欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    鴿巢問題教學(xué)設(shè)計(jì)

    時(shí)間:2023-12-06 07:45:36 教學(xué)資源 投訴 投稿

    鴿巢問題教學(xué)設(shè)計(jì)

      作為一名為他人授業(yè)解惑的教育工作者,往往需要進(jìn)行教學(xué)設(shè)計(jì)編寫工作,借助教學(xué)設(shè)計(jì)可以更好地組織教學(xué)活動(dòng)。寫教學(xué)設(shè)計(jì)需要注意哪些格式呢?下面是小編精心整理的鴿巢問題教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

    鴿巢問題教學(xué)設(shè)計(jì)

    鴿巢問題教學(xué)設(shè)計(jì)1

      教學(xué)內(nèi)容

      人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)教材第68~69頁。

      教材分析:

      鴿巢問題又稱抽屜原理或鴿巢原理,它是組合數(shù)學(xué)中最簡單也是最基本的原理之一,從這個(gè)原理出發(fā),可以得出許多有趣的結(jié)果。這部分教材通過幾個(gè)直觀的例子,借助實(shí)際操作,向?qū)W生介紹了“鴿巢問題”。學(xué)生在理解這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡單的實(shí)際問題“模型化”,會(huì)用“鴿巢問題”解決問題,促進(jìn)邏輯推理能力的發(fā)展。

      學(xué)情分析:

      “鴿巢問題”的理論本身并不復(fù)雜,對(duì)于學(xué)生來說是很容易的。但“鴿巢問題”的應(yīng)用卻是千變?nèi)f化的,尤其是“鴿巢問題”的逆用,學(xué)生對(duì)進(jìn)行逆向思維的思考可能會(huì)感到困難,也缺乏思考的方向,很難找到切入點(diǎn)。

      設(shè)計(jì)理念:

      在教學(xué)中,讓學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,初步形成模型思想,體會(huì)和理解數(shù)學(xué)與外部世界的緊密聯(lián)系,發(fā)展抽象能力、推理能力和應(yīng)用能力,這是《標(biāo)準(zhǔn)》的重要要求,也是本課的編排意圖和價(jià)值取向。

      教學(xué)目標(biāo):

      1、知識(shí)與技能:通過操作、觀察、比較、推理等活動(dòng),初步了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法,運(yùn)用鴿巢原理的知識(shí)解決簡單的實(shí)際問題。

      2、過程與方法:在鴿巢原理的探究過程中,使學(xué)生逐步理解和掌握鴿巢原理,經(jīng)歷將具體問題數(shù)學(xué)化的過程,培養(yǎng)學(xué)生的模型思想。

      3、情感態(tài)度:通過對(duì)鴿巢原理的靈活運(yùn)用,感受數(shù)學(xué)的魅力,體會(huì)數(shù)學(xué)的價(jià)值,提高學(xué)生解決問題的能力和興趣。

      教學(xué)重點(diǎn):

      理解鴿巢原理,掌握先“平均分”,再調(diào)整的方法。教學(xué)難點(diǎn):理解“總有”“至少”的意義,理解“至少數(shù)=商數(shù)+1”。教學(xué)準(zhǔn)備:多媒體課件、合作探究作業(yè)紙。

      教學(xué)過程:

      一、游戲?qū)дn:

      1、游戲:

      一副撲克牌取出大小王,還剩52張牌。

      自己動(dòng)手洗牌。隨意抽出五張牌,至少有兩張牌是相同的花色。自己想想為什么會(huì)這樣呢?2、把3枝筆放到2個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2枝筆。 “不管怎么放”也就是說放的情況X“總有一個(gè)”也就是指X的意思。 “至少”也就是指X的意思。

      二、合作探究

     。ㄒ唬┟杜e法

      4支鉛筆放進(jìn)3個(gè)筆筒,總有一個(gè)筆筒至少放了3支鉛筆。

      1、小組合作:

      (1)畫一畫:借助“畫圖”或“數(shù)的分解”的方法把各種情況都表示出來;(2)找一找:每種擺法中最多的一個(gè)筆筒放了幾支,用筆標(biāo)出;(3)我們發(fā)現(xiàn):總有一個(gè)筆筒至少放進(jìn)了(?)支鉛筆。 2、學(xué)生匯報(bào),展臺(tái)展示。交流后明確:

     。1)四種情況:(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)(2)每種擺法中最多的一個(gè)筆筒放進(jìn)了:4支、3支、2支。(3)總有一個(gè)筆筒至少放進(jìn)了2支鉛筆。

      3、小結(jié):剛才我們通過“畫圖”、“數(shù)的分解”兩種方法列舉出所有情況驗(yàn)證了結(jié)論,這種方法叫“枚舉法”,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論,找到“至少數(shù)”呢?

     。ǘ┘僭O(shè)法

      1、學(xué)生嘗試回答。(如果有困難,也可以直接投影書中有關(guān)“假設(shè)法”的截圖)

      2、學(xué)生操作演示,教師圖示。

      3、語言描述:把4支鉛筆平均放在3個(gè)筆筒里,每個(gè)筆筒放1支,余下的1支,無論放在哪個(gè)筆筒,那個(gè)筆筒就有2支筆,所以說總有一個(gè)筆筒至少放進(jìn)了2支筆。(指名說,互相說)

      4、引導(dǎo)發(fā)現(xiàn):

     。1)這種分法的實(shí)質(zhì)就是先怎么分的?(平均分)

     。2)為什么要一開始就平均分?(均勻地分,使每個(gè)筆筒的'筆盡可能少一點(diǎn),方便找到“至少數(shù)”),余下的1支,怎么放?(放進(jìn)哪個(gè)筆筒都行)

      (3)怎樣用算式表示這種方法?(4÷3=1支……1支? 1+1=2支)算式中的兩個(gè)“1”是什么意思?5、引伸拓展:

      (1)5只鴿子飛進(jìn)4個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)(?)只鴿子。(2)6本書放進(jìn)5個(gè)抽屜里,總有一個(gè)抽屜至少放進(jìn)(?)本書。(3)100支筆放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)(?)支筆。學(xué)生列出算式,依據(jù)算式說理。

      6、發(fā)現(xiàn)規(guī)律:剛才的這種方法就是“假設(shè)法”,它里面就蘊(yùn)含了“平均分”,我們用有余數(shù)的除法算式把平均分的過程簡明的表示出來了,現(xiàn)在會(huì)用簡便方法求“至少數(shù)”嗎?

