【必備】圓的面積教案三篇
作為一名老師,常常需要準備教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當?shù)慕虒W方法。那要怎么寫好教案呢?下面是小編幫大家整理的圓的面積教案3篇,歡迎大家借鑒與參考,希望對大家有所幫助。
圓的面積教案 篇1
教學目標
1.使學生理解圓面積公式的推導過程,掌握求圓面積的方法并能正確計算;
2.培養(yǎng)學生動手操作的能力,啟發(fā)思維,開闊思路;
3.滲透初步的辯證唯物主義思想。
教學重點和難點
圓面積公式的推導方法。
教學過程設計
(一)復習準備
我們已經學習了圓的認識和圓的周長,誰能說說圓周長、直徑和半徑三者之間的關系?
已知半徑,圓周長的一半怎么求?
(出示一個整圓)哪部分是圓的面積?(指名用手指一指。)
這節(jié)課我們一起來學習圓的面積怎么計算。
(板書課題:圓的面積)
(二)學習新課
1.我們以前學過的三角形、平行四邊形和梯形的面積公式,都是轉化成已知學過的圖形推導出來的,怎樣計算圓的面積呢?我們也要把圓轉化成已學過的圖形,然后推導出圓面積的計算公式。
決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數(shù)據(jù),沿半徑把圓分成若干等份。
展示曲變直的變化圖。
2.動手操作學具,推導圓面積公式。
為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其
用自己的學具(等分成16份的圓)拼擺成一個你熟悉的、學過的.平面圖形。
思考:
(1)你擺的是什么圖形?
(2)所擺的圖形面積與圓面積有什么關系?
(3)圖形的各部分相當于圓的什么?
(4)你如何推導出圓的面積?
(學生開始動手擺,小組討論。)
指名發(fā)言。(在幻燈前邊說邊擺。)
、倨闯鲩L方形,學生敘述,老師板書:
②還能不能拼出其它圖形?
學生可以拼出:
等等
剛才,我們用不同思路都能推導出圓面積的公式是:S=r2。這幾種思路的共同特點都是將圓轉化成已學過的圖形,并根據(jù)轉化后的圖形與圓面積的關系推導出面積公式。
例1 一個圓的半徑是4厘米,它的面積是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面積是50.24平方厘米。
想一想;求圓面積S應知道什么?如果給d和C,又怎樣求圓面積?
(三)鞏固反饋
1.求下面各圓的面積。
r=2(單位:分米) d=6(單位:分米)
2.選擇題。
用2米長的繩子把小羊拴在草地上的木框上,羊吃到地上的草的最大面積是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考題:
已知正方形的面積是18平方米,求圓的面積。(如圖)
課堂教學設計說明
1.使學生運用遷移的方法,把新知識轉化為舊知識,把圓轉化成已經學過的圖形。
2.在面積公式推導過程中,老師介紹分割圓的方法,展示由曲變直的過程,然后引導學生動手操作,小組討論,從各個角度推導出圓面積公式。培養(yǎng)學生動手操作,口頭表達和邏輯思維的能力,滲透了極限和轉化思想。
3.安排了坡度適當、由易到難的練習題,使學生由淺入深地掌握了知識,形成了技能。同時,還注意培養(yǎng)學生邏輯推理的能力。
圓的面積教案 篇2
教學內容分析:
圓的面積是學生認識了圓的特征、學會計算圓的周長以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。由于以前所學圖形的面積計算都是直線圖形面積的計算,而像圓這樣的曲邊圖形的面積計算,學生還是第一次接觸到,所以具有一定的難度和挑戰(zhàn)性。教學關鍵之處在于學生通過觀察猜想、動手操作、計算驗證,自主探索、推導出圓的面積公式并能靈活應用圓的面積公式解決實際問題。因此本課的教學應緊緊圍繞“轉化”思想,引導學生聯(lián)系已學知識把新知識納入已有知識中分析、研究、歸納,從而完成對新知的建構過程,建立數(shù)學模型,培養(yǎng)解決問題的綜合能力。
學生情況分析:
小學對幾何圖形的認識很大程度屬于直觀幾何的學習階段,而幾何本身比較抽象的。本節(jié)內容學生從認識直線圖形發(fā)展到認識曲線圖形,又是一次飛躍,但從學生思維角度看,五年級學生具有一定的抽象和邏輯思維能力。這一學段中的學生已經有了許多機會接觸到數(shù)與計算、空間圖形等較豐富的數(shù)學內容,已經具備了初步的歸納、類比和推理的數(shù)學活動經驗,并具有了轉化的數(shù)學思想。所以在教學應注意聯(lián)系現(xiàn)實生活,組織學生利用學具開展探索性的數(shù)學活動,注重知識發(fā)現(xiàn)和探索過程,使學生感悟轉化、極限等數(shù)學思想,從中獲得數(shù)學學習的積極情感,體驗和感受數(shù)學的力量。同時在學習活動中,要使學生學會自主學習和小組合作,培養(yǎng)學生解決數(shù)學問題的能力。
教學目標:
1、讓學生經歷操作、觀察、填表、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數(shù)學模型。
2、讓學生進一步體會“轉化”的數(shù)學思想方法,感悟極限思想的價值,培養(yǎng)運用已有知識解決新問題的能力,增強空間觀念,發(fā)展數(shù)學思考。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高學習數(shù)學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業(yè)紙。
