- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
實(shí)用的平行四邊形教案模板集錦九篇
作為一位杰出的老師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。如何把教案做到重點(diǎn)突出呢?以下是小編收集整理的平行四邊形教案9篇,歡迎閱讀,希望大家能夠喜歡。
平行四邊形教案 篇1
教學(xué)內(nèi)容:
課本第73-74頁(yè)練習(xí)十七第4-9題
教學(xué)要求:
。、能比較熟練地運(yùn)用平行四邊形計(jì)算公式,解答有關(guān)的應(yīng)用問(wèn)題。
。、養(yǎng)成良好的審題習(xí)慣,樹(shù)立責(zé)任感。
教學(xué)重點(diǎn):
能比較熟練地運(yùn)用平行四邊形的計(jì)算公式,解答有關(guān)的應(yīng)用題。
教具準(zhǔn)備:
口算卡片。
教學(xué)過(guò)程:
一、復(fù)習(xí)
。薄⑵叫兴倪呅蔚拿娣e計(jì)算公式是什么?
。、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求平行四邊形的'面積。
(1)底12米,高是7米;(2)高13分米,底長(zhǎng)6分米;
。ǎ常┑祝.5厘米,高4厘米;(4)底0.24分米,高0.5分米
。、出示課題。
二、新授
。、補(bǔ)充例題
一塊平行四邊形的麥地底長(zhǎng)125米,高24米,它的面積是多少平方米?
。ǎ保┆(dú)立列式后,指名口述,教師板書。
。ǎ玻┤绻膯(wèn)題為“每公頃可收小麥6噸,這塊地共可收小麥多少噸?”怎么解答?
讓學(xué)生議一議,然后自己列式解答,最后評(píng)講。
。ǎ常┤绻麊(wèn)題改為:“改種花生,一年可收花生900千克,這塊地平均每公頃可收花生多少千克?”又怎么想?
與上題比較,從數(shù)量關(guān)系上看,什么是相同的?什么是不同的?
讓學(xué)生自己列式。
辨析:老師也列了三個(gè)算式,到底哪個(gè)對(duì)呢?幫個(gè)忙!
。900×(125×24÷10000)
。900÷(125×24)
C900÷(125×24÷10000)
。、(略)
三、鞏固練習(xí)
練習(xí)十七第6、7題
四、課堂作業(yè)
練習(xí)十七第8、9題
、嘤幸粔K平行四邊形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。這塊地收多少千克油菜?
⑨有一塊平行四邊形的麥田,底是250米,高是78米,共收小麥13650千克。這塊麥田有多少公頃?平均每公頃收小麥多少公頃?
板書設(shè)計(jì):
平行四邊形面積的計(jì)算
平行四邊形教案 篇2
【學(xué)習(xí)目標(biāo)】
1.能運(yùn)用勾股定理解決生活中與直角三角形有關(guān)的問(wèn)題;
2.能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,同時(shí)滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。
3.進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值
【學(xué)習(xí)重、難點(diǎn)】
重點(diǎn):勾股定理的應(yīng)用
難點(diǎn):將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題
【新知預(yù)習(xí)】
1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長(zhǎng).
【導(dǎo)學(xué)過(guò)程】
一、情境創(chuàng)設(shè)
欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計(jì)算各條拉索的長(zhǎng)?
二、探索活動(dòng)
活動(dòng)一 如圖,起重機(jī)吊運(yùn)物體,已知BC=6m,AC=10m,求AB的長(zhǎng).
活動(dòng)二 在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各為多少?
活動(dòng)三 一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開(kāi)進(jìn)廠門形狀如圖所示的某工廠,問(wèn)這輛卡車能否通過(guò)該工廠的廠門?
三、例題講解:
1.《中華人民共和國(guó)道路交通安全法》規(guī)定:小汽車在城市道路上行駛速度不得超過(guò)70km/h,如圖一輛小汽車在一條城市中的直道上行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀的正前方30m處,過(guò)了2s后,測(cè)得小汽車與車速檢測(cè)儀間的距離為50m,這輛小汽車超速了嗎?
2.一種盛飲料的圓柱形杯(如圖),測(cè)得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問(wèn)吸管需要多長(zhǎng)?
【反饋練習(xí)】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____;
(2)一個(gè)直角三角形的模具,量得其中兩邊的長(zhǎng)分別為5cm,3cm,則第三邊的長(zhǎng)是______;
(3)甲乙兩人同時(shí)從同一地出發(fā),甲往東走4km,乙往南走6km,這時(shí)甲乙兩人相距____km.
2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.無(wú)法確定
3.如圖,筆直的公路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C、D兩村到收購(gòu)站E的距離相等,則收購(gòu)站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?
【課后作業(yè)】P67 習(xí)題2.7 1、4題
八年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)教案:由中點(diǎn)想到什么
第十八講 由中點(diǎn)想到什么
線段的中點(diǎn)是幾何圖形中一個(gè)特殊的點(diǎn),它關(guān)聯(lián)著三角形中線、直角三角形斜邊中線、中心對(duì)稱圖形、三角形中位線、梯形中位線等豐富的知識(shí),恰當(dāng)?shù)乩弥悬c(diǎn),處理中點(diǎn)是解與中點(diǎn)有關(guān)問(wèn)題的關(guān)鍵,由中點(diǎn)想到什么?常見(jiàn)的聯(lián)想路徑是:
1.中線倍長(zhǎng);
2.作直角三角形斜邊中線;
3.構(gòu)造中位線;
4.構(gòu)造中心對(duì)稱全等三角形等.
熟悉以下基本圖形,基本結(jié)論:
例題求解
【例1】 如圖,在△ABC中,∠B=2∠C,AD⊥BC于D,M為BC的中點(diǎn), AB=10cm,則MD的長(zhǎng)為 .
(“希望杯”邀請(qǐng)賽試題)
思路點(diǎn)撥 取AB中點(diǎn)N,為直角三角形斜邊中線定理、三角形中位線定理的運(yùn)用創(chuàng)造條件.