     。ㄈ┙⒛P

      1、出示題目:17支筆放進(jìn)3個(gè)文具盒?17÷3=5支……2支學(xué)生可能有兩種意見:總有一個(gè)文具盒里至少有5支,至少6支。針對(duì)兩種結(jié)果,各自說說自己的想法。 2、小組討論,突破難點(diǎn):至少5只還是6只?

      3、學(xué)生說理,邊擺邊說:先平均分給每個(gè)文具盒5支筆,余下2只再平均分放進(jìn)2個(gè)不同的文具盒里,所以至少6只。(指名說,互相說)

      4、質(zhì)疑:為什么第二次平均分?(保證“至少”)5、強(qiáng)化:如果把筆和筆筒的數(shù)量進(jìn)一步增加呢?(1)28支筆放進(jìn)11個(gè)筆筒,至少幾支放進(jìn)同一個(gè)筆筒?28÷11=2(支)…6(支)? 2+1=3(支)

     。2)77支筆放進(jìn)13個(gè)筆筒,至少幾支放進(jìn)同一個(gè)筆筒?77÷13=6(支)…12(支)? 6+1=7(支)

      6、對(duì)比算式,發(fā)現(xiàn)規(guī)律:先平均分,再用所得的“商+1” 7、強(qiáng)調(diào):和余數(shù)有沒有關(guān)系?

      學(xué)生交流,明確:與余數(shù)無關(guān),不管余多少,都要再平均分,所以就是加1.8、引申拓展:剛才我們研究了筆放入筆筒的問題,那如果換成鴿子飛進(jìn)鴿籠你會(huì)解答嗎?把蘋果放入抽屜,把書放入書架,高速路口同時(shí)有4輛車通過3個(gè)收費(fèi)口……,類似的問題我們都可以用這種方法解答。

      三、鴿巢原理的由來

      微視頻:同學(xué)們從數(shù)學(xué)的角度分析了這些事情,同時(shí)根據(jù)數(shù)據(jù)特征,發(fā)現(xiàn)了這些規(guī)律。你們發(fā)現(xiàn)的這個(gè)規(guī)律和一位數(shù)學(xué)家發(fā)現(xiàn)的規(guī)律一模一樣,只不過他是在150多年前發(fā)現(xiàn)的,你們知道他是誰嗎?——德國數(shù)學(xué)家?“狄里克雷”,后人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫“狄里克雷原理”,由于人們對(duì)鴿子飛回鴿巢這個(gè)引起思考的故事記憶猶新,所以人們又把這個(gè)原理叫做“鴿巢原理”,它還有另外一個(gè)名字叫“抽屜原理”。

      四、解決問題

      1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?2、11只鴿子飛進(jìn)了4個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了3只鴿子。為什么?3、5個(gè)人坐4把椅子,總有一把椅子上至少坐2人。為什么?

      4、把15本書放進(jìn)4個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少有4本書,為什么?

    鴿巢問題教學(xué)設(shè)計(jì)2

      教學(xué)目標(biāo)

      1.通過猜測、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會(huì)用“鴿巢原理”解決簡單的實(shí)際問題。滲透“建!彼枷。

      2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

      3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

      教學(xué)重點(diǎn)

      經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。

      教學(xué)難點(diǎn)

      理解“鴿巢問題”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)

      教學(xué)過程

      一、游戲激趣,初步體驗(yàn)。

      游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。

      [設(shè)計(jì)意圖:聯(lián)系學(xué)生的生活實(shí)際,激發(fā)學(xué)習(xí)興趣,使學(xué)生積極投入到后面問題的研究中。]

      二、操作探究,發(fā)現(xiàn)規(guī)律。

      1.具體操作,感知規(guī)律

      教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?

     。1)學(xué)生結(jié)果

     。4,0,0)(3,1,0)(2,2,0)(2,1,1)

     。2)師生交流擺放的結(jié)果

      (3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。

      (學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說,“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆!)

      [設(shè)計(jì)意圖:鴿巢問題對(duì)于學(xué)生來說,比較抽象,特別是“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆!边@句話的理解。所以通過具體的操作,枚舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的筒,理解“總有一個(gè)筒里至少放進(jìn)了2支筆”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,訓(xùn)練學(xué)生的邏輯思維能力。]

      質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?

      2.假設(shè)法,用“平均分”來演繹“鴿巢問題”。

      1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?

      學(xué)生思考――同桌交流――

      2匯報(bào)想法

      預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。

      3學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。

      [設(shè)計(jì)意圖:鼓勵(lì)學(xué)生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學(xué)生意識(shí)到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。]

      三、探究歸納,形成規(guī)律

      1.課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。

      [設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的`除法算式表示思維的過程。]

      根據(jù)學(xué)生回答板書:5÷2=2……1

     。▽W(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)

      根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?

      至少數(shù)=商+1?

      2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書)

      ……

      7÷5=1……2

      8÷5=1……3

      9÷5=1……4

      觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?

      得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。

      板書:至少數(shù)=商+1

      [設(shè)計(jì)意圖:對(duì)規(guī)律的認(rèn)識(shí)是循序漸進(jìn)的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2支”得到“至少商+余數(shù)”個(gè),再到得到“商+1”的結(jié)論。]

      師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!傍澇苍怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

      四、運(yùn)用規(guī)律解決生活中的問題

      課件出示習(xí)題.:

      1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。

      2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。

      3.從電影院中任意找來13個(gè)觀眾,至少有兩個(gè)人屬相相同。

      ……

      [設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]

      五、課堂總結(jié)

      這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)

    鴿巢問題教學(xué)設(shè)計(jì)3

      教學(xué)目標(biāo):

      1、理解簡單的鴿巢問題及鴿巢問題的一般形式,引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究“鴿巢問題”。

      2、體會(huì)數(shù)學(xué)知識(shí)在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識(shí)。

      教學(xué)重點(diǎn):了解簡單的鴿巢問題,理解“總有”和“至少”的含義。

      教學(xué)難點(diǎn):運(yùn)用“鴿巢原理”解決相關(guān)的實(shí)際問題,理解數(shù)學(xué)中的優(yōu)化思想。

      教學(xué)過程:

      一、游戲激趣導(dǎo)入新課

      1、同學(xué)們看,老師手中拿的是什么?拿出大王和小王,剩下的牌中共有幾種花色?

