一元二次方程教學(xué)設(shè)計【精品15篇】
作為一位無私奉獻的人民教師,很有必要精心設(shè)計一份教學(xué)設(shè)計,教學(xué)設(shè)計是連接基礎(chǔ)理論與實踐的橋梁,對于教學(xué)理論與實踐的緊密結(jié)合具有溝通作用。那么大家知道規(guī)范的教學(xué)設(shè)計是怎么寫的嗎?以下是小編精心整理的一元二次方程教學(xué)設(shè)計,希望能夠幫助到大家。
一元二次方程教學(xué)設(shè)計1
第一課時
一、教學(xué)目標(biāo)
1.使學(xué)生會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過列方程解應(yīng)用問題,進一步體會提高分析問題、解決問題的能力。
3.通過列方程解應(yīng)用問題,進一步體會代數(shù)中方程的思想方法解應(yīng)用問題的優(yōu)越性。
二、重點·難點·疑點及解決辦法
1.教學(xué)重點:
會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點:
根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點:
學(xué)生對列一元二次方程解應(yīng)用問題中檢驗步驟的理解。
4.解決辦法:
列方程解應(yīng)用題,就是先把實際問題抽象為數(shù)學(xué)問題,然后由數(shù)學(xué)問題的解決而獲得對實際問題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過程
1.復(fù)習(xí)提問
。1)列方程解應(yīng)用問題的步驟?
、賹忣},②設(shè)未知數(shù),③列方程,④解方程,⑤答。
(2)兩個連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個連續(xù)奇數(shù)的積是323,求這兩個數(shù)。
分析:
。1)兩個連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,
(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進行比較、鑒別,選出最簡單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個為,
據(jù)題意,得
整理后,得
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個方程,得。
當(dāng)時,
當(dāng)時,。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設(shè)較小的.奇數(shù)為,則另一個奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當(dāng)時,。
當(dāng)時,。
答:兩個奇數(shù)分別為17,19;-19,-17。
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個問題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
3.選出三種方法中最簡單的一種。
練習(xí)1.兩個連續(xù)整數(shù)的積是210,求這兩個數(shù)。
2.三個連續(xù)奇數(shù)的和是321,求這三個數(shù)。
3.已知兩個數(shù)的和是12,積為23,求這兩個數(shù)。
學(xué)生板書,練習(xí),回答,評價,深刻體會方程的思想方法。
例2 有一個兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個位數(shù)字。
解:設(shè)個位數(shù)字為x,則十位數(shù)字為,這個兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個方程,得(不合題意,舍去)
當(dāng)時,
答:這個兩位數(shù)是24。
以上分析,解答,教師引導(dǎo),板書,學(xué)生回答,體會,評價。
注意:在求得解之后,要進行實際題意的檢驗。
練習(xí)1 有一個兩位數(shù),它們的十位數(shù)字與個位數(shù)字之和為8,如果把十位數(shù)字與個位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來的兩位數(shù)就得1855,求原來的兩位數(shù)。(35)
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書,評價,體會。
四、布置作業(yè)
補充:一個兩位數(shù),其兩位數(shù)字的差為5,把個位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個兩位數(shù)。
五、板書設(shè)計
探究活動
將進貨單價為40元的商品按50元售出時,能賣500個,已知該商品每漲價1元時,其銷售量就減少10個,為了賺8000元利潤,售價應(yīng)定為多少,這時應(yīng)進貨為多少個?
參考答案:
精析:此題屬于經(jīng)營問題.設(shè)商品單價為(50+)元,則每個商品得利潤元,因每漲1元,其銷售量會減少10個,則每個漲價元,其銷售量會減少10個,故銷售量為(500)個,為賺得8000元利潤,則應(yīng)有(500).故有=8000
當(dāng)時,50+=60,500=400
當(dāng)時,50+=80,500=200
所以,要想賺8000元,若售價為60元,則進貨量應(yīng)為400個,若售價為80元,則進貨量應(yīng)為200個.
一元二次方程教學(xué)設(shè)計2
一、學(xué)生知識狀況分析
學(xué)生已經(jīng)學(xué)習(xí)了一元二次方程及其解法,對于方程的解及解方程并不陌生,實際問題的應(yīng)用,有些抽象,雖然學(xué)生在七、八年級已經(jīng)進行了有關(guān)的訓(xùn)練,但還是有一定的難度。
本節(jié)內(nèi)容針對的學(xué)生是才進入九年級的學(xué)生,他們已經(jīng)具備了一定的抽象思維和建模能力,也具備一定的生活經(jīng)驗和初步的解一元二次方程的經(jīng)驗。
二、教學(xué)任務(wù)分析
本節(jié)課的主要是發(fā)展學(xué)生抽象思維,強化學(xué)生的應(yīng)用意識,使學(xué)生能通過抽象思維將一個應(yīng)用題抽象成一元二次方程使問題得以解決,這也是方程教學(xué)的重要任務(wù)。但學(xué)生抽象意識和能力的發(fā)展不是自發(fā)的,需要通過大量的應(yīng)用實例,在實際問題的解決中讓學(xué)生感受到其廣泛應(yīng)用,并在具體應(yīng)用中增強學(xué)生的應(yīng)用能力。因此,本節(jié)教學(xué)中需要選用大量的實際問題,通過列方程解決問題,并且在問題解決過程中,促進學(xué)生分析問題、解決問題意識和能力的提高以及抽象思維的初步形成。顯然,這個任務(wù)并非某個教學(xué)活動所能達成的,而應(yīng)在教學(xué)活動中創(chuàng)設(shè)大量的問題解決的情境,在具體情境中發(fā)展學(xué)生的有關(guān)能力。為此,本節(jié)課的教學(xué)目標(biāo)是:
知識目標(biāo):
通過分析問題中的數(shù)量關(guān)系,抽象出方程解決問題,認(rèn)識方程模型的重要性,并總結(jié)運用方程解決實際問題的一般過程。
能力目標(biāo):
1、經(jīng)歷分析,抽象和建模的過程,進一步體會方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效的數(shù)學(xué)模型;
2、能夠抽象出一元二次方程解決有關(guān)實際問題,能根據(jù)具體問題的實際意義檢驗結(jié)果的合理性,進一步培養(yǎng)學(xué)生分析問題、解決問題的意識和能力;
情感態(tài)度價值觀:
在問題解決中,經(jīng)歷一定的合作交流活動,進一步發(fā)展學(xué)生合作交流的意識和能力。
三、學(xué)法指導(dǎo)
本課是學(xué)生學(xué)習(xí)完一元二次方程的解法后的應(yīng)用課,雖然學(xué)生在七八年級已經(jīng)進行了一定的訓(xùn)練,但本課對學(xué)生而言還是有一定的難度。本課采用啟發(fā)式、問題串討論式、合作學(xué)習(xí)相結(jié)合的方式,引導(dǎo)學(xué)生從已有的知識和生活經(jīng)驗出發(fā),以教材提供的素材為基礎(chǔ),引導(dǎo)學(xué)生對對問題中的數(shù)量進行分析從而抽象出方程解決問題;學(xué)生之間的合作交流、互助學(xué)習(xí),能更好地調(diào)動學(xué)生的學(xué)習(xí)積極性,更符合學(xué)生的認(rèn)知規(guī)律。無論是例題的分析還是練習(xí)的分析,盡可能地鼓勵學(xué)生動腦、動手、動口,為學(xué)生提供展示自己聰明才智的機會,并且在此過程中發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),更好地進行學(xué)法指導(dǎo)。
四、教學(xué)過程分析
本課時分為以下五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):回憶鞏固,情境導(dǎo)入;第二環(huán)節(jié):做一做,探索新知;第三環(huán)節(jié):練一練,鞏固新知;第四環(huán)節(jié):收獲與感悟;第五環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié);情境導(dǎo)入
活動內(nèi)容:提出問題:還記得梯子下滑的問題嗎?
在這個問題中,梯子頂端下滑1米時,梯子底端滑動的距離大于1米,那么梯子頂端下滑幾米時,梯子底端滑動的距離和它相等呢?如果梯子長度是13米,梯子頂端下滑的距離與梯子底端滑動的距離可能相等嗎?如果相等,那么這個距離是多少?
分組討論:
怎么設(shè)未知數(shù)?在這個問題中存在怎樣的等量關(guān)系?如何利用勾股定理抽象出方程?
活動目的:以學(xué)生所熟悉的梯子下滑問題為素材,以前面所學(xué)的勾股定理為切入點,用熟悉的情境激發(fā)學(xué)生解決問題的欲望,用學(xué)生已有的知識為支點抽象出一元二次方程使問題得以解決,進一步讓學(xué)生體會數(shù)形結(jié)合的思想。
活動的實際效果:大部分學(xué)生能夠聯(lián)系以前學(xué)過的勾股定理的三邊關(guān)系抽象出方程對上述問題進行思考,能夠在老師的引導(dǎo)下主動地探究問題,取得了比較理想的效果,而且也調(diào)動了學(xué)生的學(xué)習(xí)熱情,激發(fā)了學(xué)生的思維,為后面的.探索奠定了良好的基礎(chǔ)。
第二環(huán)節(jié)探索新知
活動內(nèi)容:見課本P53頁例1:
如圖:某海軍基地位于A處,在其正南方向200海里處有一重要目標(biāo)B,在B的正東方向200海里處有一重要目標(biāo)C,小島D位于AC的中點,島上有一補給碼頭。小島F位于BC中點。一艘軍艦從A出發(fā),經(jīng)B到C勻速巡航,一艘補給船同時從D出發(fā),沿南偏西方向勻速直線航行,欲將一批物品送達軍艦。
已知軍艦的速度是補給船的2倍,軍艦在由B到C的途中與補給船相遇,那么相遇時補給船航行了多少海里?(結(jié)果精確到0.1海里)
在教學(xué)中要給學(xué)生充分的時間去審清題意,分析各量之間的關(guān)系,不能粗線條解決。在講解過程中可逐步分解難點:審清題意;找準(zhǔn)各條有關(guān)線段的長度關(guān)系;通過抽象思維建立方程模型,之后求解。
實際應(yīng)用問題比較抽象,因此教學(xué)中老師要給學(xué)生充分的時間去審清題意,讓學(xué)生自己反復(fù)審題,弄清各量之間的關(guān)系,分析題目中的已知條件和要求解的問題,并在這個前提下抽象出圖形中各條線段所表示的量,弄清它們之間的關(guān)系,從而抽象出方程模型解決問題。
在學(xué)生分析題意遇到困難時,教學(xué)中可設(shè)置問題串分解難點:
。1)要求DE的長,需要如何設(shè)未知數(shù)?
。2)怎樣建立含DE未知數(shù)的等量關(guān)系?從已知條件中能找到嗎?
。3)利用勾股定理建立等量關(guān)系,如何構(gòu)造直角三角形?
(4)選定后,三條邊長都是已知的嗎?DE,DF,EF分別是多少?