教學過程:
一、創(chuàng)設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
。◤土晥A的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續(xù)來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的伊始就用這個生活中的數(shù)學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數(shù)學問題,讓學生體驗到數(shù)學來源于生活!
二、猜想驗證、初步感知
1、實驗驗證
。1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
。2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數(shù)數(shù)圓的面積是多少。
師:數(shù)起來感覺怎么樣?有沒有更簡潔一點的方法?
。ㄒ龑W生發(fā)現(xiàn)可以先數(shù)出 個圓的方格數(shù),再乘4就是圓的面積)
。ㄗ寣W生在圖1中數(shù)一數(shù),用計算器算一算,填寫表格里的第1行。)
圓的半徑
。╟m)
圓的面積
(cm2)
圓的面積
。╟m2)
正方形的面積
。╟m2)
圓的面積大約是正方形面積的幾倍
。ň_到十分位)
(3)師:只用一個圓,還不足以驗證猜想,作業(yè)紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
。▽W生完成后交流匯報。)
師:仔細觀察表中的數(shù)據(jù),你有什么發(fā)現(xiàn)?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的.3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的3倍多一些。
小結:我們經過猜測——數(shù)方格——驗證,最終發(fā)現(xiàn)圓的面積是正方形面積也就是它半徑平方的3倍多一些。
【設計意圖:從學生熟悉的數(shù)方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經驗,從而為進一步探索圓的面積公式作好準備。由數(shù)方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性!
三、實驗操作、推導公式
1、感受轉化,滲透方法
(課件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
。ㄒ龑W生發(fā)現(xiàn),3倍多一些到底多多少還不清楚,需要繼續(xù)研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
(學生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
。ǚ謩e演示2等份、4等份、8等份,引導學生發(fā)現(xiàn)邊越來越直,剪拼的圖形越來越平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
。ㄒ龑W生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數(shù)越來越多。
。ㄒ龑W生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數(shù)足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
【設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發(fā)現(xiàn)它的計算方法了。讓學生迅速回憶,調動原有的知識,為新知識的“再創(chuàng)造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數(shù)愈多,拼成的圖形就越接平行四邊形。在想象的過程中蘊含了另一個重要數(shù)學思想的滲透——極限思想。】
。2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯(lián)系?將發(fā)現(xiàn)填寫在作業(yè)紙第2題中,然后小組內交流一下。
。ㄐ〗M討論,發(fā)現(xiàn):長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
。ㄍㄟ^長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業(yè)紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現(xiàn)在會求了嗎?
【設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養(yǎng)學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數(shù)形結合的內在美,品嘗到成功的喜悅!