注 證明線段倍分關(guān)系是幾何問(wèn)題中一種常見(jiàn)題型,利用中點(diǎn)是一個(gè)有效途徑,基本方法有:
(1)利用直角三角斜邊中線定理;
(2)運(yùn)用中位線定理;
(3)倍長(zhǎng)(或折半)法.
【例2】 如圖,在四邊形ABCD中,一組對(duì)邊AB=CD,另一組對(duì)邊AD≠BC,分別取AD、BC的中點(diǎn)M、N,連結(jié)MN.則AB與MN的關(guān)系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中數(shù)學(xué)創(chuàng)新與知識(shí)應(yīng)用競(jìng)賽試題) 思路點(diǎn)撥 中點(diǎn)M、N不能直接運(yùn)用,需增設(shè)中點(diǎn),常見(jiàn)的方法是作對(duì)角線的中點(diǎn). 【例3】如圖,在△ABC中,AB=AC,延長(zhǎng)AB到D,使BD=AB,E為AB中點(diǎn),連結(jié)CE、CD,求證:C D=2EC. (浙江省寧波市中考題) 思路點(diǎn)撥 聯(lián)想到與中位線相關(guān)的豐富知識(shí),將線段倍分關(guān)系的證明轉(zhuǎn)化為線段相等關(guān)系的證明,解題的關(guān)鍵是恰當(dāng)添輔助線. 【例4】 已知:如圖l,BD、CE分別是△ABC的外角平分線,過(guò)點(diǎn)A作AF⊥BD,AG ⊥ CE,垂足分別為F、G,連結(jié)FG,延長(zhǎng)AF、AG,與直線BC相交,易證FG= (AB+BC+AC). 若(1)BD、CF分別是△ABC的內(nèi)角平分線(如圖2); (2)BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線(如圖3),則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并對(duì)其中的一種情況給予證明. (20xx年黑龍江省中考題) 思路點(diǎn)撥 圖1中FG與△ABC三邊的數(shù)量關(guān)系的'求法(關(guān)鍵是作輔助線),對(duì)尋求后兩個(gè)圖形中線段FG與△ABC三邊的數(shù)量關(guān)系起著重要作用,而由平分線、垂線發(fā)現(xiàn)中點(diǎn),這是解題的基礎(chǔ). 注 三角形與梯形的中位線.在位置上涉及到平行,在數(shù)量上是上下底和的一半,它起著傳遞角的位置關(guān)系和線段長(zhǎng)度的功能,在證明線段倍分關(guān)系、兩直線位置關(guān)系、線段長(zhǎng)度的計(jì)算等方面有著廣泛的應(yīng)用. 【例5】 如圖,任意五邊形ABCDE,M、N、P、Q分別為AB、CD、BC、DE的中點(diǎn),K、L分別為MN、PQ的中點(diǎn),求證:KL∥AE且KL= AE. (20xx年天津賽區(qū)試題) 思路點(diǎn)撥 通過(guò)連線,將多邊形分割成三角形、四邊形,為多個(gè)中點(diǎn)的 利用創(chuàng)造條件,這是解本例的突破口. 注 需要什么,構(gòu)造什么,構(gòu)造基本圖形、構(gòu)造線段的和差(倍分)關(guān)系、構(gòu)造角的關(guān)系等,這是作輔助線的有效思考方法之一. 學(xué)歷訓(xùn)練 1.BD、CE是△ABC的中線,G、H分別是BE、CD的中點(diǎn),BC=8,則GH= . (20xx年廣西中考題) 2.如圖,△ABC中、BC=a,若D1、E1;分別是AB、AC的中點(diǎn),則 ;若 D2、E2分別是D1B、E1C的中點(diǎn),則 :若 D3、E3分別是D2B、E2C的中點(diǎn).則 ……若Dn、En分別是Dn-1B、En-1C的中點(diǎn),則DnEn= (n≥1且 n為整數(shù)). (200l年山東省濟(jì)南市中考題) 3.如圖,△ABC邊長(zhǎng)分別為AD=14,BC=l6,AC=26,P為∠A的平分線AD上一點(diǎn),且BP⊥AD,M為BC的中點(diǎn),則PM的值是 . 4.如圖, 梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,AC=5cm,BD=12cm,則該梯形的中位線的長(zhǎng)等于 cm. (20xx年天津市中考題) 5.如圖,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,則EF+GH=( ) A.40 B.48 C 50 D.56 6.如圖,在梯形ABCD中,AD∥BC,E、F分別是對(duì)角線BD、AC的中點(diǎn),若AD=6cm,BC=18?,則EF的長(zhǎng)為( ) A.8cm D.7cm C. 6cm D.5cm 7.如圖,矩形紙片ABCD沿DF折疊后,點(diǎn)C落在AB上的E點(diǎn),DE、DF三等分∠ADC,AB的長(zhǎng)為6,則梯形ABCD的中位線長(zhǎng)為( ) A.不能確定 B.2 C. D. +1 (20xx年浙江省寧波市中考題) 8.已知四邊形ABCD和對(duì)角線AC、BD,順次連結(jié)各邊中點(diǎn)得四邊形MNPQ,給出以下6個(gè)命題: 、偃羲盟倪呅蜯NPQ為矩形,則原四邊形ABCD為菱形; ②若所得四邊形MNPQ為菱形,則原四邊形ABCD為矩形; 、廴羲盟倪呅蜯NPQ為矩形,則AC⊥BD; 、苋羲盟倪呅蜯NPQ為菱形,則AC=BD; 、萑羲盟倪呅蜯NPQ為矩形,則∠BAD=90°; 、奕羲盟倪呅蜯NPQ為菱形,則AB=AD. 以上命題中,正確的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江蘇省蘇州市中考題) 9.如圖,已知△ABC中,AD是 高,CE是中線,DC=BE,DG⊥CE,G為垂足.求證:(1)G 是CE的 中點(diǎn);(2)∠B=2∠BCE. (20xx年上海市中考題) 10.如圖,已知在正方形ABCD中,E為DC上一點(diǎn),連結(jié)BE,作CF⊥BE于P,交AD于F點(diǎn),若恰好使得AP=AB,求證:E是DC的中點(diǎn). 11.如圖,在梯形ABCD中,AB∥CD,以AC、AD為邊作平行四邊形ACED,DC的延長(zhǎng)線交BE于F. (1)求證:EF=FB; (2)S△BCE能否為S梯形ABCD的 ?若不能,說(shuō)明理由;若能,求出AB與CD的關(guān)系. 12.如圖,已知AG⊥BD,AF⊥CE,BD、CF分別是∠ABC和∠ACB的角平分線,若BF=2,ED=3,GC=4,則△ABC的周長(zhǎng)為 . (20xx年四川省競(jìng)賽題) 13.