學(xué)生在問題串的引導(dǎo)下,逐層分析,在分組討論后抽象出題目中的等量關(guān)系即:
速度等量:V軍艦=2×V補給船
時間等量:t軍艦=t補給船
三邊數(shù)量關(guān)系:
弄清圖形中線段長表示的量:已知AB=BC=200海里,DE表示補給船的路程,AB+BE表示軍艦的路程。
學(xué)生在此基礎(chǔ)上選準(zhǔn)未知數(shù),用未知數(shù)表示出線段:DE、EF的長,根據(jù)勾股定理抽象出方程求解,并判斷解的合理性。
鞏固練習(xí):1、一個直角三角形的斜邊長為7cm,一條直角邊比另一條直角邊長1cm,那么這個直角三角的面積是多少?
文本框:8cm2、如圖:在RtACB中,∠C=90°,點P、Q同時由A、B兩點出發(fā)分別沿AC、BC方向向點C勻速移動,它們的速度都是1m/s,幾秒后PCQ的面積為RtACB面積的一半?
3、在寬為20m,長為32m的矩形耕地上,修筑同樣寬的三條道路(兩條縱向,一條橫向,橫向與縱向互相垂直),把耕地分成大小相等的六塊作試驗田,要使試驗田面積為570平方米,問道路應(yīng)為多寬?
說明:三個題目的設(shè)計從簡單問題入手,第一題通過勾股定理抽象出一元二次方程解決直角三角形邊長問題;第2題構(gòu)造了一個可變的直角三角形,抽象出方程解決面積問題;第三題也是面積問題,在這個問題中常設(shè)道路寬為x米,通過平移道路使六塊田地變成一塊田地,從而根據(jù)矩形面積公式抽象出方程解決問題。
活動目的:一元二次方程的應(yīng)用題的類型較多,像數(shù)字問題、面積問題、平均增長(或降低)率問題、利潤問題等;本節(jié)課以教材上的引例作為出發(fā)點,作為素材來呈現(xiàn),可以將應(yīng)用類型作適當(dāng)?shù)耐卣,在練?xí)中將教材中的應(yīng)用問題歸類呈現(xiàn)出來,便于學(xué)生理解和掌握。本課由數(shù)形結(jié)合問題拓展到面積問題,后面可以在練習(xí)中增加數(shù)字問題,為學(xué)生呈現(xiàn)更多的應(yīng)用類型,讓學(xué)生在不同的情境中體會數(shù)學(xué)抽象和建模的重要性。
活動實際效果:應(yīng)用問題設(shè)置都經(jīng)過精心準(zhǔn)備。通過問題串的設(shè)立,將比較復(fù)雜、難以理解的題目分成多個小的題目去理解,使學(xué)生在不知不覺中克服困難,體會到通過抽象出方程解應(yīng)用題的三個重要環(huán)節(jié):整體系統(tǒng)的審清題意;尋找等量關(guān)系;正確求解并檢驗解的合理性。采取的是一講一練,從鞏固練習(xí)的準(zhǔn)確程度上來看,學(xué)生掌握得比較好,能夠達到預(yù)期的效果。
第三環(huán)節(jié):練一練,鞏固新知
活動內(nèi)容:1、在一塊正方形的鋼板上裁下寬為20cm的一個長條,剩下的長方形鋼板的面積為4800cm2。求原正方形鋼板的面積。
2、有這樣一道阿拉伯古算題:有兩筆錢,一多一少,其和等于20,積等于96,多的一筆錢被許諾賞給賽義德,那么賽義德得到多少錢?
3、《九章算術(shù)》“勾股”章有一題:甲、乙二人同時從同一地點出發(fā),甲的速度為7,乙的速度為3。乙一直向東走,甲先向南走了10步,后又斜向北偏東方向走了一段后與乙相遇。那么相遇時,甲、乙各走了多遠?
活動目的:通過三道問題的解決,查缺補漏,了解學(xué)生的掌握情況和靈活運用知識的程度。在教學(xué)過程中要以學(xué)生為主體,引導(dǎo)學(xué)生自主發(fā)現(xiàn)、合作交流。活動實際效果:學(xué)生在前面活動中積累的經(jīng)驗,可以幫助學(xué)生比較順利地分析上述問題,遇有疑難可以讓學(xué)生在合作交流中解決,學(xué)生在訓(xùn)練過程中更加理解數(shù)學(xué)抽象和建模的重要性.大部分學(xué)生能夠獨立解決問題。
第四環(huán)節(jié):收獲與感悟
活動內(nèi)容:提問:
1、列方程解應(yīng)用題的關(guān)鍵;2、列方程解應(yīng)用題的步驟;3、列方程應(yīng)注意的一些問題。
學(xué)生在學(xué)習(xí)小組中回顧與反思,并進行組間交流發(fā)言。
活動目的:鼓勵學(xué)生回顧本節(jié)課知識方面有哪些收獲,解題技能方面有哪些提高,還有什么疑難問題希望得到解決;通過對三個問題的解決,加深學(xué)生通過抽象思維抽象出方程解決實際問題的意識和能力;并且通過學(xué)生間的合作學(xué)習(xí)幫助不同層次的孩子解決實際困難,增強孩子學(xué)好數(shù)學(xué)的信心。
活動實際效果:學(xué)生通過回顧本節(jié)課的學(xué)習(xí)過程,體會利用抽象思維抽象出一元二次方程解決實際問題的方法和技巧,進一步提高自己解決問題的能力。
第五環(huán)節(jié):布置作業(yè)
1、甲乙兩個小朋友的年齡相差4歲,兩個人的年齡相乘積等于45,你知道這兩個小朋友幾歲嗎?
2、一塊長方形草地的長和寬分別為20m和15m,在它四周外圍環(huán)繞著寬度相等的小路,已知小路的面積為246,求小路的寬度。
3、一個兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)比個位數(shù)小2,求這兩位數(shù)。
一元二次方程教學(xué)設(shè)計3
一、教學(xué)目標(biāo):
1。經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系。
2。理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根。
3。能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
二、教學(xué)重點、難點:
教學(xué)重點:
1。體會方程與函數(shù)之間的聯(lián)系。
2。能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點:
1。探索方程與函數(shù)之間關(guān)系的過程。
2。理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
三、教學(xué)方法:啟發(fā)引導(dǎo) 合作交流
四:教具、學(xué)具:課件
五、教學(xué)媒體:計算機、實物投影。
六、教學(xué)過程:
[活動1] 檢查預(yù)習(xí) 引出課題
預(yù)習(xí)作業(yè):
1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。
2。 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x—4=0的解。
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容, 指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
教師重點關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
[活動2] 創(chuàng)設(shè)情境 探究新知
問題
1。課本P16 問題。
2。結(jié)合圖形指出,為什么有兩個時間球的高度是15m或0m?為什么只在一個時間球的`高度是20m?
。ńY(jié)合預(yù)習(xí)題1,完成課本P16 觀察中的題目。)
師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
二次函數(shù)y=ax2+bx+c的圖象和x軸交點
一元二次方程ax2+bx+c=0的根
一元二次方程ax2+bx+c=0根的判別式=b2—4ac
兩個交點
兩個相異的實數(shù)根
b2—4ac 0
一個交點
兩個相等的實數(shù)根
b2—4ac = 0
沒有交點
沒有實數(shù)根
b2—4ac 0
教師重點關(guān)注:
1。學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;
2。學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;
3。學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。
[活動3] 例題學(xué)習(xí) 鞏固提高
問題: 例 利用函數(shù)圖象求方程x2—2x—2=0的實數(shù)根(精確到0。1)。
師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4] 練習(xí)反饋 鞏固新知
問題:(1) P97。習(xí)題 1、2(1)。
師生行為:教師提出問題,學(xué)生獨立思考后寫出答案,師生共同評價;問題(2)學(xué)生獨立思考后同桌交流,實物投影出學(xué)生解題過程,教師強調(diào)正確解題思路。
教師關(guān)注:學(xué)生能否準(zhǔn)確應(yīng)用本節(jié)課的知識解決問題;學(xué)生解題時候暴露的共性問題作針對性的點評,積累解題經(jīng)驗。
設(shè)計意圖:這兩個題目就是對本節(jié)課知識的鞏固應(yīng)用,讓新知識內(nèi)化升華,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。
[活動5] 自主小結(jié),深化提高:
1。通過這節(jié)課的學(xué)習(xí),你獲得了哪些數(shù)學(xué)知識和方法?
2。這節(jié)課你參與了哪些數(shù)學(xué)活動?談?wù)勀惬@得知識的方法和經(jīng)驗。
師生活動:學(xué)生思考后回答,教師對學(xué)生的錯誤予以糾正,不足的予以補充,精彩的適當(dāng)表揚。
設(shè)計意圖:
1。題促使學(xué)生反思在知識和技能方面的收獲;
2。題讓學(xué)生反思自己的學(xué)習(xí)活動、認(rèn)知過程,總結(jié)解決問題的策略,積累學(xué)習(xí)知識的方法,力求不同的學(xué)生有不同的發(fā)展。
[活動6] 分層作業(yè),發(fā)展個性:
1。(必做題)閱讀教材并完成P97 習(xí)題21。2: 3、4。
2。(備選題)P97 習(xí)題21。2:5、6
設(shè)計意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。
七、教學(xué)反思:
1。注重知識的發(fā)生過程與思想方法的應(yīng)用
《用函數(shù)的觀點看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生跳一跳就可以摘到桃子。
探究拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形, 從圖象與x軸交點的個數(shù)與方程的根之間進行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
2。關(guān)注學(xué)生學(xué)習(xí)的過程
在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造海闊憑魚躍,天高任鳥飛的課堂境界。
3。強化行為反思
反思是數(shù)學(xué)的重要活動,是數(shù)學(xué)活動的核心和動力,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計,課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的同時,領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,數(shù)學(xué)日記就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會。通過日記的方式,學(xué)生可以對他所學(xué)的數(shù)學(xué)內(nèi)容進行總結(jié),寫出自己的收獲與困惑。數(shù)學(xué)日記該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯題日記。
4。優(yōu)化作業(yè)設(shè)計
作業(yè)的設(shè)計分必做題和選做題,必做題鞏固本課基礎(chǔ)知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實踐能力。
一元二次方程教學(xué)設(shè)計4
教學(xué)目標(biāo)
知識技能:掌握應(yīng)用方程解決實際問題的方法步驟,提高分析問題、解決問題的能力。
過程與方法:通過探索球積分表中數(shù)量關(guān)系的過程,進一步體會方程是解決實際問題的數(shù)學(xué)模型,并且明確用方程解決實際問題時,不僅要注意解方程的過程是否正確,還要檢驗方程的解是否符合問題的實際意義。
情感態(tài)度:鼓勵學(xué)生自主探究,合作交流,養(yǎng)成自覺反思的良好習(xí)慣。
重點:把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,不僅會列方程求出問題的解,還會進行推理判斷。
難點:把數(shù)學(xué)問題轉(zhuǎn)化為數(shù)學(xué)問題。
關(guān)鍵:從積分表中找出等量關(guān)系。
教具:投影儀。
教法:探究、討論、啟發(fā)式教學(xué)。
教學(xué)過程
一、創(chuàng)設(shè)問題情境
用投影儀展示幾張比賽場面及比分(學(xué)習(xí)是生活需要,引起學(xué)生興趣)
二、引入課題
教師用投影儀展示課本106頁中籃球聯(lián)賽積分榜引導(dǎo)學(xué)生觀察,思考:① 用式子表示總積分能與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系;
、谀酬牭膭賵隹偡帜艿扔谒呢(fù)場總積分么?