四、解決問題、拓展應用
1、師:在日常生活中,經常會遇到與圓面積計算有關的實際問題。
。ㄕn件出示例9)
分析題意后學生獨立完成書本第105頁例9。
。ńM織交流,評價反饋)
2、完成作業(yè)紙第4題
師:接著看,默讀題目,完成作業(yè)紙第3題。
。▽W生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現(xiàn)在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發(fā)現(xiàn)是我們在數(shù)學學習中探索未知領域時經常要用到的方法,用好它相信同學們會有更多的發(fā)現(xiàn)!
【設計意圖:全課總結不僅要重視學習結果的回顧再現(xiàn),也要關注學習經驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法!
板書設計:
圓的面積
轉化
新的圖形學過的圖形
演示圖
長方形的面積=長×寬
圓的面積=圓周長的一半 × 半徑
S=πr×r
=πr2
。1)3.14×22(2)8÷2=4(cm)
。3.14×43.14×42
。12.56(cm2)=3.14×16
=50.24(cm2)
圓的面積教案 篇3
教學內容:圓的面積第67—68頁圓面積公式的推導。例1及做一做的第1題。練習十六的第1、2、5題。
教學目標:
、笔箤W生理解圓面積的含義,理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
、才囵B(yǎng)學生動手操作、抽象概括的能力,運用所學知識解決簡單實際問題。
、碀B透轉化的數(shù)學思想。
教學重點:圓面積的含義。圓面積的推導過程。
教學難點:圓面積的推導過程。
教學過程:
一、復習。
1、已知r,周長的一半怎樣求?
2、用手中的三角板拼三角形,長方形、正方形、平行四邊形等,并說出這
些圖形的面積計算公式。
s=abs=a2s=ahs=ahs=(a+b)h
二、新課。
1、什么是圓的面積?(出示紙片圓讓生摸一摸)
圓所占平面大小叫做圓的面積。
2、推導圓的面積公式。
。1)演示:將等分成16份的圓展開,問可拼成一個什么樣的圖形?
若分的分數(shù)越多,這個圖形越接近長方形。
。1)找:找出拼出的圖形與圓的周長和半徑有什么關系?
圓的半徑=長方形的寬
圓的周長的.一半=長方形的長
長方形面積=長寬
所以:圓的面積=圓的周長的一半圓的半徑
S=r
S圓=r=r2
3、你還能用其他方法推算出圓的面積公式嗎?
。1)將圓16等份,取其中一份,看作是一個近似的三角形,三角形的面積是這個圓面積的。這個三角形底是圓周長的,三角形的高是圓的半徑。
因為:三角形面積=底高
圓面積=
=rr
=r2
。2)將圓16等分,取其中兩份,可以拼成一個近似的平行四邊形。平行四邊形面積是圓面積的,平行四邊形的底是,三角形的高即一個半徑,
因為:平行四邊形面積=底高
圓面積=r
=r8
=r2
還可以取3份、4份等,同學們可以一一推算。
三、運用知識解決實際問題。
1、例1一個圓的直徑是20m,它的面積是多少平方米?
已知:d=20厘米求:s=?
r=d2202=10(m)
s=Лr2
3。14102
=3。14100
=314(平方厘米)
2、根據(jù)下面所給的條件,求圓的面積。
r=5cmd=0。8dm
3、解答下列各題。
(1)一個圓形茶幾桌面的直徑是1m,它的面積是多少平方厘米?
。2)公園草地上一個自動旋轉噴灌裝置的射程是10m。它能噴灌的面積是多少?
四、作業(yè)。
課本P70第1、5題。
【圓的面積教案】相關文章:
圓的面積教案09-20
圓的面積教案范文08-01
圓的面積教案(精選20篇)04-04
圓的面積教案15篇02-24
圓的面積教案14篇02-26
圓的面積教案(15篇)02-27
圓的面積教案(精選23篇)02-28
圓的面積教學設計教案11-05
圓的面積教案(精選14篇)07-09
圓的面積教案匯編6篇08-16