四邊形ADCD的對(duì)角線AC、BD相交于點(diǎn)F,M、N分別為AB、CD中點(diǎn),MN分別交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,則AC= . (重慶市競(jìng)賽題) 1 4.四邊形ABCD中,AD>BC,C、F分別是AB、CD的中點(diǎn),AD、BC的延長(zhǎng)線分別與EF的延長(zhǎng)線交于H、G,則∠AHE ∠BGE(填“>”或“=”或“<”號(hào)) 15.如圖,在△ABC中,DC=4,BC邊上的中線AD=2,AB+AC=3+ ,則S△ABC等于( ) A. B. C. D. 16.如圖,正方形ABCD中,AB=8,Q是CD的中點(diǎn),設(shè)∠DAQ=α,在CD上取一點(diǎn)P,使∠BAP=2α,則CP的長(zhǎng)是( ) A.1 D.2 C.3 D. 17.如圖,已知A為DE的中點(diǎn),設(shè)△DBC、△ABC、△EBC的面積分別為S1,S2,S3,則S1、S2、S3之間的關(guān)系式是( ) A. B. C. D. 18.如圖,已知在△ABC中,D為AB的中點(diǎn),分別延長(zhǎng)CA、CB到E、F,使DE=DF,過(guò)E、F分別作CA、 CB的垂線,相交于點(diǎn)P.求證:∠PAE=∠PBF. (20xx年全國(guó)初中數(shù)學(xué)聯(lián)賽試題) 19.如圖,梯形ABCD中,AD∥BC,AC⊥BD于O,試判斷AB+CD與AD+BC的大小,并證明你的結(jié)論. (山東省競(jìng)賽題) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連結(jié)DE,設(shè)M為D正的中點(diǎn). (1)求證:MB=MC; (2)設(shè)∠BAD=∠CAE,固定△ABD, 讓Rt△ACE繞頂點(diǎn)A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問(wèn):MB;MC是否還能成立?并證明其結(jié)論. (江蘇省競(jìng)賽題) 21.如圖甲,平行四邊形ABCD外有一條直線MN,過(guò)A、B、C、D4個(gè)頂點(diǎn)分別作MN的垂線AA1、BB1、CCl、DDl,垂足分別為Al、B1、Cl、D1. (1)求證AA1+ CCl = BB1 +DDl; (2)如圖乙,直線MN向上移動(dòng),使點(diǎn)A與點(diǎn)B、C、D位于直線MN兩側(cè),這時(shí)過(guò)A、B、C、D向直線MN引垂線,垂足分別為Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之間存在什么關(guān)系? 教學(xué)目標(biāo)設(shè)計(jì): 1、激發(fā)主動(dòng)探索數(shù)學(xué)問(wèn)題的興趣,經(jīng)歷平行四邊形面積計(jì)算公式的推導(dǎo)過(guò)程,會(huì)運(yùn)用公式求平行四邊形的面積。 2、體會(huì)“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。 3、培養(yǎng)初步的推理能力和合作意識(shí),以及解決實(shí)際問(wèn)題的能力。 教學(xué)重點(diǎn):探究平行四邊形的面積公式 教學(xué)難點(diǎn):理解平行四邊形的面積計(jì)算公式的推導(dǎo)過(guò)程 教學(xué)過(guò)程設(shè)計(jì): 一、創(chuàng)設(shè)情境,激發(fā)矛盾 拿出一個(gè)長(zhǎng)方形框架,提問(wèn):這個(gè)框架所圍成圖形的面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書:長(zhǎng)方形面積=長(zhǎng)×寬 教師捏住兩角輕微拉動(dòng)長(zhǎng)方形框架,使它稍微變形成一個(gè)平行四邊形。提問(wèn):它圍成的圖形面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書:平行四邊形面積=底邊長(zhǎng)×鄰邊長(zhǎng) 學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會(huì)受以前知識(shí)經(jīng)驗(yàn)和教師剛才設(shè)問(wèn)的影響,認(rèn)為平行四邊形的面積等于底邊長(zhǎng)×鄰邊長(zhǎng)。 教師繼續(xù)拉動(dòng)平行四邊形框架,使變形后的平行四邊形越來(lái)越扁,到最后拉成一個(gè)很扁的平行四邊形,提問(wèn):這些平行四邊形的面積也等于底 邊長(zhǎng)×鄰邊長(zhǎng)嗎? 今天這節(jié)課我們就來(lái)研究“平行四邊形的面積”。教師板書課題。 學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動(dòng)的平行四邊形越來(lái)越扁的變化,學(xué)生的原有知識(shí)經(jīng)驗(yàn)體系開(kāi)始坍塌。這種認(rèn)知平衡一旦被打破,學(xué)生的思維就想開(kāi)了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長(zhǎng)乘鄰邊長(zhǎng)不能解決平行四邊形面積是多少問(wèn)題?問(wèn)題出在哪里呢? 二、另辟蹊徑,探究新知 1、尋找根源,另辟蹊徑 教師邊演示長(zhǎng)方形漸變平行四邊形的過(guò)程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長(zhǎng)方形的長(zhǎng)與寬演變而來(lái)的'底邊長(zhǎng)與鄰邊長(zhǎng)相乘來(lái)求面積呢? 引導(dǎo)學(xué)生思考:原來(lái)是平行四邊形的面積變得越來(lái)越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來(lái)求平行四邊形的面積呢? 學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過(guò)程中,底邊與鄰邊的長(zhǎng)沒(méi)有發(fā)生變化,也就是說(shuō),底邊長(zhǎng)與鄰邊長(zhǎng)相乘的積應(yīng)該也是不變的,但明顯的事實(shí)是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變?cè)叫?