      2、現(xiàn)在我們一起來玩猜花色的游戲,請(qǐng)5位同學(xué)到前面每人隨意抽一張紙牌,抽完后不要讓老師看到。

      3、抽后老師大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同(課件出示)。

      4、有些同學(xué)一定覺得老師只是湊巧猜對(duì)了,我們?cè)俪橐淮,老師還大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同。如果老師猜對(duì)了,就給老師點(diǎn)掌聲。

      5、如果老師再換5名同學(xué)來抽牌,我還敢確定的說至少有2張牌的花色相同,這是為什么呢?其實(shí)這里面蘊(yùn)藏著一個(gè)有趣的數(shù)學(xué)原理--抽屜原理,也叫鴿巢原理或鴿巢問題,這節(jié)課我們就一起來研究這個(gè)問題。(板書課題)

     。ㄔO(shè)計(jì)意圖:通過這個(gè)游戲激發(fā)學(xué)生學(xué)習(xí)本節(jié)課的好奇心,也使學(xué)生感受到數(shù)學(xué)和生活中的聯(lián)系,知道學(xué)習(xí)本節(jié)課的`重要性。)

      二、呈現(xiàn)問題自主探究

      1、小紅在整理自己的學(xué)習(xí)用品是有這樣的發(fā)現(xiàn)(課件出示:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)學(xué)生齊讀。

      2、在這句話中你有什么不理解的嗎?學(xué)生提出不理解的詞語。

     。1)不管:隨意,想想怎么放就怎么放。

     。2)總有:一定有。

      (3)至少:最少,最起碼。

      師提問:最少2支指的是幾支呢?具體來說。

      2、把整句話翻譯過來再說一遍。

     。ㄔO(shè)計(jì)意圖:讓學(xué)生充分理解這句話的意思,為接下來的研究做好鋪墊。)

      2、你覺得這句話說得對(duì)嗎?給同學(xué)們1分鐘時(shí)間同學(xué)生靜靜思考一下。

      3、現(xiàn)在同學(xué)用擺一擺、畫一畫、寫一寫等方法來驗(yàn)證這句話,老師出示自己的溫馨提示。(課件出示:溫馨提示:選擇自己喜歡的方式驗(yàn)證,比如,同桌合作,用紙杯代替筆筒,用鉛筆擺一擺,一人擺,一人記錄。(注意:不考慮順序。)

      4、學(xué)生匯報(bào)驗(yàn)證的方法:

      生1:利用圖片來列舉出幾種放法

      教師提問:我們來看這位同學(xué)的擺法,憑什么說“總有一個(gè)筆筒里至少有2支鉛筆”呢?比2支多也可以嗎?

      教師小結(jié):非常好,我們?cè)谟^察這幾種擺法,把符合要求的筆筒用彩色筆標(biāo)出來:所以說不管怎么放總有一支筆筒里至少有2支鉛筆。

      生2:利用數(shù)字方法列舉出幾種方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)

      我們一起圈出每種分法不少于2的數(shù)字。(表揚(yáng)生2,方法更簡單一些)

      5、同學(xué)們像剛才把所有中情況都列舉出來,這種方法就叫做列舉法或枚舉法。(板書)

      6、除了這種枚舉法,還有沒有別的方法也能證明這句話是對(duì)的。

      生:先假設(shè)每個(gè)筆筒中放1支鉛筆,這樣還剩1支鉛筆,這時(shí)無論放到哪個(gè)筆筒,哪個(gè)筆筒就是2支鉛筆了,所以我認(rèn)為是對(duì)的。

      師追問:你為什么要現(xiàn)在每個(gè)筆筒里放1支呢?

      生:因?yàn)橐还灿?支筆,平均分后每個(gè)筆筒只能分到一支。

      師追問:那為什么要一開始就去平均分呢?

      生:平均分就可以使每個(gè)筆筒中的筆盡量少一點(diǎn),如果這樣都能符合要求,其他中情況都能符合要求了。

     。ㄔO(shè)計(jì)意圖:教師的追問讓學(xué)生更明確為什么要平均分,平均分的好處是什么。)

      7、這位同學(xué)的想法真是太與眾不同了,我們?yōu)樗恼,誰聽懂了他的想法,把他的想法在復(fù)述一遍。

      8、想這位同學(xué)的方法就是假設(shè)法。(板書:假設(shè)法)

      9、到現(xiàn)在為止,我們可以得出結(jié)論了。

      三、提升思維構(gòu)建模型

      1、剛才我們通過不同的方法驗(yàn)證了這句話是正確的,現(xiàn)在老師把題目改一改,同學(xué)們看看還對(duì)不對(duì)了,為什么?(課件出示:把5支鉛筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)生回答并說明理由。

      2、課件繼續(xù)出示:

     。1)把6個(gè)蘋果放進(jìn)5個(gè)盤子里呢?

     。2)把10本書放進(jìn)9個(gè)抽屜中呢?

     。3)把100只鴿子放進(jìn)99個(gè)籠子中呢?

      3、我們?yōu)槭裁炊疾捎昧思僭O(shè)法來分析,而不是畫圖用枚舉法呢?(枚舉法雖然直觀,但是有一定的局限性,假設(shè)法更具有一般性)

      (設(shè)計(jì)意圖:通過出示更大的數(shù),讓學(xué)生感受到用假設(shè)法的方便性,實(shí)用性,同時(shí)引出的優(yōu)化的思想。)

      4、在數(shù)學(xué)課堂上我們通常采用更便于我們解決的方法來解決問題,這是一種優(yōu)化的思想。(板書:優(yōu)化思想)

      5、引出物體數(shù)、鴿巢數(shù)、至少數(shù),學(xué)生觀察,你有什么發(fā)現(xiàn)嗎?(當(dāng)物體數(shù)比鴿巢數(shù)多1時(shí),總有一個(gè)鴿巢里至少有2個(gè)物體。)

      6、回過頭來我們看課前老師猜測的撲克牌的游戲,誰能解釋一下是怎么回事呢?看來并不是老師神奇,而是鴿巢問題神奇啊。

      7、同學(xué)們今天的發(fā)現(xiàn)是德國數(shù)學(xué)家狄利克雷最早提出的:課件介紹有關(guān)鴿巢問題的來歷。

      四、解決問題練習(xí)鞏固

      通過學(xué)生的努力,我們一起研究出鴿巢問原理,現(xiàn)在老師出幾道題看同學(xué)們是否真的學(xué)會(huì)了。

      1、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?