學(xué)生充分思考、合作交流,然后教師引導(dǎo)學(xué)生分析。
師:要解決問題①必須求出勝一場積幾分,負(fù)一場積幾分,你能從積分榜中得到負(fù)一場積幾分么?你選擇哪一行最能說明負(fù)一場積幾分?
生:從最下面一行可以發(fā)現(xiàn),負(fù)一場積1分。
師:勝一場呢?
生:2分(有的用算術(shù)法、有的用方程各抒己見)
師:若一個隊勝a場,負(fù)多少場,又怎樣積分?
生:負(fù)(14-a)場,勝場積分2a,負(fù)場積分14-a,總積分a+14.
師:問題②如何解決?
學(xué)生通過計算各隊勝、負(fù)總分得出結(jié)論:不等。
師:你能用方程說明上述結(jié)論么?
生:老師,沒有等量關(guān)系。
師:欸,就是,已知里沒說,是不是不能用方程解決了?誰又沒有大膽設(shè)想?
生:老師,能不能試著讓它們相等?
師:偉大的發(fā)明都是在嘗試中進行的,試試?
生:如果設(shè)一個隊勝了x場,則負(fù)(14-x)場,讓勝場總積分等負(fù)場總積分,方程為:2x=14-x解得x=4/3(學(xué)生掌聲鼓勵)
師:x表示什么?可以是分?jǐn)?shù)么?由此你的出什么結(jié)論?
生:x表示勝得場數(shù),應(yīng)該是一個整數(shù),所以,x=4/3不符合實際意義,因此沒有哪個隊的勝場總積分等于負(fù)場總積分。
師:此問題說明,利用方程不僅求出具體數(shù)值,而且還可以推理判斷,是否存在某種數(shù)量關(guān)系;還說明用方程解決實際問題時,不僅要注意方程解得是否正確,還要檢驗方程的解是否符合問題的實際意義。
拓展
如果刪去積分榜的最后一行,你還能用式子表示總積分與勝、負(fù)場數(shù)之間的數(shù)量關(guān)系嗎?
師:我們可以從積分榜中積分不相同的兩行數(shù)據(jù)求的勝負(fù)一場各得幾分,如:一、三行。
教師引導(dǎo)學(xué)生設(shè)未知數(shù),列方程。學(xué)生試說。
生:設(shè)勝一場積x分,則前進隊勝場積分10x,負(fù)場積分(24-10x)分,它負(fù)了4場,所以負(fù)一場積分為(24-10x)/4,同理從第三行得到負(fù)一場積分為(23-9x)/5,從而列方程為(24-10x)/4=(23-9x)/5。解得x=2,當(dāng)x=2時,(24-10x)/4=1。仍然可得負(fù)一場積1分,勝一場積2分。
三、鞏固練習(xí)
已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見表:
海拔高度(單位:m)
100
200
300
400
平均氣溫(單位:℃)
22
21.5
21
20.5
20
若某種植物適宜生長在18℃20℃(包括18℃20℃)的`山區(qū),請問該植物適宜種在海拔為多少米的山區(qū)?
學(xué)生分析題意,思考,在練習(xí)本上完成,然后同桌小議,代表發(fā)言,教師點撥。
四、課堂小結(jié):
讓幾個學(xué)生談自己的收獲,再讓一個學(xué)生全面總結(jié)。
五、布置作業(yè):
課本108頁8、9題。
六、教學(xué)反思
本節(jié)課主要是借球賽積分表問題傳授數(shù)學(xué)知識的應(yīng)用。在前面已經(jīng)討論過由實際問題抽象出一元一次方程模型和解一元一次方程的基礎(chǔ)上,本節(jié)進一步以探究的形式討論如何用一元一次方程解決實際問題。要探究的問題比前幾節(jié)的問題復(fù)雜些,問題情境與實際情況更接近。本節(jié)的重點是建立實際問題的方程模型。通過探究活動,進一步體驗一元一次方程與實際的密切聯(lián)系,加強數(shù)學(xué)建模思想,培養(yǎng)運用一元一次方程分析和解決問題的能力。
由于本節(jié)問題的背景和表達都比較貼近實際,其中的有些數(shù)量關(guān)系比較隱蔽,所以在探究過程中正確建立方程是難點,教師要恰當(dāng)?shù)囊龑?dǎo),讓學(xué)生弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,找出可作為方程依據(jù)的主要相等關(guān)系,但教師不要代替學(xué)生的思考。
一元二次方程教學(xué)設(shè)計5
教學(xué)目標(biāo)
一、 教學(xué)知識點
1、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2、 理解二次函數(shù)與 x 軸交點的個數(shù)與一元二次方程的根的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實根和沒有實根.
3、 理解一元二次方程的根就是二次函數(shù)與y =h 交點的橫坐標(biāo).
二、 能力訓(xùn)練要求
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探 索能力和創(chuàng)新精神
2、通過觀察二次函數(shù)與x 軸交 點的個數(shù),討論 一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.
3、通過學(xué)生共同觀察和討論,培養(yǎng)合作交流意識.
三、 情感與價值觀要求
1、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.
2、 具有初步的創(chuàng)新精神和實踐能力.
教學(xué)重點
1.體會方程與函數(shù)之間的聯(lián)系.
2.理解何 時方程有兩個不等的實根、兩個相等的.實根和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y =h 交點的橫坐標(biāo).
教學(xué)難點
1、探索方程與函數(shù)之間的聯(lián)系的過程.
2、理解二次函數(shù)與x 軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系.
教學(xué)方法
討論探索法
教學(xué)過程:
1、 設(shè)問題情境,引入新課
我們已學(xué)過一元一次方程kx+b=0 (k0)和一次函數(shù)y =kx+b (k0)的關(guān)系,你還記得嗎?
它們之間的關(guān)系是:當(dāng)一次函數(shù)中的函數(shù)值y =0時,一次函數(shù)y =kx+b就轉(zhuǎn)化成了一元一次方 程kx+b=0,且一次函數(shù)的圖像與x 軸交點的橫坐標(biāo)即為一元一次方程kx+b=0的解.
現(xiàn)在我們學(xué)習(xí)了一元二次方程和二次函數(shù),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題.
2、 新課講解
例題講解
我們已經(jīng)知道,豎直上拋物體的高度h (m )與運動時間t (s )的關(guān)系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是拋出時的高度,v 0(m/s )是拋出時的速度.一個小球從地面被以40m/s 速度豎直向上拋起,小球的高度h(m)與運動時間t(s)的關(guān)系如下圖所示,那么
(1)h 與t 的關(guān)系式是什么?
(2)小球經(jīng)過多少秒后落地?你有幾種求解方法?
小組交流,然后發(fā)表自己的看法.
學(xué)生交流:(1)h 與t 的關(guān)系式是h =-5 t 2+v 0t +h 0,其中的v 0
為40m/s,小球從地面拋起,所以h 0=0.把v 0,h 0帶入上式即可
求出h 與t 的關(guān)系式h =-5t 2+40t
(2)小球落地時h為0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是
-5t 2+40t=0
t 2-8t=0
t(t- 8)=0
t=0或t=8
t=0時是小球沒拋時的時間,t=8是小球落地時的時間.
也可以觀察圖像,從圖像上可看到t =8時小球落地.
議一議
二次函數(shù)①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的圖像如下圖所示
(1)每個圖像與x 軸有幾個交點?
(2)一元二次方程x2+2x=0 , x2-2x+1=0有幾個根?解方程驗證一下, 一元二次方程x2-2x +2=0有根嗎?
(3)二次函數(shù)的圖像y=ax2+bx+c 與x 軸交點的坐標(biāo)與一元二次方程ax2+bx+c=0 的根有什么關(guān)系?
學(xué)生討論后,解答如 下:
(1)二次函數(shù)①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的圖像與x 軸分別有兩個交點、一個交點,沒有交點.
(2)一元二次方程x 2+2x=0有兩個根0,-2 ;x2-2x+1=0有兩個相等的實數(shù)根1或一個根1 ;方程x2-2x +2=0沒有實數(shù)根
(3)從圖像和討論知,二次函數(shù)y=x2+2x與x 軸有兩個交點(0,0),(-2,0) ,方程x2+2x=0有兩個根0,-2;
二次函數(shù)y=x2-2x+1的圖像與x 軸有一個交點(1,0),方程 x2-2x+1=0 有兩個相等的實數(shù)根1或一個根1
二次函數(shù)y=x2-2x +2 的圖像與x 軸沒有交點, 方程x2-2x +2=0沒有實數(shù)根
由此可知 ,二次函數(shù)y=ax2+bx+c 的圖像與x 軸交點的橫坐標(biāo)即為一元二次方程ax2+bx+c=0的根.
小結(jié):
二次函數(shù)y=ax2+bx+c 的圖像與x 軸交點有三種情況:有兩個交點、一個交點、沒有焦點.當(dāng)二次函數(shù)y=ax2+bx+c 的圖像與x 軸有交點時 ,交點的橫坐標(biāo)就是當(dāng)y =0時自變量x 的值,即一元二次方程ax2+bx+c=0的根.
基礎(chǔ)練習(xí)
1、判斷下列各拋物線是否與x軸相交,如果相交,求出交點的坐標(biāo).
(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4
2、已知拋物線y=x2-6x+a的頂點在x軸上,則a= ;若拋物線與x軸有兩個交點,則a的范圍是
3、已知拋物線y=x2-3x+a+1與x軸最多只有一個交點,則a的范圍是 .
4、已知拋物線y=x2+px+q與x 軸的兩個交點為(-2,0),(3,0),則p= ,q= .
5. 已知拋物線 y=-2(x+1)2+8 ①求拋物線與y軸的交點坐標(biāo);②求拋物線與x軸的兩個交點間的距離.
6、拋物線y=a x2+bx+c(a0)的圖象全部在軸下方的條件是( )
(A) a0 b2-4ac0(B)a0 b2-4ac0
(B) (C)a0 b2- 4ac0 (D)a0 b2-4ac0
想一想
在本節(jié)一開始的小球上拋問題中,何時小球離地面的高度是60 m?你是怎樣知道的?
學(xué)生交流:在式子h =-5t 2+v 0t +h 0中v 0為40m/s, h 0=0,h=60 m,代入上式得
-5t 2+40t=60
t 28t+12=0
t=2或t=6
因此當(dāng)小球離開地面2秒和6秒時,高度是6 0 m.