磥?lái)此路不通,那又該在哪里找出路呢? 2、適時(shí)引導(dǎo),自主探索 教師結(jié)合剛才的板書引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會(huì)計(jì)算長(zhǎng)方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長(zhǎng)方形來(lái)求面積呢? 。1)學(xué)生操作 學(xué)生動(dòng)手實(shí)踐,尋求方法。 學(xué)情預(yù)設(shè):學(xué)生可能會(huì)有三種方法出現(xiàn)。 第一種是沿著平行四邊形的頂點(diǎn)做的高剪開(kāi),通過(guò)平移,拼出長(zhǎng)方形。 第二種是沿著平行四邊形中間任意一高剪開(kāi)。 第三種是沿平行四邊形兩端的兩個(gè)頂點(diǎn)做的高剪開(kāi),把剪下來(lái)的兩個(gè)小直角三角形拼成一個(gè)長(zhǎng)方形,再和剪后得出的長(zhǎng)方形拼成一個(gè)長(zhǎng)方形。 。2)觀察比較 剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長(zhǎng)方形,在操作時(shí)有一個(gè)共同點(diǎn),是什么呢?為什么要這樣呢? 。3)課件演示 是不是任意一個(gè)平行四邊形都能轉(zhuǎn)化成一個(gè)長(zhǎng)方形呢?請(qǐng)同學(xué)們仔細(xì)觀察大屏幕,讓我們?cè)賮?lái)體會(huì)一下。 3、公式推導(dǎo),形成模型 既然我們可以把一個(gè)平行四邊形轉(zhuǎn)化成一個(gè)長(zhǎng)方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長(zhǎng)方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的面積怎么計(jì)算呢? 先獨(dú)立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。 A、拼成的長(zhǎng)方形和原來(lái)的平行四邊形比,什么變了?什么沒(méi)有改變? B、拼成的長(zhǎng)方形的長(zhǎng)和寬與原來(lái)的平行四邊形的底和高有什么關(guān)系? C、你能根據(jù)長(zhǎng)方形面積計(jì)算公式推導(dǎo)出平行四邊形的面積計(jì)算公式嗎?) 學(xué)情預(yù)設(shè):學(xué)生通過(guò)討論很快就能得出拼成的長(zhǎng)方形和原來(lái)的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計(jì)算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的語(yǔ)言表達(dá)其推導(dǎo)思路:“把一個(gè)平行四邊形轉(zhuǎn)化成為一個(gè)長(zhǎng)方形,它的面積與原來(lái)的平行四邊形的面積相等。這個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的底相等,這個(gè)長(zhǎng)方形的寬與平行四邊形的高相等,因?yàn)殚L(zhǎng)方形的面積等于長(zhǎng)乘寬,所以平行四邊形的面積等于底乘高!辈⒐桨鍟缦拢 長(zhǎng)方形的面積 = 長(zhǎng) × 寬 平行四邊形的面積 = 底 × 高 4、變化對(duì)比,加深理解 引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長(zhǎng)方形變成平行四邊形與第二次的平行四邊形變成長(zhǎng)方形,這兩種情況有什么不一樣?哪種變化能說(shuō)明平行四邊形的面積計(jì)算方法的來(lái)源呢?為什么? 5、自學(xué)字母公式,體會(huì)作用 請(qǐng)同學(xué)們打開(kāi)課本第81頁(yè),告訴老師,如果用字母表示平行四邊形的 面積計(jì)算公式,應(yīng)該怎樣表示?你覺(jué)得用字母表達(dá)式比文字表達(dá)式好在哪里? 三、實(shí)踐應(yīng)用 1、出示課本第82頁(yè)題目,一個(gè)平行四邊形的停車位底邊長(zhǎng)5m,高2.5m,它的面積是多少?(學(xué)生獨(dú)立列式解答,并說(shuō)出列式的根據(jù)) 2、看圖口述平行四邊形的面積。 3分米 2.5厘米 3、這個(gè)平行四邊形的面積你會(huì)求嗎?你是怎樣想的? 4、分別計(jì)算圖中每個(gè)平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫多少個(gè)? 學(xué)習(xí)目標(biāo) 1、 理解平行四邊形的概念及其特征,知道平行四邊形兩組對(duì)邊分別平行且相等。 2、認(rèn)識(shí)平行四邊形的底和高,會(huì)畫出平行四邊形的高; 3、培養(yǎng)學(xué)生的實(shí)踐能力,觀察能力和分析能力。 學(xué)習(xí)重點(diǎn): 掌握平行四邊形的特征。 學(xué)習(xí)難點(diǎn): 會(huì)畫平行四邊形的高。 學(xué)習(xí)準(zhǔn)備: 課件、長(zhǎng)方形框架、平行四邊形紙、釘板 導(dǎo)學(xué)過(guò)程: 一、魔術(shù)表演: 教師拿出一個(gè)用四根木條釘成的長(zhǎng)方形,兩手捏住長(zhǎng)方形的兩個(gè)對(duì)角,向相反方向拉,觀察兩組對(duì)邊有什么變化?拉成了什么圖形?為什么會(huì)發(fā)生這樣的變化? 二、揭示課題和目標(biāo)。 三、體驗(yàn)平行四邊形的特性 1、揭示平行四邊形的不穩(wěn)定性; 2、你能舉出日常生活中應(yīng)用平行四邊形容易變形這一性質(zhì)的例子嗎? 3、圖片展示。 四、探究平行四邊形的特征 (一)觀察圖形,合理猜想 請(qǐng)學(xué)生拿出手里的平行四邊形紙,讓學(xué)生大膽猜平行四邊形的特征。學(xué)生發(fā)言。 。ǘ﹦(dòng)手操作,驗(yàn)證猜想 1、操作實(shí)踐。教師提示用三角板或者直尺驗(yàn)證。學(xué)生小組驗(yàn)證。 2、匯報(bào)交流驗(yàn)證的過(guò)程。 