      2、把()本書放進(jìn)3個(gè)抽屜,不管怎么放,總有一個(gè)抽屜至少放進(jìn)2本書。()中能填幾呢?

      (設(shè)計(jì)意圖:習(xí)題2鍛煉學(xué)生的逆向思維,同時(shí)也為下節(jié)課的學(xué)習(xí)埋下了伏筆。)

      五、課堂總結(jié)

      這節(jié)課的探究學(xué)習(xí)中,我們一起經(jīng)歷了與德國數(shù)學(xué)家狄利克雷一樣的偉大發(fā)現(xiàn),你有什么收獲呢?

    鴿巢問題教學(xué)設(shè)計(jì)4

      教學(xué)目標(biāo):

      1.知識(shí)與技能:通過操作、觀察、比較、推理等活動(dòng),初步了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法,運(yùn)用鴿巢原理的知識(shí)解決簡單的實(shí)際問題。

      2.過程與方法:在鴿巢原理的探究過程中,使學(xué)生逐步理解和掌握鴿巢原理,經(jīng)歷將具體問題數(shù)學(xué)化的過程,培養(yǎng)學(xué)生的模型思想。

      3.情感態(tài)度:通過對(duì)鴿巢原理的靈活運(yùn)用,感受數(shù)學(xué)的魅力,體會(huì)數(shù)學(xué)的價(jià)值,提高學(xué)生解決相關(guān)問題的能力和興趣。

      教學(xué)重點(diǎn):經(jīng)歷鴿巢原理的探究過程,初步了解鴿巢原理。

      教學(xué)難點(diǎn):理解“總有”“至少”的意義,理解鴿巢原理,并對(duì)一些簡單的實(shí)際問題加以模型化。

      教學(xué)準(zhǔn)備:多媒體課件、撲克牌、3個(gè)筆筒。

      教學(xué)過程:

      一、魔術(shù)游戲激趣導(dǎo)入:

      1、老師這個(gè)魔術(shù)需要請(qǐng)1名同學(xué)來配合,誰愿意?

      向?qū)W生介紹這是一幅撲克牌,取出大小王、還剩52張,(請(qǐng)學(xué)生隨意抽出5張牌)好,見證奇跡的時(shí)刻到了,你手里有5張牌至少有兩張牌的花色是一樣的。(學(xué)生打開牌讓大家看)

      課件出示:至少有2張是同一花色。“至少”表示什么意思?

      引導(dǎo):老師為什么能作出準(zhǔn)確的.判斷呢?因?yàn)檫@個(gè)有趣的魔術(shù)中蘊(yùn)含著一個(gè)數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)問題。

      板演:鴿巢問題

      二、合作探究

      (一)列舉法:

      課件出示:同學(xué)們,如果把3支筆放進(jìn)2個(gè)筆筒中,會(huì)有哪幾種擺放的結(jié)果?

      找一組學(xué)生上前實(shí)物模擬操作擺放情況。

      師問:同學(xué)們,你們誰能把擺放的情況用“總有……至少……”這個(gè)句式來概括出來嗎?“總有”、“至少”分別又是什么意思呢?

      概括得出:總有1個(gè)筆筒至少放2支筆。(及時(shí)肯定學(xué)生們的回答:你的邏輯思維能力真強(qiáng))

      課件出示:如果把4支筆放進(jìn)3個(gè)筆筒中呢?快和你的小伙伴們交流探索一下:

      1.分組探究,教師巡視指導(dǎo)。

      預(yù)設(shè)學(xué)生會(huì)出現(xiàn)以下幾種情況:(1)實(shí)物模擬(2)圖示(3)數(shù)的分解

      2.學(xué)生匯報(bào),講臺(tái)展示。

      3.學(xué)生概括得出:總有1個(gè)筆筒至少放2支筆。

      4.小結(jié):剛才我們通過以上方法列舉出所有情況驗(yàn)證了結(jié)論,這種方法叫“列舉法”。

      (二)假設(shè)法

      師問:同學(xué)們,將100支筆放99個(gè)筆筒,總有1個(gè)筆筒至少放進(jìn)幾支筆呢?

      追問有勇氣列舉嗎?預(yù)設(shè):沒有勇氣列舉

      我們能不能找到一種更為直接的方法,找到“至少數(shù)”呢?

      課件出示:4支筆放3個(gè)筆筒,總有1個(gè)筆筒至少放2支筆。這句話能快速得到驗(yàn)證嗎?

      1.引導(dǎo)學(xué)生思考:回顧下“至少”的意思,為保障每個(gè)筆筒都盡量少,不能出現(xiàn)某個(gè)筆筒特別多的情況,我們要把怎樣分?學(xué)生嘗試作答:

      生:如果每個(gè)筆筒里放1支筆,放了3支,剩下的1支不管放進(jìn)哪一個(gè)筆筒里,總有一個(gè)筆筒里至少有2支筆。既而教師圖示。(及時(shí)肯定學(xué)生的探究能力)

      2.引伸拓展:

      (1) 5支筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒中至少放進(jìn)( )支筆。

      (2) 6支筆放進(jìn)5個(gè)筆筒,總有一個(gè)筆筒中至少放進(jìn)( )支筆。

      (3) 100支筆放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)( )支筆。

      也就是說:有n+1支筆放進(jìn)n個(gè)筆筒中,總有一個(gè)筆筒至少放進(jìn)2支筆。

      3.小結(jié):這種先假設(shè)按平均分,然后再分配剩余量的方法叫做“假設(shè)法”。

      教師追問:列舉法和假設(shè)法的優(yōu)缺點(diǎn)是什么?

      學(xué)生總結(jié)出:

      列舉法優(yōu)點(diǎn):能夠做到不重復(fù),不遺漏,結(jié)果一目了然。缺點(diǎn):局限性,擺放更多筆浪費(fèi)時(shí)間,效率低。

      假設(shè)法的優(yōu)點(diǎn)是:簡潔、迅速解決問題,更具有一般性。

      三、練習(xí)鞏固,解決問題

      1.5只鴿子飛進(jìn)3個(gè)鴿籠,總有1個(gè)鴿籠至少飛進(jìn)了幾只鴿子?為什么?

      2.同學(xué)們理解上面撲克牌的原理了嗎?