課堂練習(xí) 72頁
小結(jié) :本節(jié)課學(xué)習(xí)了如下內(nèi)容:
1、若一元二 次方程ax2+bx+c=0的兩個根是x1、x2, 則拋物線y=ax2+bx+c與x軸的兩個交點坐標(biāo)分別是A(x1,0 ), B( x2,0 )
2、一元二次方程ax2+bx+c=0與二次三項式ax2+bx+c及二次函數(shù)y=ax2+bx+c這三個二次之間互相轉(zhuǎn)化的關(guān)系.體現(xiàn)了數(shù)形結(jié)合的思想3、二次函數(shù)y=ax2+bx+c何時為一元二次方程?
一元二次方程教學(xué)設(shè)計6
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點:使學(xué)生會用列一元二次方程的方法解決有關(guān)增長率問題.
。ǘ┠芰τ(xùn)練點:進一步培養(yǎng)學(xué)生化實際問題為數(shù)學(xué)問題的能力和分析問題解決問題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識.
二、教學(xué)重點、難點
1.教學(xué)重點:學(xué)會用列方程的方法解決有關(guān)增長率問題.
2.教學(xué)難點:有關(guān)增長率之間的數(shù)量關(guān)系.下列詞語的異同;增長,增長了,增長到;擴大,擴大到,擴大了.
三、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo).
(二)整體感知
(三)重點、難點的學(xué)習(xí)和目標(biāo)完成過程
1.復(fù)習(xí)提問
。1)原產(chǎn)量+增產(chǎn)量=實際產(chǎn)量.
。2)單位時間增產(chǎn)量=原產(chǎn)量×增長率.
(3)實際產(chǎn)量=原產(chǎn)量×(1+增長率).
2.例1 某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個月平均每月增長的百分率是多少?
分析:設(shè)平均每月的增長率為x.
則2月份的產(chǎn)量是5000+5000x=5000(1+x)(噸).
3月份的`產(chǎn)量是
=5000(1+x)2(噸).
解:設(shè)平均每月的增長率為x,據(jù)題意得:
5000(1+x)2=7200
。1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合題意,舍去).
取x=0.2=20%.
教師引導(dǎo),點撥、板書,學(xué)生回答.
注意以下幾個問題:
。1)為計算簡便、直接求得,可以直接設(shè)增長的百分率為x.
。2)認(rèn)真審題,弄清基數(shù),增長了,增長到等詞語的關(guān)系.
。3)用直接開平方法做簡單,不要將括號打開.
練習(xí)1.教材P.42中5.
學(xué)生分析題意,板書,筆答,評價.
練習(xí)2.若設(shè)每年平均增長的百分?jǐn)?shù)為x,分別列出下面幾個問題的方程.
。1)某工廠用二年時間把總產(chǎn)值增加到原來的b倍,求每年平均增長的百分率.
。1+x)2=b(把原來的總產(chǎn)值看作是1.)
(2)某工廠用兩年時間把總產(chǎn)值由a萬元增加到b萬元,求每年平均增長的百分?jǐn)?shù).
。╝(1+x)2=b)
(3)某工廠用兩年時間把總產(chǎn)值增加了原來的b倍,求每年增長的百分?jǐn)?shù).
。ǎ1+x)2=b+1把原來的總產(chǎn)值看作是1.)
以上學(xué)生回答,教師點撥.引導(dǎo)學(xué)生總結(jié)下面的規(guī)律:
設(shè)某產(chǎn)量原來的產(chǎn)值是a,平均每次增長的百分率為x,則增長一次后的產(chǎn)值為a(1+x),增長兩次后的產(chǎn)值為a(1+x)2 ,…………增長n次后的產(chǎn)值為S=a(1+x)n.
規(guī)律的得出,使學(xué)生對此類問題能居高臨下,同時培養(yǎng)學(xué)生的探索精神和創(chuàng)造能力.
例2 某產(chǎn)品原來每件600元,由于連續(xù)兩次降價,現(xiàn)價為384元,如果兩個降價的百分?jǐn)?shù)相同,求每次降價百分之幾?
分析:設(shè)每次降價為x.
第一次降價后,每件為600-600x=600(1-x)(元).
第二次降價后,每件為600(1-x)-600(1-x)x
=600(1-x)2(元).
解:設(shè)每次降價為x,據(jù)題意得
600(1-x)2=384.
答:平均每次降價為20%.
教師引導(dǎo)學(xué)生分析完畢,學(xué)生板書,筆答,評價,對比,總結(jié).
引導(dǎo)學(xué)生對比“增長”、“下降”的區(qū)別.如果設(shè)平均每次增長或下降為x,則產(chǎn)值a經(jīng)過兩次增長或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).
。ㄋ模┛偨Y(jié)、擴展
1.善于將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴(yán)格審題,弄清各數(shù)據(jù)相互關(guān)系,正確布列方程.培養(yǎng)學(xué)生用數(shù)學(xué)的意識以及滲透轉(zhuǎn)化和方程的思想方法.
2.在解方程時,注意巧算;注意方程兩根的取舍問題.
3.我們只學(xué)習(xí)一元一次方程,一元二次方程的解法,所以只求到兩年的增長率.3年、4年……,n年,應(yīng)該說按照規(guī)律我們可以列出方程,隨著知識的增加,我們也將會解這些方程.
四、布置作業(yè)
教材P.42中A8
五、板書設(shè)計
12.6 一元二次方程應(yīng)用(三)
1.?dāng)?shù)量關(guān)系:例1……例2……
(1)原產(chǎn)量+增產(chǎn)量=實際產(chǎn)量分析:……分析……
。2)單位時間增產(chǎn)量=原產(chǎn)量×增長率解……解……
。3)實際產(chǎn)量=原產(chǎn)量(1+增長率)
2.最后產(chǎn)值、基數(shù)、平均增長率、時間
的基本關(guān)系:
M=m(1+x)n n為時間
M為最后產(chǎn)量,m為基數(shù),x為平均增長率
一元二次方程教學(xué)設(shè)計7
學(xué)情分析
學(xué)生在七年級和八年級已經(jīng)學(xué)習(xí)了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基礎(chǔ)上本節(jié)課將從實際問題入手,抽象出一元二次方程的概念及一元二次方程的一般形式。
教學(xué)目標(biāo):
知識技能
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.
過程與方法
1、通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題及解決問題的能力.
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.
情感態(tài)度
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.
教學(xué)重難點
重點:一元二次方程的概念及一般形式.
難點:探求問題中的等量關(guān)系,建立方程模型
教學(xué)突破:
1、方程是否為一元二次方程,主要看是否滿足三個條件:(1)是整式方程;(2)只含有一個未知數(shù);(3)未知數(shù)的最高次數(shù)為2次
2、一元二次方程的各項系數(shù)均是相對于一般形式而言的,因此在教學(xué)中應(yīng)強調(diào):若要確定各項的系數(shù),應(yīng)先將方程化為一般形式。另外,一定要注意符號,尤其符號不能漏掉。
教學(xué)過程設(shè)計
一、創(chuàng)設(shè)情境引入新課
問題1:
在長30米,寬20米的矩形場地上,修筑同樣寬的兩條道路,余下的部分作為耕地,要使耕地的面積為500平方米,求道路的寬度?.
通過多媒體演示,把文字轉(zhuǎn)化為圖形,幫助學(xué)生理解題意,從而由學(xué)生獨立思考,列出滿足條件的.方程.
問題2:
參加一次商品交易會的每兩家公司之間都簽訂一份合同,所有公司共簽訂了45份合同,求有多少家參加商品交易會?
二、啟發(fā)探究獲得新知
1、一元二次方程的概念:經(jīng)整理后,,只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程,叫做一元二次方程。
說明:(1)由一問題得到2個方程,由學(xué)生觀察歸納這2個方程的特征,給出名稱并類比一元一次方程的定義,得出一元二次方程的定義.
(2)一元二次方程必須同時具備三個特征:a)整式方程; b)只含有一個未知數(shù); c)未知數(shù)的最高次數(shù)為2.
眼疾口快:
請搶答下列各式是否為一元二次方程:
。4)5x+3=10
說明:此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性.
2、一元二次方程的一般式:
試一試:
例1、下面給出了某個方程的幾個特點:
它的一般形式為
。2)它的二次項系數(shù)為5;
。3)常數(shù)項是一次項系數(shù)的倒數(shù)的相反數(shù)。
請你寫出一個符合條件的的一元二次方程
說明:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解
三、運用新知體驗成功
小試牛刀:
1.將下列方程化成一元二次方程的一般形式,并
寫出其中的二次項系數(shù)、一次項系數(shù)和常數(shù)項.
。1)5x 2 -1= 4x;
。2)4x 2 = 81;
(3)4x(x+2)=25;
。4)(3x – 2)( x + 1 ) = 8x - 3
說明:鞏固練習(xí)學(xué)生整理一般形式的方法,并準(zhǔn)確找出各項系數(shù).此環(huán)節(jié)可找學(xué)生口答結(jié)果.另讓學(xué)生落實將剛才教師板書的整理一般形式的過程,再次突出本節(jié)課的重點內(nèi)容
2.
(1)小區(qū)20xx年底擁有家庭轎車64輛,20xx年底家庭轎車的擁有輛達到100輛,若該小區(qū)這兩年的年平均增長率相同,求年平均增長率x;
(2)一個矩形的長比寬多2厘米,面積是100平方厘米,求矩形的長x;
。3)要組織一次籃球聯(lián)賽,每兩隊之間都賽一場,計劃安排21場比賽,有多少隊參加?
說明:這幾題有在實際生活中應(yīng)用的意義,以此題為例,教師板書整理一元二次方程的過程,讓學(xué)生學(xué)會如何整理任意一元二次方程的一般形式,并能準(zhǔn)確找到各項系數(shù).
教師在此活動中應(yīng)重點關(guān)注:
(1)由一個學(xué)生列出方程,并解釋解題方法,教師進行引導(dǎo),點評,引起其他學(xué)生的關(guān)注,認(rèn)同.
(2)教師在歸納點評過程中,應(yīng)注意把兩隊只打一場比賽解釋清楚,以便學(xué)生理解題意.
(3)整理一般形式后,教師應(yīng)強調(diào)整理過程中應(yīng)用到的等式變形方法,如去括號,移項,合并同類項,去分母等.
(4)讓學(xué)生指出各項系數(shù)時,教師強調(diào)系數(shù)須帶符合.
例2、當(dāng)m取何值時,方程(m-2)xm2-2+3mx=5
是關(guān)于x的一元二次方程?
此題由學(xué)生思考,討論,并由學(xué)生給出結(jié)果并進行解釋.
說明:此活動過程中,教師應(yīng)重點關(guān)注:
(1)此題目在上一題的基礎(chǔ)上繼續(xù)加大難度,第(1)題須強調(diào)先進行整理,再考慮二次項系數(shù)是否為零;第(2)題須先求出m值,再代入二次項系數(shù)中,驗證是否為0,得到結(jié)果.
(2)學(xué)生解答過程中,教師把整理的一般形式書寫在黑板上,以便全體學(xué)生理解.