預(yù)設(shè):1、測(cè)量后發(fā)現(xiàn)對(duì)邊相等 2、延長(zhǎng)對(duì)邊不相交,所以對(duì)邊平行 3、用畫垂線的方法,從一邊向另一邊畫垂線,垂線段都相等,所以對(duì)邊平行。 3、歸納特征。 師:現(xiàn)在請(qǐng)你用一句話概括平行四邊形的特征。生用自己的語(yǔ)言描述。 教師幫助歸納并板書:兩組對(duì)邊分別平行且相等 4、應(yīng)用做教材67頁(yè)1題。 五、動(dòng)手操作,認(rèn)識(shí)“底和高”: 1、觀察畫出的垂直線段,告訴學(xué)生: 像這樣從平行四邊形一條邊上的一點(diǎn)向?qū)呉粭l垂線,這點(diǎn)和垂足之間的線段叫做平行四邊形的`高,垂足所在的邊叫平行四邊形的底。 2、請(qǐng)學(xué)生猜猜,平行四邊形有多少條高? 3、揭示平行四邊形高的畫法 4、練習(xí):畫出四個(gè)平行四邊形的高。 五、智慧屋(練習(xí)題) 六、全課總結(jié):通過(guò)本節(jié)課的學(xué)習(xí),你知道了平行四邊形的哪些東西呢? 課型: 新授課。 教學(xué)分析: 本節(jié)課是在學(xué)生已經(jīng)認(rèn)識(shí)長(zhǎng)方形、正方形的基礎(chǔ)上進(jìn)行教學(xué)。重點(diǎn)是讓學(xué)生通過(guò)親自觀察、動(dòng)手測(cè)量、比較掌握長(zhǎng)方形、正方形的特點(diǎn),初步認(rèn)識(shí)平行四邊形。 教學(xué)目標(biāo): 。ㄒ唬┲R(shí)與技能: 引導(dǎo)學(xué)生觀察長(zhǎng)方形、正方形的邊、角的特點(diǎn),認(rèn)識(shí)長(zhǎng)方形和正方形的共性及各自的特性。會(huì)在方格紙上畫長(zhǎng)方形、正方形,并認(rèn)識(shí)平行四邊形。 。ǘ┻^(guò)程與方法: 學(xué)生通過(guò)觀察比較、動(dòng)手操作、交流合作等活動(dòng)發(fā)現(xiàn)長(zhǎng)方形和正方形的特點(diǎn),積累感性認(rèn)識(shí),初步認(rèn)識(shí)平行四邊形。 。ㄈ┣楦袘B(tài)度價(jià)值觀: 培養(yǎng)學(xué)生積極參與的學(xué)習(xí)品質(zhì),使學(xué)生獲得成功的體驗(yàn),感受教學(xué)與日常生活的密切聯(lián)系,樹(shù)立學(xué)好數(shù)學(xué)的信心。 教學(xué)策略: 創(chuàng)設(shè)情景、動(dòng)手實(shí)踐、交流合作。 教具學(xué)具: 多媒體課件、長(zhǎng)方形、正方形、格子紙、三角板。 教學(xué)流程: 一、創(chuàng)設(shè)情景,提出問(wèn)題。 今天,我們的好朋友智慧星要帶領(lǐng)大家到圖形王國(guó)去參觀。參觀之前提一個(gè)小小的要求,請(qǐng)你仔細(xì)觀察、多動(dòng)腦筋。(多媒體演示圖片)你能說(shuō)出這些事物中你認(rèn)識(shí)的圖形嗎?(抽出長(zhǎng)方形、正方形。引出課題) 二、協(xié)作探索,研究問(wèn)題。 1、教學(xué)長(zhǎng)方形、正方形。 (1)多媒體出示長(zhǎng)方形、正方形:請(qǐng)大家仔細(xì)觀察他們各有幾條邊,幾個(gè)角? 。2)教學(xué)對(duì)邊的概念: 在生活中我們把兩個(gè)人面對(duì)面叫做對(duì)面,在長(zhǎng)方形中上下兩條邊我們把它們叫做對(duì)邊、左右兩條邊也叫對(duì)邊。(多媒體演示) 。3)小組合作研究長(zhǎng)方形、正方形的特點(diǎn)。 下面請(qǐng)大家利用你手中的工具量一量、折一折、比一比,和組內(nèi)同學(xué)說(shuō)一說(shuō)。 長(zhǎng)方形的對(duì)邊和正方形的邊有什么特點(diǎn),角有什么特點(diǎn)? 。4)指名匯報(bào),并演示自己發(fā)現(xiàn)的.過(guò)程。 共同總結(jié):長(zhǎng)方形和正方形都是四條邊圍成的圖形,它們都是四邊形,它們的每個(gè)角都是直角,長(zhǎng)方形的對(duì)邊相等,正方形的四條邊都相等。 。5)在方格紙上畫出長(zhǎng)方形、正方形 2、教學(xué)平行四邊形。 。1)多媒體演示:在生活中我們還會(huì)看到這樣一些圖形,它們是長(zhǎng)方形嗎?是正方形嗎? 我們把這樣的四邊形叫做平行四邊形。 。2)平行四邊形的特點(diǎn): 出示格子圖中平行四邊形:引導(dǎo)學(xué)生觀察,用數(shù)格子的方法數(shù)一數(shù)你發(fā)現(xiàn)平行四邊形的對(duì)邊有什么特點(diǎn)? 。3)總結(jié):平行四邊形有四條邊,四個(gè)角,對(duì)邊相等。 (4)動(dòng)手操作:拿出活動(dòng)的四邊形:拉動(dòng)之后你發(fā)現(xiàn)了什么? 動(dòng)手操作 三、運(yùn)用知識(shí),解決問(wèn)題。 1、猜一猜。(多媒體演示) 2、找一找。(多媒體演示) 3、說(shuō)一說(shuō)。 四、總結(jié)。 你今天從智慧星那里學(xué)到了什么? 板書設(shè)計(jì): 長(zhǎng)方形正方形和平行四邊形 邊:4條 4條4條 對(duì)邊相等全都相等對(duì)邊相等 角:4個(gè)直角4個(gè)直角4個(gè) 學(xué)習(xí)目標(biāo): 1、理解并掌握平行四邊形的定義 2、掌握平行四邊形的性質(zhì)定理1及性質(zhì)定理2 3、提高綜合運(yùn)用知識(shí)的能力 預(yù)習(xí)指導(dǎo): 1、在四邊形中,最常見(jiàn)、價(jià)值最大的是平行四邊形,生活中也常見(jiàn)平行四邊形的實(shí)例,如________________ _____________________________ ______等,都是平行四邊形。 2、____________________________________是平行四邊形。 3、平行四邊形的性質(zhì)是:_________________________________________. 學(xué)習(xí)過(guò)程: 一、學(xué)習(xí)新知 1、平行四邊形的定義 。1)定義:________________ ________________________叫做平行四邊形。 。2)幾何語(yǔ)言表述: ∵ AB∥CD AD∥BC ∴四邊形ABCD是平行四邊形 。