      四、鴿巢原理的由來

      最早指出這個(gè)數(shù)學(xué)原理的是19世紀(jì)的德國數(shù)學(xué)家狄利克雷,這個(gè)原理被稱為“狄利克雷原理”,又因?yàn)樵谥v述這個(gè)原理是,人們經(jīng)常以鴿巢、抽屜為例,所以它往往也被稱為“鴿巢原理”和“抽屜原理”。

      五:板書設(shè)計(jì)

      鴿巢問題

      “總是”“至少”

      列舉法

      假設(shè)法平均分

    鴿巢問題教學(xué)設(shè)計(jì)5

      教學(xué)內(nèi)容

      審定人教版六年級(jí)下冊(cè)數(shù)學(xué)《數(shù)學(xué)廣角鴿巢問題》,也就是原實(shí)驗(yàn)教材《抽屜原理》。

      設(shè)計(jì)理念

      《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數(shù)學(xué)的一個(gè)基本原理,最先是由德國數(shù)學(xué)家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。

      首先,用具體的操作,將抽象變?yōu)橹庇^!翱傆幸粋(gè)筒至少放進(jìn)2支筆”這句話對(duì)于學(xué)生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個(gè)筒至少放進(jìn)2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。

      其次,充分發(fā)揮學(xué)生主動(dòng)性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動(dòng)者,特別是這種原理的初步認(rèn)識(shí),不應(yīng)該是教師牽著學(xué)生去認(rèn)識(shí),而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。

      所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。

      再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“鴿巢”和“物體”。

      教材分析

      《鴿巢問題》這是一類與“存在性”有關(guān)的問題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們?cè)谕粋(gè)月過生日。在這類問題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說明通過什么方式把這個(gè)存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“鴿巢問題”。

      通過第一個(gè)例題教學(xué),介紹了較簡單的“鴿巢問題”:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢至少放進(jìn)2個(gè)物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個(gè)筒至少放進(jìn)2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過前一個(gè)例題的兩個(gè)層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。

      第二個(gè)例題是在例1的基礎(chǔ)上說明:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體。因此我認(rèn)為例2的目的是使學(xué)生進(jìn)一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過程。

      學(xué)情分析

      可能有一部分學(xué)生已經(jīng)了解了鴿巢問題,他們?cè)诰唧w分得過程中,都在運(yùn)用平均分的方法,也能就一個(gè)具體的問題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒有接觸,所以他們可能會(huì)認(rèn)為至少的情況就應(yīng)該是“1”。

      教學(xué)目標(biāo)

      1.通過猜測、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會(huì)用“鴿巢原理”解決簡單的實(shí)際問題。滲透“建!彼枷。

      2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

      3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

      教學(xué)重點(diǎn)

      經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。

      教學(xué)難點(diǎn)

      理解“鴿巢問題”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)

      教學(xué)過程

      一、游戲激趣,初步體驗(yàn)。

      游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。

      [設(shè)計(jì)意圖:聯(lián)系學(xué)生的生活實(shí)際,激發(fā)學(xué)習(xí)興趣,使學(xué)生積極投入到后面問題的研究中。]

      二、操作探究,發(fā)現(xiàn)規(guī)律。

      1、具體操作,感知規(guī)律

      教學(xué)例1: 4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?

     。1)學(xué)生匯報(bào)結(jié)果

      (4,0 , 0)(3,1,0)(2,2,0)(2,1,1)

     。2)師生交流擺放的結(jié)果

     。3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。

      (學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說,“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。”)

      設(shè)計(jì)意圖:鴿巢問題對(duì)于學(xué)生來說,比較抽象,特別是“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆!边@句話的理解。所以通過具體的操作,枚舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的筒,理解“總有一個(gè)筒里至少放進(jìn)了2支筆”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,訓(xùn)練學(xué)生的邏輯思維能力。

      質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?

      2、假設(shè)法,用“平均分”來演繹“鴿巢問題”。

      1、思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?

      學(xué)生思考——同桌交流——匯報(bào)

      2、匯報(bào)想法

      預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的.1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。

      3、學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。

      [設(shè)計(jì)意圖:鼓勵(lì)學(xué)生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學(xué)生意識(shí)到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。]

      三、探究歸納,形成規(guī)律

      1、課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。

      設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。

      根據(jù)學(xué)生回答板書:5÷2=2……1

     。▽W(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)

      根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?

      至少數(shù)=商+1

      2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書)

      ……

      7÷5=1……2

      8÷5=1……3

      9÷5=1……4

      觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?

      得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。

      板書:至少數(shù)=商+1

      設(shè)計(jì)意圖:對(duì)規(guī)律的認(rèn)識(shí)是循序漸進(jìn)的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2支”得到“至少商+余數(shù)”個(gè),再到得到“商+1”的結(jié)論。

      師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!傍澇苍怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

      四、運(yùn)用規(guī)律解決生活中的問題

      課件出示習(xí)題.:

      1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。

      2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。

      3.從電影院中任意找來13個(gè)觀眾,至少有兩個(gè)人屬相相同。

      ……

      設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。

      五、課堂總結(jié)

      這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)

    鴿巢問題教學(xué)設(shè)計(jì)6

      一、教學(xué)內(nèi)容:

      教科書第68頁例1。

      二、教學(xué)目標(biāo):

     。ㄒ唬┲R(shí)與技能:通過數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法。

     。ǘ┻^程與方法:結(jié)合具體的實(shí)際問題,通過實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問題的能力。

     。ㄈ┣楦袘B(tài)度和價(jià)值觀:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過程中,讓學(xué)生切實(shí)體會(huì)到探索的樂趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。

      三、教學(xué)重難點(diǎn)

      教學(xué)重點(diǎn):經(jīng)歷鴿巢問題的探究過程,初步了解鴿巢原理,會(huì)用鴿巢原理解決簡單的實(shí)際問題。

      教學(xué)難點(diǎn):通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的.數(shù)學(xué)思維。

      四、教學(xué)準(zhǔn)備:多媒體課件。

      五、教學(xué)過程

      (一)候課閱讀分享:

      同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。

     。ǘ┘で閷(dǎo)課

      好,咱們班人數(shù)已到齊,從今天開始,我們學(xué)習(xí)第五單元鴿巢問題,這節(jié)課通過數(shù)學(xué)活動(dòng)我們來了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開始上課。

     。ㄈ┟裰鲗(dǎo)學(xué)

      1、請(qǐng)同學(xué)們先來看例1。把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2只鉛筆。

      請(qǐng)你再把題讀一次,這是為什么呢?