(2)學(xué)生解答過程中,教師把整理的一般形式書寫在黑板上,以便全體學(xué)生理解.
四、歸納小結(jié)拓展提高
1.問題:
本節(jié)課你又學(xué)會了哪些新知識?
說明:小結(jié)反思中,不同學(xué)生有不同的體會,要尊重學(xué)生的個體差異,激發(fā)學(xué)生主動參與意識,.為每個學(xué)生都創(chuàng)造了數(shù)學(xué)活動中獲得活動經(jīng)驗的機會。
2.還有什么疑惑?
五、布置作業(yè):
教科書第21.1第1、2、3題.
板書設(shè)計
21.1一元二次方程
一元二次方程的概念:方程兩邊都是整式,并且只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2的方程叫一元二次方程。
一元二次方程的一般形式
a表示二次項系數(shù),b表示一次項系數(shù),c表示常數(shù)項。
例1.例1、下面給出了某個方程的幾個特點:
它的一般形式為
。2)它的二次項系數(shù)為5;
。3)常數(shù)項是一次項系數(shù)的倒數(shù)的相反數(shù)。
請你寫出一個符合條件的的一元二次方程
例2、當(dāng)m取何值時,方程(m-2)xm2-2+3mx=5
是關(guān)于x的一元二次方程?
學(xué)生學(xué)習(xí)活動評價設(shè)計:
關(guān)注學(xué)生在學(xué)習(xí)活動中的表現(xiàn),如能否積極的參加活動,能否從不同的角度去思考問題,等等,而不是僅局限于學(xué)生列方程,判斷學(xué)生各項系數(shù)的正確與否。
重視學(xué)生應(yīng)用新知解決問題的能力的評價,鼓勵學(xué)生使用數(shù)學(xué)語言,有條理地表達自己的思考過程,鼓勵大膽質(zhì)疑和創(chuàng)新。
一元二次方程教學(xué)設(shè)計8
教材分析
一元二次方程是九年級數(shù)學(xué)一個非常重要的內(nèi)容,是首次出現(xiàn)的高于一次的方程。其解法的策略就是將其“降次”轉(zhuǎn)化為一次方程。通過解比較簡單的一元二次方程,引導(dǎo)學(xué)生認(rèn)識直接開平方法解方程,再通過對比一邊為完全平方形式的方程,使學(xué)生認(rèn)識配方法的基本原理并掌握其具體方法,為后面的求根公式做準(zhǔn)備。
學(xué)情分析
1. 教學(xué)對象:本班學(xué)生58人,這個班的特點是兩頭力量少,中間力量多,基礎(chǔ)知識薄弱。但學(xué)習(xí)氣氛較濃,能調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性和挑戰(zhàn)性
2. 學(xué)生的認(rèn)知分析:學(xué)生雖然具備初步的.解題思路,但缺乏融會貫通和應(yīng)用的能力。應(yīng)適當(dāng)?shù)貏?chuàng)設(shè)一些難易、新舊相結(jié)合的問題,加強學(xué)生對知識的應(yīng)用。在學(xué)習(xí)過程中培養(yǎng)學(xué)生自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗。
教學(xué)目標(biāo)
1、知識與技能:學(xué)生會用直接開平方法解方程,x2=p,x2+2mx+m2=p(p≥0)建立一元二次方程模型解決簡單的實際問題,循序漸進的讓學(xué)生掌握直接開平方法的做法,通過對比學(xué)會配方法解數(shù)字系數(shù)的一元二次方程
2情感目標(biāo):滲透轉(zhuǎn)化思想,掌握一些轉(zhuǎn)化技能
教學(xué)重點和難點
重點:直接開平方法,簡單的配方法
難點:配方,把一元二次方程轉(zhuǎn)化為形如(x-a)2=b的過程
一元二次方程教學(xué)設(shè)計9
教材分析
一元二次方程是中學(xué)數(shù)學(xué)的一個重要內(nèi)容之一,在初中數(shù)學(xué)中占有重要地位。從知識的發(fā)展來看,一元二次方程的學(xué)習(xí),是一元一次方程、方程組及不等式知識的延續(xù)和深化,也是今后學(xué)生學(xué)習(xí)可化為一元二次方程的方程、一元二次不等式、二次函數(shù)等知識的基礎(chǔ)。從知識的橫向來看,一元二次方程的學(xué)習(xí)對其它學(xué)科也有重要的意義,比如物理中的變速運動等問題就要通過解一元二次方程來解決。這節(jié)課是一元二次方程的概念課,通過豐富的實例,抽象出一元二次方程的概念。本節(jié)課的教學(xué)不僅使學(xué)生進一步體會方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效的數(shù)學(xué)模型,而且提高了學(xué)生分析、比較、抽象和概括的能力。為接下來的學(xué)習(xí)起到很好的鋪墊作用
學(xué)情分析
九年級的學(xué)生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學(xué)習(xí)了一元一次方程及相關(guān)概念,學(xué)習(xí)了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎(chǔ)。這個階段的學(xué)生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當(dāng)遇到新的問題時,會自然的產(chǎn)生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學(xué)生數(shù)學(xué)底子薄,基礎(chǔ)差,學(xué)生由于學(xué)習(xí)困難,基礎(chǔ)差,沒有自信,也就對數(shù)學(xué)的學(xué)習(xí)興趣越來越弱,有人甚至要放棄對數(shù)學(xué)的學(xué)習(xí),作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學(xué)的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學(xué)基本概念、基本運算方法悄然走進學(xué)生的生活、走進他們對知識的運用中去。
教學(xué)目標(biāo)
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);
3.通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、探究和歸納的能力。
二、過程與方法
1. 在回顧一元一次方程的概念的'基礎(chǔ)上,讓學(xué)生通過分析實際問題中的數(shù)量關(guān)系列出方程,從而引導(dǎo)他們發(fā)現(xiàn)問題,然后通過自主探究和合作交流,抽象出一元二次方程的概念;
2. 借助于多媒體從實際問題抽象出概念,在通過鞏固訓(xùn)練、回顧梳理、拓展提高到作業(yè)布置,完成本節(jié)課的教學(xué)
三、情感態(tài)度與價值觀
1. 通過本節(jié)課的學(xué)習(xí)使學(xué)生認(rèn)識到數(shù)學(xué)來源于生活實踐,又反過來作用于生活的辯證唯物主義觀點,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識;
2. 通過本節(jié)知識的學(xué)習(xí),使學(xué)生認(rèn)識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學(xué)重點和難點
重點:一元二次方程的概念及一般形式。
難點:1.由實際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項”及“系數(shù)”。
一元二次方程教學(xué)設(shè)計10
教學(xué)目標(biāo)
(一)教學(xué)知識點
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).
(二)能力訓(xùn)練要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.
3.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識.
(三)情感與價值觀要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.
2.具有初步的創(chuàng)新精神和實踐能力.
教學(xué)重點
1.體會方程與函數(shù)之間的聯(lián)系.
2.理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).
教學(xué)難點
1.探索方程與函數(shù)之間的聯(lián)系的過程.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系.
教學(xué)方法
討論探索法.
教具準(zhǔn)備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學(xué)過程
、.創(chuàng)設(shè)問題情境,引入新課
[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系.當(dāng)一次函數(shù)中的`函數(shù)值y=0時,一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標(biāo)即為一元一次方程kx+b=0的解.
現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題.
、.講授新課
一、例題講解
投影片:(§2.8.1A)
我們已經(jīng)知道,豎直上拋物體的高度h(m)與運動時間t(s)的關(guān)系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是拋出時的高度,v0(m/s)是拋出時的速度.一個小球從地面被以40m/s的速度豎直向上拋起,小球的高度h(m)與運動時間t(s)的關(guān)系如下圖所示,那么
(1)h與t的關(guān)系式是什么?
(2)小球經(jīng)過多少秒后落地?你有幾種求解方法?與同伴進行交流.
[師]請大家先發(fā)表自己的看法,然后再解答.
[生](1)h與t的關(guān)系式為h=-5t2+v0t+h0,其中的v0為40m/s,小球從地面被拋起,所以h0=0.把v0,h0代入上式即可求出h與t的關(guān)系式.
(2)小球落地時h為0,所以只要令h=-5t2+v0t+h.中的h為0,求出t即可.
還可以觀察圖象得到.
[師]很好.能寫出步驟嗎?
[生]解:(1)∵h=-5t2+v0t+h0,
當(dāng)v0=40,h0=0時,
h=-5t2+40t.
(2)從圖象上看可知t=8時,小球落地或者令h=0,得:
-5t2+40t=0,
即t2-8t=0.
∴t(t-8)=0.
∴t=0或t=8.
t=0時是小球沒拋時的時間,t=8是小球落地時的時間.
二、議一議
投影片:(§2.8.1B)
二次函數(shù)①y=x2+2x,
②y=x2-2x+1,
③y=x2-2x+2的圖象如下圖所示.
(1)每個圖象與x軸有幾個交點?
(2)一元二次方程x2+2x=0,x2-2x+1=0有幾個根?解方程驗證一下:一元二次方程x2-2x+2=0有根嗎?
(3)二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
[師]還請大家先討論后解答.
[生](1)二次函數(shù)y=x2+2x,y=x2-2x+1,y=x2-2x+2的圖象與x軸分別有兩個交點,一個交點,沒有交點.
(2)一元二次方程x2+2x=0有兩個根0,-2;方程x2-2x+1=0有兩個相等的根1或一個根1;方程x2-2x+2=0沒有實數(shù)根.
(3)從觀察圖象和討論中可知,二次函數(shù)y=x2+2x的圖象與x軸有兩個交點,交點的坐標(biāo)分別為(0,0),(-2,0),方程x2+2x=0有兩個根0,-2;
二次函數(shù)y=x2-2x+1的圖象與x軸有一個交點,交點坐標(biāo)為(1,0),方程x2-2x+1=0有兩個相等的實數(shù)根(或一個根)1;二次函數(shù)y=x2-2x+2的圖象與x軸沒有交點,方程x2-2x+2=0沒有實數(shù)根.
由此可知,二次函數(shù)y=ax2+bx+c的圖象和x軸交點的橫坐標(biāo)即為一元二次方程ax2+bx+c=0的根.
[師]大家總結(jié)得非常棒.
二次函數(shù)y=ax2+bx+c的圖象與x軸的交點有三種情況:有兩個交點、有一個交點、沒有交點.當(dāng)二次函數(shù)y=ax2+bx+c的圖象與x軸有交點時,交點的橫坐標(biāo)就是當(dāng)y=0時自變量x的值,即一元二次方程ax2+bx+c=0的根.
三、想一想
在本節(jié)一開始的小球上拋問題中,何時小球離地面的高度是60m?你是如何知道的?
[師]請大家討論解決.
[生]在式子h=-5t2+v0t+h0中,當(dāng)h0=0,v0=40m/s,h=60m時,有
-5t2+40t=60,
t2-8t+12=0,
∴t=2或t=6.
因此當(dāng)小球離開地面2秒和6秒時,高度都是60m.