3)定義的雙重性: 具備_____ _____________的四邊形,才是平行四邊形, 反過(guò)來(lái),平行四邊形就一定具有性質(zhì)。 。4)平行四邊形的表示:平行四邊形ABCD 記作_________,讀作___________. 2、平行四邊形的性質(zhì) 平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外,還有什么特殊的性質(zhì)呢? 已知:如圖 ABCD, 求證:AB=CD,CB=AD. 分析:要證AB=CD,CB=AD.我們可以考慮只要證明四條線段所在的'兩個(gè)三角形全等,因此我們可以作輔助線_____ _____________,它將平行四邊形分成_________和__________,我們只要證明這兩個(gè)三角形全等即可得到結(jié)論. 證明: 總結(jié):本題提供了證明線段相等的方法,也體現(xiàn)了數(shù)學(xué)中的轉(zhuǎn)化思想。 在上題中你能證明∠B=∠D, ∠BAD=∠BCD嗎?利用我們學(xué)過(guò)的方法試一試。 證明: 通過(guò)上面的證明,我們得到了: 平行四邊形的性質(zhì)定理1是_______________________________________. 平行四邊形的性質(zhì)定理2是_______________________________________. 二、應(yīng)用舉例: 例1、如圖,在平行四邊形ABCD中,AE=CF,求證:AF=CE. 例2、(1)在平行四邊形ABCD中,∠A=500,求∠B、∠C、∠D的度數(shù)。 (2)在平行四邊形ABCD中,∠A=∠B+400,求∠A的鄰角的 度數(shù)。 例1、如圖,在平行四邊形ABC D中,AE=CF,求證:AF=CE. 例2、(1)在平行四邊形ABCD中,∠A=500,求∠B、∠C、∠D的度數(shù)。 (2)在平行四邊形ABCD中,∠A=∠B+400,求∠A的鄰角的度數(shù)。 三、隨堂練習(xí) 1.平行四邊形的兩鄰邊的比是2:5,周長(zhǎng)為28cm,求四邊形的各邊的長(zhǎng)。 2、在平行四邊形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度數(shù)。 四、課堂小結(jié) : 1、平行四邊形的概念。 2、平行四邊形的性質(zhì)定理及其應(yīng)用。 五、當(dāng)堂檢測(cè) 1.(選擇)在下列圖形的性質(zhì)中,平行四邊形不一定具有的是( ). (A)對(duì)角相等 (B)對(duì)角互補(bǔ) (C)鄰角互補(bǔ) (D)內(nèi)角和是 2.(選擇)如圖,在 ABCD中,如果EF∥AD,GH∥CD, EF與GH相交與點(diǎn)O,那么圖中的平行四邊形一共有( ). 。ˋ)4個(gè) (B)5個(gè) (C)8個(gè) (D)9個(gè) 3.如圖,在 ABCD中,AC為對(duì)角線,BE⊥AC,DF⊥AC,E、F為垂足,求證:BE=DF. 教學(xué)目標(biāo): 1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計(jì)算公式,并會(huì)運(yùn)用公式正確地計(jì)算平行四邊形的面積. 2.通過(guò)操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問(wèn)題的能力和邏輯思維能力. 3.對(duì)學(xué)生進(jìn)行辯詐唯物主義觀點(diǎn)的啟蒙教育. 教學(xué)重點(diǎn):理解公式并正確計(jì)算平行四邊形的面積. 教學(xué)難點(diǎn):理解平行四邊形面積公式的推導(dǎo)過(guò)程. 學(xué)具準(zhǔn)備:每個(gè)學(xué)生準(zhǔn)備一個(gè)平行四邊形。 教學(xué)過(guò)程: 1、什么是面積? 2、請(qǐng)同學(xué)翻書到80頁(yè),請(qǐng)觀察這兩個(gè)花壇,哪一個(gè)大呢?假如這塊長(zhǎng)方形花壇的長(zhǎng)是3米,寬是2米,怎樣計(jì)算它的面積呢? 二、導(dǎo)入新課 根據(jù)長(zhǎng)方形的面積=長(zhǎng)×寬(板書),得出長(zhǎng)方形花壇的面積是6平方米,平行四邊形面積我們還沒(méi)有學(xué)過(guò),所以不能計(jì)算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計(jì)算。 三、講授新課 (一)、數(shù)方格法 用展示臺(tái)出示方格圖 1、這是什么圖形?(長(zhǎng)方形)如果每個(gè)小方格代表1平方厘米,這個(gè)長(zhǎng)方形的面積是多少?(18平方厘米) 2、這是什么圖形?(平行四邊形)每一個(gè)方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米? 請(qǐng)同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計(jì)算。然后指名說(shuō)出數(shù)得的結(jié)果,并說(shuō)一說(shuō)是怎樣數(shù)的。 2、請(qǐng)同學(xué)看方格圖填80頁(yè)最下方的表,填完后請(qǐng)學(xué)生回答發(fā)現(xiàn)了什么? 。喝绻L(zhǎng)方形的長(zhǎng)和寬分別等于平行四邊形的底和高,則它們的面積相等。 。ǘ┮敫钛a(bǔ)法 以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的方法來(lái)計(jì)算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計(jì)算平行四邊形面積的方法。 。ㄈ└钛a(bǔ)法 1、這是一個(gè)平行四邊形,請(qǐng)同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來(lái),自己拼一下,看可以拼成我們以前學(xué)過(guò)的什么圖形? 2、然后指名到前邊演示。 3、教師示范平行四邊形轉(zhuǎn)化成長(zhǎng)方形的過(guò)程。 剛才發(fā)現(xiàn)同學(xué)們把平行四邊形轉(zhuǎn)化成長(zhǎng)方形時(shí),就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長(zhǎng)方形。在變換圖形的位置時(shí),怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在黑板上演示。 