出:

      分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。(相同的數(shù),這個數(shù)能不能是0 ?)

      教師舉例說明:3/4,8/12分子和分母分別乘以零,分數(shù)大小怎么樣?

      得出分數(shù)基本性質(zhì): 分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。這叫做分數(shù)基本性質(zhì)。

      在除法中,被除數(shù)和除數(shù)同時擴大(或縮。┫嗤谋稊(shù)(零除外),商不變。這叫做商不變性質(zhì)。

      3、課件出一組分數(shù)讓學生練習填

      2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()

      四、練一練(課件出示)

      1、判斷.(手勢表示。)

      (1)分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變。() (2)把 15 /20 的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。()

      (3) 3 /4 的分子乘3,分母除以3,分數(shù)的大小不變。 ( )

      ( 4)把3/5的分子加上4,要使分數(shù)的大小不變,分母加4。 ( )

      2、把5 /6和1/4都化成分母是12大小不變的分數(shù)。(課件出示 )

      3、數(shù)學游戲(課件出示)

      說出相等的分數(shù) 1/4和2/8

     。1)你能根據(jù)分數(shù)的基本性質(zhì),再寫出一組相等的分數(shù)?

      所寫的分數(shù)是否相等?你是怎樣想的?

     。2)根據(jù)分數(shù)與除法的關(guān)系,你能用商不變的規(guī)律來說明分數(shù)的基本性質(zhì)嗎?

      五、課本練習中的第1,2題。

      六、課堂總結(jié)

      這節(jié)課你學到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的分數(shù)的基本性質(zhì)要注意什么?我們以前學過的什么性質(zhì)跟分數(shù)的基本性質(zhì)類似?誰能用整數(shù)除法中商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?

      七、板書設(shè)計:

      3/4=3×2/4×2=6/8=6×2/8×2=12/16

      8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

      分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。這叫做分數(shù)基本性質(zhì)。

    【《分數(shù)基本性質(zhì)》教學設(shè)計】相關(guān)文章:

    分數(shù)的基本性質(zhì)教學設(shè)計06-01

    《分數(shù)基本性質(zhì)》教學設(shè)計01-19

    分數(shù)的基本性質(zhì)教學設(shè)計04-05

    《分數(shù)基本性質(zhì)》教學設(shè)計范文03-13

    關(guān)于《分數(shù)的基本性質(zhì)》教學設(shè)計05-11

    分數(shù)的基本性質(zhì)教學設(shè)計7篇03-19

    《分數(shù)的基本性質(zhì)》優(yōu)秀教學設(shè)計范文03-07

    《分數(shù)基本性質(zhì)》教學設(shè)計15篇04-02

    《分數(shù)基本性質(zhì)》教學設(shè)計(15篇)04-04

    分數(shù)的基本性質(zhì)教學設(shè)計15篇04-05

    Copyright©2013-2024duanmeiwen.com版權(quán)所有