      要想解決這個(gè)問題,我們首先要理解,總有一個(gè)筆筒里至少有2支鉛筆這句話。我們?cè)偎伎歼@一句話中,總有和至少是什么意思?

      對(duì)總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆;蛘呤钦f,鉛筆的支數(shù)要大于或等于兩支。

      那你能現(xiàn)在說說,總有一個(gè)筆筒里至少有兩支鉛筆這句話的意思了嗎?對(duì),這句話就是說,一定有一個(gè)筆筒里最少有兩支鉛筆,或者是說一定有一個(gè)筆筒里的鉛筆數(shù)是大于或等于兩支的。你說對(duì)了嗎?

      課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個(gè)筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!

      方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個(gè)數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。

      剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數(shù)學(xué)中我們叫它“枚舉法”。

      那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個(gè)情況呢?

      方法二:用“假設(shè)法”證明。

      對(duì),我們可以這樣想,如果在每個(gè)筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒。這時(shí)無論放在哪個(gè)筆筒,那個(gè)筆筒中就有2支,所以總有一個(gè)筆筒中至少放進(jìn)2支鉛筆。(平均分)

      方法三:列式計(jì)算

      你能用算式表示這個(gè)方法嗎?

      學(xué)生列出式子并說一說算式中商與余數(shù)各表示什么意思?

      2、把5支鉛筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒里至少有2支鉛筆。

      這道題大家可以用幾種方法解答呢?

      3種,枚舉法、假設(shè)法、列式計(jì)算。

      3、100支鉛筆,放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少要放進(jìn)多少支鉛筆呢?

      還能有枚舉法嗎?對(duì),不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時(shí)候用起來比較麻煩?梢杂眉僭O(shè)法和列式計(jì)算。

      4、表格中通過整理,總結(jié)規(guī)律

      你發(fā)現(xiàn)了什么規(guī)律?

      當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時(shí),至少數(shù)等于2“商+1”。

      5、簡單了解鴿巢問題的由來。

      經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我把我們的這一發(fā)現(xiàn),稱為筆筒問題。但其實(shí)最早發(fā)現(xiàn)這個(gè)規(guī)律的不是我們,而是德國的一個(gè)數(shù)學(xué)家“狄里克雷”。

     。ㄋ模z測導(dǎo)結(jié)

      好,我們做幾道題檢測一下你們的學(xué)習(xí)效果。

      1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?

      2、一副牌,取出大小王,還剩52張,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?

      3、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?

      4、育新小學(xué)全校共有2192名學(xué)生,其中一年級(jí)新生有367名同學(xué)是20xx年出生的,這個(gè)學(xué)校一年級(jí)學(xué)生20xx年出生的同學(xué)中,至少有幾個(gè)人出生在同一天?

     。ㄎ澹┤n總結(jié)

      今天你有什么收獲呢?

     。┎贾米鳂I(yè)

      作業(yè):兩導(dǎo)兩練第70頁、71頁實(shí)踐應(yīng)用1、4題。

    鴿巢問題教學(xué)設(shè)計(jì)7

      教學(xué)目標(biāo):

      1、知識(shí)與技能:初步了解鴿巢原理,學(xué)會(huì)簡單的鴿巢原理分析方法,運(yùn)用鴿巢原理的知識(shí)解決簡單的實(shí)際問題或解釋相關(guān)的現(xiàn)象。

      2、過程與方法:通過操作、觀察、比較、說理等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷鴿巢原理的形成過程,體會(huì)和掌握邏輯推理思想和模型思想。

      3、情感態(tài)度:通過對(duì)鴿巢原理的靈活運(yùn)用,感受數(shù)學(xué)的魅力,體會(huì)數(shù)學(xué)的價(jià)值,提高學(xué)習(xí)數(shù)學(xué)的興趣。

      教學(xué)重點(diǎn):經(jīng)歷“鴿巢原理”的探究過程,理解鴿巢原理。

      教學(xué)難點(diǎn):理解“鴿巢原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教學(xué)準(zhǔn)備:多媒體課件、鉛筆、紙杯、合作探究作業(yè)紙。

      教學(xué)過程:

      一、喚起與生成

      1、談話:同學(xué)們,你們喜歡魔術(shù)嗎?今天,黃老師給大家表演一個(gè)小魔術(shù)。一副牌,取出大小王,還剩52張牌,請(qǐng)5個(gè)同學(xué)每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?來,試試看。

      2、驗(yàn)證:抽取,統(tǒng)計(jì)。是不是湊巧了,再來一次。表演成功!

      3、至少2張是什么意思?(也就是最少2張,最起碼2張,反過來,同一花色的可能有2張,也可能是3張、4張、5張...,一句話概括就是至少2張)。

      確定是哪個(gè)花色了嗎?(沒有)反正總有一個(gè)花色,所以,這個(gè)數(shù)據(jù)不管是在哪個(gè)花色出現(xiàn)都證明表演是成功的。

      4、設(shè)疑:你們想知道這是為什么嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,這節(jié)課讓我們一起去發(fā)現(xiàn)!

      二、探究與解決

      (一)、小組探究:4放3的簡單鴿巢問題

      1、出示:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。

      2、審題:

     、僮x題。

     、趶念}目上你知道了什么?證明什么?

     。ㄎ抑懒税4支鉛筆放進(jìn)3個(gè)筆筒中,證明不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)

      ③你怎樣理解“不管怎么放”、“總有” 、“至少”的意思?

      “不管怎么放”:就是隨便放、任意放。

      “總有”:就是一定有,不確定是哪個(gè)筆筒,這個(gè)筆筒沒有那個(gè)筆筒會(huì)有。

      “至少”:就是最少,最起碼。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

      3、探究:

     、僬勗挘嚎磥泶蠹乙呀(jīng)理解題目的意思了,眼見為實(shí),就讓我們親自動(dòng)手?jǐn)[一擺、放一放,看看有哪幾種放法?

     、诨顒(dòng):小組活動(dòng),四人小組。

      聽要求!

      活動(dòng)要求:每個(gè)小組都有筆筒和筆,請(qǐng)四個(gè)人中面對(duì)面的兩人一人扶杯子一人放鉛筆,另外兩人一人口述一人記錄,讓我們齊心協(xié)力,擺出所有情況后,對(duì)照題目,看有什么發(fā)現(xiàn)。

      聽明白了嗎?開始!