、傧妊刂叫兴倪呅蔚母呒粝伦筮叺闹苯侨切。 、谧笫职醋∈O碌奶菪蔚挠也,右手拿著剪下的直角三角形沿著底邊慢慢向右移動(dòng)。 、垡苿(dòng)一段后,左手改按梯形的左部。右手再拿著直角三角形繼續(xù)沿著底邊慢慢向右移動(dòng),到兩個(gè)斜邊重合為止。 請(qǐng)同學(xué)們把自己剪下來(lái)的直角三角形放回原處,再沿著平行四邊形的底邊向右慢慢移動(dòng),直到兩個(gè)斜邊重合。(教師巡視指導(dǎo)。) 4、觀察(黑板上在剪拼成的長(zhǎng)方形左面放一個(gè)原來(lái)的平行四邊形,便于比較。) 、龠@個(gè)由平行四邊形轉(zhuǎn)化成的長(zhǎng)方形的面積與原來(lái)的平行四邊形的`面積比較,有沒(méi)有變化?為什么? 、谶@個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的底有什么樣的關(guān)系? ③這個(gè)長(zhǎng)方形的寬與平行四邊形的高有什么樣的關(guān)系? 教師歸納:任意一個(gè)平行四邊形都可以轉(zhuǎn)化成一個(gè)長(zhǎng)方形,它的面積和原來(lái)的平行四邊形的面積相等,它的長(zhǎng)、寬分別和原來(lái)的平行四邊形的底、高相等。 5、引導(dǎo)學(xué)生平行四邊形面積計(jì)算公式。 這個(gè)長(zhǎng)方形的面積怎么求?(指名回答后,在長(zhǎng)方形右面板書:長(zhǎng)方形的面積=長(zhǎng)×寬) 那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底×高。) 6、教學(xué)用字母表示平行四邊形的面積公式。 板書:S=a×h,告知S和h的讀音。 說(shuō)明在含有字母的式子里,字母和字母中間的乘號(hào)可以記作“”,寫成ah,也可以省略不寫,所以平行四邊形面積的計(jì)算公式可以寫成S=ah,或者S=ah。 。6)完成第81頁(yè)中間的“填空”。 7、驗(yàn)證公式 學(xué)生利用所學(xué)的公式計(jì)算出“方格圖中平行四邊形的面積”和用數(shù)方格的方法求出的面積相比較“相等”,加以驗(yàn)證。 條件強(qiáng)化:求平行四邊形的面積必須知道哪兩個(gè)條件?(底和高) 。ㄋ模⿷(yīng)用 1、學(xué)生自學(xué)例1后,教師根據(jù)學(xué)生提出的問(wèn)題講解。 3、判斷,并說(shuō)明理由。 (1)兩個(gè)平行四邊形的高相等,它們的面積就相等() (2)平行四邊形底越長(zhǎng),它的面積就越大() 4、做書上82頁(yè)2題。 四、體驗(yàn) 今天,你學(xué)會(huì)了什么?怎樣求平行四邊形的面積?平行四邊形的面積計(jì)算公式是怎樣推導(dǎo)的? 五、作業(yè) 練習(xí)十五第1題。 六、板書設(shè)計(jì) 平行四邊形面積的計(jì)算 長(zhǎng)方形的面積=長(zhǎng)×寬 平行四邊形的面積=底×高 S=a×hS=ah或S=ah 課后反思: 導(dǎo)學(xué)目標(biāo): 1、經(jīng)歷并了解平行四邊形的判別方法探索過(guò)程,使學(xué)生逐步掌握說(shuō)理的基本方法。 2、探索并了解平行四邊形的判別方法:兩條對(duì)角線互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形。能根據(jù)判別方法進(jìn)行有關(guān)的應(yīng)用。 3、在探索過(guò)程中發(fā)展學(xué)生的合理推理意識(shí)、主動(dòng)探究的習(xí)慣。 4、體驗(yàn)數(shù)學(xué)活動(dòng)來(lái)源于生活又服務(wù)于生活,提高學(xué)生的學(xué)習(xí)興趣。 導(dǎo)學(xué)重點(diǎn):平行四邊形的判別方法。 導(dǎo)學(xué)難點(diǎn):根據(jù)判別方法進(jìn)行有關(guān)的應(yīng)用 導(dǎo)學(xué)準(zhǔn)備:多媒體課件 導(dǎo)學(xué)過(guò)程: 一、快速反應(yīng) 1.如圖,四邊形ABCD,AC、BD相交于點(diǎn)O,若OA=OC,OB=OD,則四邊形ABCD是__________,根據(jù)是_____________________ 2.如圖,四邊形ABCD中,AB//CD,且AB=CD,則四邊形ABCD是___________,理由是__________________________ 3.小明拼成的四邊形如圖所示,圖中的四邊形ABCD是平行四邊形嗎? 結(jié)論:______________________________________ 符號(hào)表示: 4. 如圖:在四邊形ABCD中,2,4.四邊形ABCD是平行四邊形嗎?為什么? 在圖中,AC=BD=16, AB=CD=EF=15, CE=DF=9。 圖中有哪些互相平行的線段? 二、議一議 1.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形一定是平行四邊形嗎? 三、平行四邊形的判別方法: (1)兩組對(duì)邊分別平行的四邊形是平行四邊形。 (2)兩組對(duì)邊分別相等的四邊形是平行四邊形。 (3)一組對(duì)邊平行且相等的四邊形是平行四邊形。 (4)兩條對(duì)角線互相平分的四邊形是平行四邊形。 四、練一練: 1.判斷下列說(shuō)法是否正確 (1)一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形 ( ) (2)兩組對(duì)角都相等的四邊形是平行四邊形 ( ) (3)一組對(duì)邊平行且一組對(duì)角相等的四邊形是平行四邊形 ( ) (4)一組對(duì)邊平行,一組鄰角互補(bǔ)的四邊形是平行四邊形 ( ) 2.有兩條邊相等,并且另外的兩條邊也相等的`四邊形一定是平行四邊形嗎? 3.比一比:如圖,四個(gè)全等三角形拼成一個(gè)大的三角形,找出圖中所有的平行四邊形,并說(shuō)明理由。 五、師生共同小結(jié),主要圍繞下列幾個(gè)問(wèn)題: (1)判定一個(gè)四邊形是平行四邊形的方法有哪幾種? (2)我們是通過(guò)什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過(guò)程對(duì)你有什么啟發(fā)? (3)平行四邊形判定的應(yīng)用 六、課后鞏固:課本P107習(xí)題4.4第1題和第2題 七、課后反思: 一 教學(xué)目標(biāo): 1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法. 2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題. 3.