、.課堂練習(xí)
隨堂練習(xí)(P67)
Ⅳ.課時小結(jié)
本節(jié)課學(xué)了如下內(nèi)容:
1.經(jīng)歷了探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會了方程與函數(shù)之間的聯(lián)系.
2.理解了二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解了何時方程有兩個不等的實根.兩個相等的實根和沒有實根.
、.課后作業(yè)
習(xí)題2.9
板書設(shè)計
§2.8.1 二次函數(shù)與一元二次方程(一)
一、1.例題講解(投影片§2.8.1A)
2.議一議(投影片§2.8.1B)
3.想一想
二、課堂練習(xí)
隨堂練習(xí)
三、課時小結(jié)
四、課后作業(yè)
備課資料
思考、探索、交流
把4根長度均為100m的鐵絲分別圍成正方形、長方形、正三角形和圓,哪個的面積最大?為什么?
解:(1)設(shè)長方形的一邊長為x m,另一邊長為(50-x)m,則
S長方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.
即當(dāng)x=25時,S最大=625.
(2)S正方形=252=625.
(3)∵正三角形的邊長為 m,高為 m,
∴S三角形= =≈481(m2).
(4)∵2πr=100,∴r= .
∴S圓=πr2=π·( )2=π· = ≈796(m2).
所以圓的面積最大.
一元二次方程教學(xué)設(shè)計11
由"倍數(shù)關(guān)系"等問題建立數(shù)學(xué)模型,并通過配方法或公式法或分解因式法解決實際問題.
教學(xué)目標(biāo)
掌握用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型,并利用它解決一些具體問題.
通過復(fù)習(xí)二元一次方程組等建立數(shù)學(xué)模型,并利用它解決實際問題,引入用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型,并利用它解決實際問題.
重難點關(guān)鍵
1.重點:用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型
2.難點與關(guān)鍵:用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型
教學(xué)過程
一、復(fù)習(xí)引入
(學(xué)生活動)問題1:列方程解應(yīng)用題
下表是某一周甲、乙兩種股票每天每股的收盤價(收盤價:股票每天交易結(jié)果時的價格):
星期 一 二 三 四 五
甲 12元 12.5元 12.9元 12.45元 12.75元
乙 13.5元 13.3元 13.9元 13.4元 13.75元
某人在這周內(nèi)持有若干甲、乙兩種股票,若按照兩種股票每天的收盤價計算(不計手續(xù)費、稅費等),則在他帳戶上,星期二比星期一增加200元,星期三比星期二增加1300元,這人持有的甲、乙股票各多少股?
老師點評分析:一般用直接設(shè)元,即問什么就設(shè)什么,即設(shè)這人持有的甲、乙股票各x、y張,由于從表中知道每天每股的收盤價,因此,兩種股票當(dāng)天的帳戶總數(shù)就是x或y乘以相應(yīng)的每天每股的收盤價,再根據(jù)已知的等量關(guān)系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
解:設(shè)這人持有的甲、乙股票各x、y張.
則 解得
答:(略)
二、探索新知
上面這道題大家都做得很好,這是一種利用二元一次方程組的數(shù)量關(guān)系建立的數(shù)學(xué)模型,那么還有沒有利用其它形式,也就是利用我們前面所學(xué)過的一元二次方程建立數(shù)學(xué)模型解應(yīng)用題呢?請同學(xué)們完成下面問題.
(學(xué)生活動)問題2:某工廠第一季度的一月份生產(chǎn)電視機是1萬臺,第一季度生產(chǎn)電視機的總臺數(shù)是3.31萬臺,求二月份、三月份生產(chǎn)電視機平均增長的百分率是多少?
老師點評分析:直接假設(shè)二月份、三月份生產(chǎn)電視機平均增長率為x.因為一月份是1萬臺,那么二月份應(yīng)是(1+x)臺,三月份應(yīng)是在二月份的基礎(chǔ)上以二月份比一月份增長的同樣"倍數(shù)"增長,即(1+x)+(1+x)x=(1+x)2,那么就很容易從第一季度總臺數(shù)列出等式.
解:設(shè)二月份、三月份生產(chǎn)電視機平均增長的百分率為x,則1+(1+x)+(1+x)2=3.31
去括號:1+1+x+1+2x+x2=3.31
整理,得:x2+3x-0.31=0
解得:x=10%
答:(略)
以上這一道題與我們以前所學(xué)的一元一次、二元一次方程(組)、分式方程等為背景建立數(shù)學(xué)模型是一樣的,而我們借助的是一元二次方程為背景建立數(shù)學(xué)模型來分析實際問題和解決問題的類型.
例1.某電腦公司20xx年的各項經(jīng)營中,一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共950萬元,如果平均每月營業(yè)額的增長率相同,求這個增長率.
分析:設(shè)這個增長率為x,由一月份的營業(yè)額就可列出用x表示的`二、三月份的營業(yè)額,又由三月份的總營業(yè)額列出等量關(guān)系.
解:設(shè)平均增長率為x
則200+200(1+x)+200(1+x)2=950
整理,得:x2+3x-1.75=0
解得:x=50%
答:所求的增長率為50%.
三、鞏固練習(xí)
(1)某林場現(xiàn)有木材a立方米,預(yù)計在今后兩年內(nèi)年平均增長p%,那么兩年后該林場有木材多少立方米?
(2)某化工廠今年一月份生產(chǎn)化工原料15萬噸,通過優(yōu)化管理,產(chǎn)量逐年上升,第一季度共生產(chǎn)化工原料60萬噸,設(shè)二、三月份平均增長的百分率相同,均為x,可列出方程為__________.
四、應(yīng)用拓展
例2.某人將20xx元人民幣按一年定期存入銀行,到期后支取1000元用于購物,剩下的1000元及應(yīng)得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共1320元,求這種存款方式的年利率.
分析:設(shè)這種存款方式的年利率為x,第一次存20xx元取1000元,剩下的本金和利息是1000+20xxx·80%;第二次存,本金就變?yōu)?000+20xxx·80%,其它依此類推.
解:設(shè)這種存款方式的年利率為x
則:1000+20xxx·80%+(1000+20xxx·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2= =0.125=12.5%
答:所求的年利率是12.5%.
五、歸納小結(jié)
本節(jié)課應(yīng)掌握:
利用"倍數(shù)關(guān)系"建立關(guān)于一元二次方程的數(shù)學(xué)模型,并利用恰當(dāng)方法解它.
六、布置作業(yè)
1.教材P53 復(fù)習(xí)鞏固1 綜合運用1.
2.選用作業(yè)設(shè)計.
作業(yè)設(shè)計
一、選擇題
1.20xx年一月份越南發(fā)生禽流感的養(yǎng)雞場100家,后來二、三月份新發(fā)生禽流感的養(yǎng)雞場共250家,設(shè)二、三月份平均每月禽流感的感染率為x,依題意列出的方程是( ).
A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250
C.100(1-x)2=250 D.100(1+x)2
2.一臺電視機成本價為a元,銷售價比成本價增加25%,因庫存積壓,所以就按銷售價的70%出售,那么每臺售價為( ).
A.(1+25%)(1+70%)a元 B.70%(1+25%)a元
C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元
3.某商場的標(biāo)價比成本高p%,當(dāng)該商品降價出售時,為了不虧損成本,售價的折扣(即降低的百分?jǐn)?shù))不得超過d%,則d可用p表示為( ).
A. B.p C. D.
二、填空題
1.某農(nóng)戶的糧食產(chǎn)量,平均每年的增長率為x,第一年的產(chǎn)量為6萬kg,第二年的產(chǎn)量為_______kg,第三年的產(chǎn)量為_______,三年總產(chǎn)量為_______.
2.某糖廠20xx年食糖產(chǎn)量為at,如果在以后兩年平均增長的百分率為x,那么預(yù)計20xx年的產(chǎn)量將是________.
3.我國政府為了解決老百姓看病難的問題,決定下調(diào)藥品價格,某種藥品在1999年漲價30%后,20xx年降價70%至a元,則這種藥品在1999年漲價前價格是__________.
三、綜合提高題
1.為了響應(yīng)國家"退耕還林",改變我省水土流失的嚴(yán)重現(xiàn)狀,20xx年我省某地退耕還林1600畝,計劃到20xx年一年退耕還林1936畝,問這兩年平均每年退耕還林的平均增長率2.洛陽東方紅拖拉機廠一月份生產(chǎn)甲、乙兩種新型拖拉機,其中乙型16臺,從二月份起,甲型每月增產(chǎn)10臺,乙型每月按相同的增長率逐年遞增,又知二月份甲、乙兩型的產(chǎn)量之比是3:2,三月份甲、乙兩型產(chǎn)量之和為65臺,求乙型拖拉機每月的增長率及甲型拖拉機一月份的產(chǎn)量.
3.某商場于第一年初投入50萬元進行商品經(jīng)營,以后每年年終將當(dāng)年獲得的利潤與當(dāng)年年初投入的資金相加所得的總資金,作為下一年年初投入的資金繼續(xù)進行經(jīng)營.
(1)如果第一年的年獲利率為p,那么第一年年終的總資金是多少萬元?(用代數(shù)式來表示)(注:年獲利率= ×100%)
(2)如果第二年的年獲利率多10個百分點(即第二年的年獲利率是第一年的年獲利率與10%的和),第二年年終的總資金為66萬元,求第一年的年獲利率.
答案:
一、1.B 2.B 3.D
二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2
2.a(1+x)2t
3.
三、1.平均增長率為x,則1600(1+x)2=1936,x=10%
2.設(shè)乙型增長率為x,甲型一月份產(chǎn)量為y:
則
即16x2+56x-15=0,解得x= =25%,y=20(臺)
3.(1)第一年年終總資金=50(1+P)
(2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。
一元二次方程教學(xué)設(shè)計12
課型:新授課
學(xué)習(xí)目標(biāo):
1.能根據(jù)具體問題中的數(shù)量關(guān)系列出一元二次方程并利用它解決具體問題.
2.學(xué)會運用數(shù)學(xué)知識分析解決實際問題,體會數(shù)學(xué)的價值。
重點:列一元二次方程解應(yīng)用題
難點:學(xué)會分析問題中的等量關(guān)系
一、知識回顧
列方程解應(yīng)用題的一般步驟是①②③④⑤⑥
二、自學(xué)教材、合作探究
1、自學(xué)教材45頁,學(xué)習(xí)分析“探究一”中的數(shù)量關(guān)系
設(shè)每輪傳染中平均一個人傳染了x個人。開始有一人患了流感,第一輪的傳染源就是這個人,他傳染了x個人,那么,用代數(shù)式表示,第一輪后共有( )人患了流感;第二輪傳染中,這些人中的每個人又傳染了x個人,用代數(shù)式表示,第二輪后共有( )人患了流感。則可列方程為:
2、解這個方程,得
3、想一想:三輪傳染后有多少人患流感?四輪呢?