      3、反饋:匯報(bào)結(jié)果

      同學(xué)們辦法真多,有用畫圖法,有用數(shù)的分解來表示,都很清晰。誰來匯報(bào)一下你們的成果?

      可以在第一個(gè)筆筒中放4支鉛筆,其他兩個(gè)空著。這種放法可以說成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(課件逐一出示)

      追問:誰還有疑問或補(bǔ)充?

      預(yù)設(shè):說一說你比他多了哪一種放法?

      (2,1,1)和(1,1,2)是一種方法嗎?為什么?)

      只是位置不同,方法相同

      5、驗(yàn)證:觀察這4種擺法,憑什么說“總有一個(gè)筆筒中至少有2支鉛筆”?

     。1)逐一驗(yàn)證:

      第一種擺法(4,0,0),是不是總有一個(gè)筆筒至少2支,哪個(gè)?放的最多的筆筒里有4支,比2支多也可以嗎?

      符合總有一個(gè)筆筒里至少有2支鉛筆。

      第二種擺法(3,1,0),符合。哪個(gè)?放的最多的筆筒里有3支,符合總有一個(gè)筆筒里至少有2支鉛筆。

      第三種擺法(2,2,0),放的最多的筆筒里有2支,符合總有一個(gè)筆筒里至少有2支鉛筆。

      第四種擺法(2,1,1),放的最多的.筆筒里有2支,符合總有一個(gè)筆筒里至少有2支鉛筆。

      符合條件的那個(gè)筆筒在三個(gè)筆筒中都是最多的。

     。2)設(shè)疑:我有一個(gè)疑問,第一種擺法(4,0,0)放的最多的筆筒里,放有4支,可以說總有一個(gè)筆筒至少有4支鉛筆嗎?說成3支也不行嗎?

      (3)小結(jié):哦,原來是這樣,要考慮所有擺法,然后在所有擺法中,圈出每一種擺法中最多的,再從最多的里面找到至少數(shù),就能得出這個(gè)結(jié)論。

      所以,把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。

      (二)自主探究:5放4的簡單鴿巢原理

      1、過渡:依此推想下去

      2、出示:把5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有()支鉛筆。

      3、猜想:同學(xué)們猜猜看,至少數(shù)是幾支?(你說、你說)

      4、驗(yàn)證:你們的猜測對(duì)嗎?讓我們來驗(yàn)證一下。

      活動(dòng)要求:

     。1)思考有幾種擺法?記錄下來。

     。2)觀察每一種擺法,能不能從中找出答案。有困難的可以同桌合作。

      好,開始。(教師參與其中)。

      5、匯報(bào):把5支鉛筆放進(jìn)4個(gè)筆筒中,共有6種擺法

      分別是:5000 、4100、3200、3110 、2200、2111

     。ㄕn件同步播放)

      預(yù)設(shè):我圈出了每種擺法中,放鉛筆最多的那個(gè)筆筒,然后發(fā)現(xiàn),放鉛筆最多的的筆筒里面至少放有2支鉛筆。

      6、訂正:有補(bǔ)充的嗎?噢,我們來看,這6種擺法,把每種方法里放的(停頓)最多的鉛筆圈出來了,分別是5支、4支、3支、2支,從中找到至少數(shù)是2支。

      7、小結(jié):恭喜答對(duì)的同學(xué)!同學(xué)們可真是厲害!請(qǐng)看,我們研究了這樣的兩個(gè)問題:

      ①把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。會(huì)講為什么。

      ②把5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆?會(huì)求至少數(shù)。

      不管是對(duì)結(jié)論的證明還是求解至少數(shù),我們都采用一一列舉的方法,羅列出所有擺法,再通過觀察,得出結(jié)論。

     。ㄈ、探究鴿巢原理算式

      1、談話:哎,如果這里有100支鉛筆放進(jìn)30個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆?

      還是讓求至少數(shù),還用一一列舉的方法來研究,你覺得怎么樣?

     。ê寐闊,是啊,想想都覺得麻煩。

      2、追問:數(shù)學(xué)是一門簡潔的科學(xué),那就請(qǐng)同學(xué)們想一想,除了通過操作一一列舉出來,有沒有什么方法能一下子找到結(jié)果呢?

      其實(shí),我們剛才已經(jīng)和那一種方法見過面,以4放3為例,請(qǐng)同學(xué)們認(rèn)真觀察每一種擺法,分別找一找,哪一種擺法最能說明:總有一個(gè)筆筒里至少放有2支鉛筆呢?

      3、平均分:為什么這樣分呢?

      生:我是這樣想的,先假設(shè)每個(gè)筆筒中放1支,這樣還有1支,這是無論放到哪個(gè)筆筒,那個(gè)筆筒中就有2支了,所以我認(rèn)為是對(duì)的。(課件演示)

      師:你為什么要先在每個(gè)筆筒中放1支呢?

      生:因?yàn)榭偣仓挥?支,平均分,每個(gè)筆筒只能分到1支。

      師:為什么一開始就要去平均分呢?

      生:平均分,就可以使每個(gè)筆筒中的筆盡可能少一點(diǎn)。也就有可能找到和題目意思不一樣的情況。

      師:我明白了,但這樣能證明總有一個(gè)筆筒中肯定會(huì)有2支筆,怎么就證明了至少有2支呢?

      生:平均分已經(jīng)使每個(gè)筆筒中的筆盡可能的少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。

      師:看來,平均分是保證“至少”數(shù)的關(guān)鍵。

      4、列式:

     、倌隳苡盟闶奖硎締?

      4÷3=1……1?? 1+1=2

     、谥v講算式含義。

      a、指名講:假設(shè)把4支鉛筆平均放進(jìn)3個(gè)筆筒中,每個(gè)筆筒放1支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒,1+1=2,所以總有一個(gè)筆筒至少有2支鉛筆。

      b、真棒!講給你的同桌聽。

      5、運(yùn)用:把5支鉛筆放進(jìn)4個(gè)筆筒不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆??請(qǐng)用算式表示出來。

      5÷4=1……1?? 1+1=2

      說說算式的意思。

      a、同桌齊說。

      b、誰來說一說?

      師:我們會(huì)用除法算式表示平均分的過程,這種方法更為快捷、簡明。

     。ㄋ模┨骄可詮(fù)雜的鴿巢問題

      1、加深感悟:我們繼續(xù)研究這樣的問題,邊計(jì)算邊思考:這樣的題目有什么特點(diǎn)?結(jié)論中的至少數(shù)是怎樣得到的?