培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來(lái)研究問(wèn)題. 二 重點(diǎn)、難點(diǎn) 1.重點(diǎn):平行四邊形的判定方法及應(yīng)用. 2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用. 3.難點(diǎn)的突破方法: 平行四邊形的判別方法是本節(jié)課的核心內(nèi)容.同時(shí)它又是后面進(jìn)一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說(shuō)理的良好素材.本節(jié)課的教學(xué)重點(diǎn)為平行四邊形的判別方法.在本課中,可以探索活動(dòng)為載體,并將論證作為探索活動(dòng)的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡(jiǎn)單推理有機(jī)融合,達(dá)到突出重點(diǎn)、分散難點(diǎn)的目的. 。1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個(gè)方法來(lái)證明. 。2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對(duì)角線兩方面進(jìn)行記憶.要注意: 、俦窘滩臎](méi)有把用角來(lái)作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補(bǔ)充; 、诒竟(jié)課只介紹前兩個(gè)判定方法. (3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動(dòng)有趣的問(wèn)題情境,開(kāi)展有效的數(shù)學(xué)活動(dòng),如通過(guò)欣賞圖片及識(shí)別圖片中的平行四邊形,使學(xué)生建立對(duì)平行四邊形的直覺(jué)認(rèn)識(shí).并復(fù)習(xí)平行四邊形的定義,建立新舊知識(shí)間的相互聯(lián)系.接著提出問(wèn)題:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?從而組織學(xué)生主動(dòng)參與、勤于動(dòng)手、積極思考,使他們?cè)谧灾魈骄颗c合作交流的`過(guò)程中,從整體上把握“平行四邊形的判別”的方法. 然后利用學(xué)生手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件. 在學(xué)生拼圖的活動(dòng)中,教師可以以問(wèn)題串的形式展開(kāi)對(duì)平行四邊形判別方法的探討,讓學(xué)生在問(wèn)題解決中,實(shí)現(xiàn)對(duì)平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說(shuō)理及簡(jiǎn)單推理的能力. 。4)從本節(jié)開(kāi)始,就應(yīng)讓學(xué)生直接運(yùn)用平行四邊形的性質(zhì)和判定去解決問(wèn)題,凡是可以用平行四邊形知識(shí)證明的問(wèn)題,不要再回到用三角形全等證明.應(yīng)該對(duì)學(xué)生提出這個(gè)要求. (5)平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題.例如,求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題. 。6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識(shí),這些知識(shí)是本章的重點(diǎn)內(nèi)容,要使學(xué)生熟練地掌握這些知識(shí). 三 例題的意圖分析 本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說(shuō)出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來(lái),邊拼圖邊說(shuō)明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣.如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說(shuō)明理由. 四 課堂引入 1.欣賞圖片、提出問(wèn)題. 展示圖片,提出問(wèn)題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的? 2.【探究】:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎? 讓學(xué)生利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討: 。1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎? 。2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形? 。3)你能說(shuō)出你的做法及其道理嗎? 。4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎? (5)你還能找出其他方法嗎? 從探究中得到: 平行四邊形判定方法1 兩組對(duì)邊分別相等的四邊形是平行四邊形。 平行四邊形判定方法2 對(duì)角線互相平分的四邊形是平行四邊形 【平行四邊形教案】相關(guān)文章: 《平行四邊形的面積》教案01-02 認(rèn)識(shí)平行四邊形教案03-05 平行四邊形面積教案02-09 平行四邊形的面積教案07-24 平行四邊形的面積教案03-17 平行四邊形教案優(yōu)秀03-27 平行四邊形的認(rèn)識(shí)教案07-30 平行四邊形面積的計(jì)算教案03-03平行四邊形教案 篇3
平行四邊形教案 篇4
平行四邊形教案 篇5
平行四邊形教案 篇6
平行四邊形教案 篇7
平行四邊形教案 篇8
平行四邊形教案 篇9