三、檢查自學(xué)效果
1.(xxxx年畢節(jié)地區(qū))有一人患了流感,經(jīng)過兩輪傳染后共有100人患了流感,那么每輪傳染中,平均一個人傳染的人數(shù)為( )
A.8人B.9人C.10人D.11人
2.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈送一件;全組共互贈了182件.如果全組有x名學(xué)生,則根據(jù)題意列出的方程是( )
A. B. C. D.
四、指導(dǎo)學(xué)生應(yīng)用
某種電腦病毒傳播非常快,如果一臺電腦被感染,經(jīng)過兩輪感染后就會有81臺電腦被感染.請你用學(xué)過的知識分析,每輪感染中平均一臺電腦會感染幾臺電腦?若病毒得不到有效控制,3輪感染后,被感染的'電腦會不會超過700臺?(xxxx廣東中考9分)
解:設(shè)每輪感染中平均每一臺電腦會感染臺電腦,1分
4分
解之得6分
8分
答:每輪平均每一臺電腦會感染臺電腦,3輪感染后,被感染的電腦超過700臺。
五、鞏固訓(xùn)練:
1.一個多邊形的對角線有9條,則這個多邊形的邊數(shù)是( ).
A.6 B.7 C.8 D.9
2.元旦期間,一個小組有若干人,新年互送賀卡一張,已知全組共送賀卡132張,則這個小組共有( )人
A.11 B.12 C.13 D.14
3.九年級(3)班文學(xué)小組在舉行的圖書共享儀式上互贈圖書,每個同學(xué)都把自己的圖書向本組其他成員贈送一本,全組共互贈了240本圖書,如果設(shè)全組共有x名同學(xué),依題意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.參加中秋晚會的每兩個人都握了一次手,所有人共握手10次,則有( )人參加聚會。
5.學(xué)校組織了一次籃球單循環(huán)比賽,共進行了15場比賽,那么有個球隊參加了這次比賽。
6.甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?
反思:2題和4題列方程時為何不一樣呢?
六、歸納小結(jié):
1.本節(jié)課我們學(xué)習(xí)了列一元一次方程解應(yīng)用題,要注意解題步驟,特別地,要檢驗解的結(jié)果是否正確與符合題意,并注意題型的積累。
2.(方法歸納)解應(yīng)用題地步驟是:審、設(shè)、列、解、檢、答,關(guān)鍵是尋找等量關(guān)系,可以采用列式法,線段圖示法,列表法等來幫助尋找,并注重檢驗。
七、效果測評:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.兩個相鄰的偶數(shù)的積是240,求這兩個偶數(shù)。
3.參加一次足球聯(lián)賽的每兩個隊之間都進行兩場比賽,共要比賽90場,共有多少個隊參加比賽?
一元二次方程教學(xué)設(shè)計13
教學(xué)目標(biāo)
掌握b2—4ac>0,ax2+bx+c=0(a≠0)有兩個不等的實根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有兩個相等的實數(shù)根,反之也成立;b2—4ac<0,ax2+bx+c=0(a≠0)沒實根,反之也成立;及其它們關(guān)系的運用。
通過復(fù)習(xí)用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac<0各一題,分析它們根的情況,從具體到一般,給出三個結(jié)論并應(yīng)用它們解決一些具體題目。
重難點關(guān)鍵
1。重點:b2—4ac>0 一元二次方程有兩個不相等的實根;b2—4ac=0 一元二次方程有兩個相等的實數(shù);b2—4ac<0 一元二次方程沒有實根。
2。難點與關(guān)鍵
從具體題目來推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情況與根的情況的關(guān)系。
教具、學(xué)具準(zhǔn)備
小黑板
教學(xué)過程
一、復(fù)習(xí)引入
。▽W(xué)生活動)用公式法解下列方程。
。1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0
老師點評,(三位同學(xué)到黑板上作)老師只要點評(1)b2—4ac=9>0,有兩個不相等的實根;(2)b2—4ac=12—12=0,有兩個相等的實根;(3)b2—4ac=│—4×4×1│=<0,方程沒有實根。
二、探索新知
方程b2—4ac的值b2—4ac的符號x1、x2的關(guān)系
(填相等、不等或不存在)
2x2—3x=0
3x2—2 x+1=0
4x2+x+1=0
請觀察上表,結(jié)合b2—4ac的符號,歸納出一元二次方程的根的情況。證明你的猜想。
從前面的具體問題,我們已經(jīng)知道b2—4ac>0(<0,=0)與根的情況,現(xiàn)在我們從求根公式的角度來分析:
求根公式:x= ,當(dāng)b2—4ac>0時,根據(jù)平方根的意義, 等于一個具體數(shù),所以一元一次方程的x1= ≠x1= ,即有兩個不相等的實根。當(dāng)b2—4ac=0時,根據(jù)平方根的.意義 =0,所以x1=x2= ,即有兩個相等的實根;當(dāng)b2—4ac<0時,根據(jù)平方根的意義,負(fù)數(shù)沒有平方根,所以沒有實數(shù)解。
因此,(結(jié)論)(1)當(dāng)b2—4ac>0時,一元二次方程ax2+bx+c=0(a≠0)有兩個不相等實數(shù)根即x1= ,x2= 。
。2)當(dāng)b—4ac=0時,一元二次方程ax2+bx+c=0(a≠0)有兩個相等實數(shù)根即x1=x2= 。
。3)當(dāng)b2—4ac<0時,一元二次方程ax2+bx+c=0(a≠0)沒有實數(shù)根。
例1。不解方程,判定方程根的情況
(1)16x2+8x=—3 (2)9x2+6x+1=0
。3)2x2—9x+8=0 (4)x2—7x—18=0
分析:不解方程,判定根的情況,只需用b2—4ac的值大于0、小于0、等于0的情況進行分析即可。
解:(1)化為16x2+8x+3=0
這里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128<0
所以,方程沒有實數(shù)根。
三、鞏固練習(xí)
不解方程判定下列方程根的情況:
(1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0
。5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x
四、應(yīng)用拓展
例2。若關(guān)于x的一元二次方程(a—2)x2—2ax+a+1=0沒有實數(shù)解,求ax+3>0的解集(用含a的式子表示)。
分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就轉(zhuǎn)化為要判定a的值是正、負(fù)或0。因為一元二次方程(a—2)x2—2ax+a+1=0沒有實數(shù)根,即(—2a)2—4(a—2)(a+1)<0就可求出a的取值范圍。
解:∵關(guān)于x的一元二次方程(a—2)x2—2ax+a+1=0沒有實數(shù)根。
∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8<0
a<—2
∵ax+3>0即ax&
gt;—3
∴x<—
∴所求不等式的解集為x<—
五、歸納小結(jié)
本節(jié)課應(yīng)掌握:
b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有兩個不相等的實根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有兩個相等的實根;b2—4ac<0 一元二次方程ax2+bx+c=0(a≠0)沒有實數(shù)根及其它的運用。
六、布置作業(yè)
1。教材P46 復(fù)習(xí)鞏固6 綜合運用9 拓廣探索1、2。
2。選用課時作業(yè)設(shè)計。
第7課時作業(yè)設(shè)計
一、選擇題
1。以下是方程3x2—2x=—1的解的情況,其中正確的有( )。
A!遙2—4ac=—8,∴方程有解
B。∵b2—4ac=—8,∴方程無解
C!遙2—4ac=8,∴方程有解
D!遙2—4ac=8,∴方程無解
2。一元二次方程x2—ax+1=0的兩實數(shù)根相等,則a的值為( )。
A。a=0 B。a=2或a=—2
C。a=2 D。a=2或a=0
3。已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,則k的取值范圍是( )。
A。k≠2 B。k>2 C。k<2且k≠1 D。k為一切實數(shù)
二、填空題
1。已知方程x2+px+q=0有兩個相等的實數(shù),則p與q的關(guān)系是________。
2。不解方程,判定2x2—3=4x的根的情況是______(填"二個不等實根"或"二個相等實根或沒有實根")。
3。已知b≠0,不解方程,試判定關(guān)于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情況是________。
三、綜合提高題
1。不解方程,試判定下列方程根的情況。
。1)2+5x=3x2 (2)x2—(1+2 )x+ +4=0
2。當(dāng)c<0時,判別方程x2+bx+c=0的根的情況。
3。不解方程,判別關(guān)于x的方程x2—2kx+(2k—1)=0的根的情況。
4。某集團公司為適應(yīng)市場競爭,趕超世界先進水平,每年將銷售總額的8%作為新產(chǎn)品開發(fā)研究資金,該集團20xx年投入新產(chǎn)品開發(fā)研究資金為4000萬元,20xx年銷售總額為7。2億元,求該集團20xx年到20xx年的年銷售總額的平均增長率。
一元二次方程教學(xué)設(shè)計14
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次方程的解法”是初中代數(shù)的方程中的一個重要內(nèi)容之一,是在學(xué)完一元一次方程、因式分解、數(shù)的開方、以及前三種因式分解法、直接開方法、配方法解一元二次方程的基礎(chǔ)上,掌握用求根公式解一元二次方程,是配方法和開平方兩個知識的綜合運用和升華。通過本節(jié)課的教學(xué)使學(xué)生明確配方法是解方程的通法,同時會根據(jù)題目選擇合適的方法解一元二次方程。一元二次方程的解法也是今后學(xué)習(xí)二次函數(shù)和一元二次不等式的基礎(chǔ)。
。ǘ┙虒W(xué)目標(biāo)
知識技能方面:理解一元二次方程求根公式的推導(dǎo)過程,會用公式法解一元二次方程。
數(shù)學(xué)思考方面:通過求根公式的推導(dǎo)過程進一步使學(xué)生熟練掌握配方法,培養(yǎng)學(xué)生數(shù)學(xué)推理的嚴(yán)密性和邏輯性以及由特殊到一般的數(shù)學(xué)思想。
解決問題方面:結(jié)合用公式法解一元二次方程的練習(xí),培養(yǎng)學(xué)生快速準(zhǔn)確的運算能力和運用公式解決實際問題的能力。
情感態(tài)度方面:讓學(xué)生體驗到所有的方程都可以用公式法解決,感受到公式的對稱美、簡潔美,滲透分類的思想;公式的引入培養(yǎng)學(xué)生尋求簡便方法的探索精神和創(chuàng)新意識。
。ㄈ┙虒W(xué)重、難點
重點:掌握用公式法解一元二次方程的一般步驟;會熟練用公式法解一元二次方程。
難點:理解求根公式的推導(dǎo)過程和判別式
二、教學(xué)法分析
教法:本節(jié)課采用引導(dǎo)發(fā)現(xiàn)式的自主探究式與交流討論結(jié)合的方法;在教學(xué)中由舊知識引導(dǎo)探究一般化問題的形式展開,利用學(xué)生已有的知識、多交流、主動參與到教學(xué)活動中來。
學(xué)法:讓學(xué)生學(xué)會善于觀察、分析討論和分類歸納的方法,提出問題后,鼓勵學(xué)生通過分析、探索、嘗試解決問題的方法,銅鎖親自嘗試,使學(xué)生的思維能力得到培養(yǎng)。
三、過程分析
本節(jié)課的教學(xué)設(shè)計成以下六個環(huán)節(jié):復(fù)習(xí)導(dǎo)入——呈現(xiàn)問題——例題講解——鞏固練習(xí)課時小結(jié)——布置作業(yè)。
1、復(fù)習(xí)引入:
這節(jié)課,我首先從舊知
問題(1)用配方法解方程2x28x90的練習(xí)引入,
問題(2)總結(jié)配方法的一般步驟(化一般方程——二次項系數(shù)為1——配方使左邊為完全平方式——兩邊開方——求解)。
設(shè)計意圖:讓學(xué)生鞏固昨天的知識,進一步熟練鑰匙并為今天做學(xué)的內(nèi)容解一般形式的一元二次方程做好鋪墊,達到“溫故而知新”。
2、問題呈現(xiàn):
你能用配方法解一般形式的一元二次方程嗎?
此處由一個特殊的舊知引導(dǎo)學(xué)生推導(dǎo)出一般的結(jié)果,希望學(xué)生學(xué)會由特殊性到一般化的思想。為降低b2b24ac推導(dǎo)的難度,化簡、移項、配方、變形由我和學(xué)生一起探究完成,到(x這步時,提出 )
問題:①此時可以直接開平方嗎?
②等號右邊的值需要滿足什么條件?為什么?
、鄣忍栍疫叺闹抵桓膫式子有關(guān)?
設(shè)計意圖:師生共同完成前四步,這樣與利于減輕學(xué)生的思維負(fù)擔(dān),便于將主要精力放在后邊公式的推導(dǎo)上。通過小組的討論有利于發(fā)揮學(xué)生的互幫互助,借助小組的交流完善答案,關(guān)鍵讓學(xué)生會對掌握b24ac與方程有無實數(shù)根的關(guān)系,這里分類思想也是今后常用的一種數(shù)學(xué)思想,b24ac進行討論,
應(yīng)加以強化。
最終總結(jié)出:
當(dāng)b24ac<0時,原方程無實數(shù)解。
當(dāng)b24ac≥0時,原方程有實數(shù)解,
再進一步談?wù)摚篵24ac=0與b24ac>0時,兩個解區(qū)別?
(b24ac=0時,兩個相等的實數(shù)解,b24ac>0時,兩個不等的`實數(shù)解)
由此可知,方程有解還是無解是由b24ac決定,即b24ac是方程解的判別式。
同時,方程的解是可以將a、b、c
的值帶入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例題講解
例4:用公式法解下列方程
總結(jié)步驟:
1、把方程公成一般形式,并寫出a,b,c的值。
2、求出b24ac的值
4、寫出方程的解:x1= ,x2=
設(shè)計意圖:規(guī)范解題格式,讓學(xué)生體會數(shù)學(xué)課中的嚴(yán)謹(jǐn)?shù)倪壿嬐评恚惑w驗并掌握公式法解一元二次方程的步驟,從中讓學(xué)生領(lǐng)會到由特殊到一般,一般到特殊的辯證思想。
4、鞏固練習(xí)
解下列一元二次方程:①x2x60
②4x2x90
、踴2100
設(shè)計意圖:
(1)熟悉公式法,強化解題格式,
。2)及時發(fā)現(xiàn)錯誤及時解決。
例5:解方程:x(x1)(x2)
化簡得12212x3x40 2
強調(diào):
、佼(dāng)方程不是一般形式時,應(yīng)先化成一般形式,再運用求根公式。
、谀氵能用其他方法解本例方程嗎?
設(shè)計意圖:明確一元二次方程解題方法的多樣性,讓學(xué)生在你觀察分析題目后靈活合理的選擇解題方法,培養(yǎng)學(xué)生的多樣化思維,提高解題能力和解題的速度。
5、課時小結(jié)
(1)學(xué)生作知識總結(jié):本節(jié)課通過配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步驟解一元二次方程。
(2)我擴展:(方法歸納)求根公式是一元二次方程的專用公式,只有在確定方程是一元二次方程時才能使用,是常用而重要的一元二次方程的萬能求根公式。
6、布置作業(yè):面向全體學(xué)生,注重個體差異,加強作業(yè)的針對性,分層布置作業(yè),適應(yīng)新課標(biāo),讓不同的學(xué)生各其所長,因材施教的要求,提高他們的學(xué)習(xí)的興趣和自信心。
四、板書設(shè)計
本節(jié)課內(nèi)容較為單一,通過“層層設(shè)疑”、“復(fù)習(xí)回顧”等環(huán)節(jié)促進學(xué)生的思考和探究。
通過比較合理的問題設(shè)計鞏固練習(xí)、小組討論等形式給學(xué)生提供了充分的展示機會,強化了學(xué)生的運算能力,有利于學(xué)生掌握基本技能。
一元二次方程教學(xué)設(shè)計15
一、教學(xué)目標(biāo)
1.知識與技能
(1)會根據(jù)增長率問題中的數(shù)量關(guān)系和等量關(guān)系,列出一元二次方程,并能對方程解的合理性作出解釋;
2.過程與方法
通過猜想、探討構(gòu)建一元二次方程模型.
3.情感、態(tài)度與價值觀
。ǎ保┩ㄟ^自主、探究性學(xué)習(xí),使學(xué)生養(yǎng)成良好的思維習(xí)慣;
。ǎ玻┩ㄟ^對方程解的合理性解釋,培養(yǎng)學(xué)習(xí)實事求是的作風(fēng).
二、教學(xué)重點難點
1.重點
找出問題中的數(shù)量關(guān)系;
2.難點
找等量關(guān)系并列出相應(yīng)方程.
三、教材分析
本節(jié)課是從實際問題引入的基本概念,學(xué)習(xí)方程的基本解法之后所提出的一些實際問題,以及最后一節(jié)的實踐與探索,都是為了給與學(xué)生都創(chuàng)造一些探索交流的機會,讓學(xué)生了解數(shù)學(xué)知識的發(fā)展,學(xué)會解決一些簡單問題的方法,特別是從實際情景尋找所隱含的數(shù)量關(guān)系,建立適當(dāng)?shù)臄?shù)學(xué)模型.
四、教學(xué)過程與互動設(shè)計
。ㄒ唬毓手
1.請同學(xué)們回憶并回答解一元一次方程應(yīng)用題的一般步驟:
第一步:弄清題意和題目中的已知數(shù)、未知數(shù),用字母表示題目中的一個未知數(shù);
第二步:找出能夠表示應(yīng)用題全部含義的相等關(guān)系;
第三步:根據(jù)這些相等關(guān)系列出需要的代數(shù)式(簡稱關(guān)系式),從而列出方程;
第四步:解這個方程,求出未知數(shù)的值;
第五步:在檢查求得的答數(shù)是否符合應(yīng)用題的實際意義后,寫出答案(包括單位名稱.)
2.解一元二次方程的.應(yīng)用題的步驟與解一元一次方程應(yīng)用題的步驟一樣.
我們先來解一些具體的題目,然后總結(jié)一些規(guī)律或應(yīng)注意事項.
。ǘ﹦(chuàng)設(shè)情景,導(dǎo)入新課
1.一個長為10米的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8米.
若梯子的頂端下滑1米,那么
。1)猜一猜,底端也將滑動
1米嗎?
(2)列出底端滑動距離所滿足的方程.
【答案】①底端將滑動1米多
、谔崾荆合壤霉垂啥ɡ碓趯嶋H問題中的應(yīng)用,說明數(shù)學(xué)來源于實際.
2.【探究活動】1.某商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?
。ǎ保⿲W(xué)生討論:怎樣計算月利潤增長百分率?
【點評】通過學(xué)生討論得出月利潤增長百分率=月增利潤/月利潤
例8 某商品經(jīng)過兩次降價,每瓶零售價由56元降為31.5元,已知兩次降價的百分率相同,求每次降價的百分率.
分析:若一次降價百分率為x,則一次降價后零售價為原來的(1-x)倍,即56(1-x);第二次降價的百分率仍為31.5x,則第二次降價后零售價為原來的56(1-x)的(1-x)倍.
解:設(shè)平均降價百分率為x,根據(jù)題意,得
56(1-x)2=31.5
解這個方程,得
x 1 = 1.75,x2=0.25
因為降價的百分率不可能大于1,所以x1 = 1.75不符合題意,符合題意要求的是x=0.25=25%
答每次降價百分率為25%.
【跟蹤練習(xí)】
某藥品經(jīng)兩次降價,零售價降為原來的一半.已知兩次降價的百分率一樣,求每次降價的百分率(精確到0.1%).
【友情提示】我們要牢牢把握列方程解決實際問題的三個重要環(huán)節(jié):①整體地,系統(tǒng)地審清問題;②把握問題中的等量關(guān)系;③正確求解方程并檢驗解的合理性.
。ㄈ⿷(yīng)用遷移,鞏固提高
1.某商品原價200元,連續(xù)兩次降價a%后售價為148元,下列所列方程正確的是( )
。
A)200(1+a%)2=148 (B)200(1-a%)2=148
。–)200(1-2a%)=148 (D)200(1-a2%)=148
2.為綠化家鄉(xiāng),某中學(xué)在20xx年植樹400棵,計劃到20xx年底,使這三年的植樹總數(shù)達到1324棵,求此校植樹平均增長的百分?jǐn)?shù)?
(四)達標(biāo)測試
1.某超市一月份的營業(yè)額為100萬元,第一季度的營業(yè)額共800萬元,如果平均每月增長率為x,則所列方程應(yīng)為()
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
2.某地開展植樹造林活動,兩年內(nèi)植樹面積由30萬畝增加到42萬畝,若設(shè)植樹面積年平均增長率為,根據(jù)題意列方程.
,一元二次方程的解法
3.某農(nóng)場的糧食產(chǎn)量在兩年內(nèi)從3000噸增加到3630噸,平均每年增產(chǎn)的百分率是多少?
4.某小組計劃在一季度每月生產(chǎn)100臺機器部件,二月份開始每月實際產(chǎn)量都超過前月的產(chǎn)量,結(jié)果一季度超產(chǎn)20%,求二,三月份平均每月增長率是多少?(精確到1%)
5.某鋼鐵廠今年一月份的某種鋼產(chǎn)量是5000噸,此后每月比上個月產(chǎn)量提高的百分?jǐn)?shù)相同,且三月份比二月份的產(chǎn)量多1200噸,求這個相同的百分?jǐn)?shù)
五、課堂小結(jié)
【一元二次方程教學(xué)設(shè)計】相關(guān)文章:
一元二次方程教學(xué)設(shè)計07-31
實際問題與一元二次方程教學(xué)設(shè)計10-07
二次函數(shù)與一元二次方程教學(xué)設(shè)計10-07
一元二次方程教學(xué)反思04-04
《一元二次方程》教學(xué)反思03-30
一元二次方程的解法教學(xué)反思05-31
解一元二次方程教學(xué)反思04-01
一元二次方程教案01-15
《一元二次方程的應(yīng)用》教學(xué)反思(通用5篇)05-07
一元二次方程的解法教案12-30