      2、題組(開火車,口答結(jié)果并口述算式)

     。1)6支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少有()支鉛筆

     。2)7支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少有()支鉛筆

      7÷5=1…… 2?? 1+2=3?

      7÷5=1…… 2?? 1+1=2

      出現(xiàn)了兩種答案,究竟那種正確?同桌商量商量。不行我再救場(學(xué)生討論)

      你認(rèn)為哪種結(jié)果正確?為什么?

      質(zhì)疑:為什么第二次還要平均分?(保證“至少”)

      把鉛筆平均分才是解決問題的關(guān)鍵啊。

      (3)把筆的數(shù)量進(jìn)一步增加:

      8支鉛筆放5個(gè)筆筒里,至少數(shù)是多少?

      8÷5=1……3?? 1+1=2

     。4)9支鉛筆放5個(gè)筆筒里,至少數(shù)是多少?

      9÷5=1……4?? 1+1=2

     。5)好,再增加一支鉛筆?至少數(shù)是多少?

      還用加嗎?為什么?? 10÷5=2??正好分完,至少數(shù)是商

     。6)好再增加一支鉛筆,,你來說

      11÷5=2……1?? 2+1=3?? 3個(gè)

     、倌銇碚f說現(xiàn)在至少數(shù)為什么變成3個(gè)了?(因?yàn)樯套兞,所以至少?shù)變成了3.)

      ②那同學(xué)們?cè)傧胂,鉛筆的支數(shù)到多少支時(shí),至少數(shù)還是3?

     、坫U筆的支數(shù)到多少支的時(shí)候,至少數(shù)就變成了4了呢?

     。7)把28支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少放進(jìn)(?)支鉛筆。28÷5=5……3?? 5+1=6??

      (8)算的這么快,你一定有什么竅門?(比比至少數(shù)和商)

      (9)把m支鉛筆放進(jìn)n個(gè)筆筒里,總有一個(gè)筆筒里面至少放進(jìn)(?)支鉛筆。(商+1)

      3、觀察算式,同桌討論,發(fā)現(xiàn)規(guī)律。

      鉛筆數(shù)÷筆筒數(shù)=商……余數(shù)” “至少數(shù)=商+1”

      你和他們的發(fā)現(xiàn)相同嗎?出示:商+1

      4、質(zhì)疑:和余數(shù)有沒有關(guān)系?

     。鞔_:與余數(shù)無關(guān),因?yàn)椴还苡喽嗌,都要再平均分,所以就用“?1”)

     。ㄎ澹w納概括鴿巢原理

      1、解答:那現(xiàn)在會(huì)求100支鉛筆放進(jìn)30個(gè)筆筒中的至少數(shù)了嗎?

      100÷30=3…… 10?? 3+1=4至少數(shù)是4個(gè)

      (因?yàn)榘?00支鉛筆平均放進(jìn)30個(gè)筆筒中,每個(gè)筆筒屜放3支,剩下的10支在平均再放進(jìn)其中10個(gè)筆筒中。所以,不管怎么放,總有一個(gè)筆筒里至少放進(jìn)4支鉛筆。)

      2、推廣:

      剛才我們研究了鉛筆放入筆筒的問題,其他還有很多問題和它有相同之處。請(qǐng)看:

      (1)書本放進(jìn)抽屜

      把8本書放進(jìn)3個(gè)抽屜,不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本書。為什么?

      8÷3=2……2? 2+1=3

      (因?yàn)榘?本書平均放進(jìn)3個(gè)抽屜,每個(gè)抽屜放2本,剩下的2本就要放進(jìn)其中的2個(gè)抽屜。所以,不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本書。)

     。2)鴿子飛進(jìn)鴿巢

      11只鴿子飛進(jìn)4個(gè)鴿籠,至少有幾只鴿子飛進(jìn)同一只鴿籠?

      11÷4=2……3? 2+1=3

      答:至少有3只鴿子飛進(jìn)同一只鴿籠。

     。3)車輛過高速路收費(fèi)口(圖)

     。4)搶凳子

      書、鴿子、同學(xué)就相當(dāng)于鉛筆,稱為要放的物體,抽屜、鴿籠、凳子就相當(dāng)于筆筒,統(tǒng)稱為抽屜。物體數(shù)量大于抽屜數(shù)量,類似的問題我們都可以用這種方法解答。

      3、建立模型:鴿巢原理:

      同學(xué)們發(fā)現(xiàn)的這個(gè)原理和一位數(shù)學(xué)家發(fā)現(xiàn)的一模一樣,讓我們追溯到150多年以前:

      知識(shí)鏈接:(課件)最早指出這個(gè)數(shù)學(xué)原理的,是十九世紀(jì)的德國數(shù)學(xué)家“狄利克雷”,后來人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫“狄利克雷原理”。以上這些問題有相同之處,其實(shí)鴿巢、抽屜就相當(dāng)于筆筒,鴿子、書就相當(dāng)于鉛筆。人們對(duì)鴿子飛回鴿巢這個(gè)事例記憶猶新,所以像這樣的數(shù)學(xué)問題就叫做鴿巢問題或抽屜問題,它被廣泛地應(yīng)用于現(xiàn)實(shí)生活中。運(yùn)用這一規(guī)律能解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

      揭示課題:這是我們今天學(xué)習(xí)的第五單元數(shù)學(xué)廣角——鴿巢問題,它們里面蘊(yùn)含的這種數(shù)學(xué)原理,我們就叫做鴿巢原理或抽屜原理。

      5、小結(jié):分析這類問題時(shí),要想清楚誰是鴿子,誰是鴿巢?

      有信心用我們發(fā)現(xiàn)的原理繼續(xù)接受挑戰(zhàn)嗎?

      3、鞏固與應(yīng)用

      那我們回頭看看課前小魔術(shù),你明白它的秘密了嗎?

      1、揭秘魔術(shù):一副牌,取出大小王,還剩52張牌,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的。

      答:因?yàn)榘?張牌,平均分在4個(gè)花色里,每個(gè)花色有1張,剩下的1張無論是什么花色,總有一個(gè)花色至少是2張。

      正確應(yīng)用鴿巢原理是表演成功的秘密武器!

      2、飛鏢運(yùn)動(dòng)

      同學(xué)們玩過投飛鏢嗎?飛鏢運(yùn)動(dòng)是一種集競技、健身及娛樂于一體的紳士運(yùn)動(dòng)。

      課件:張叔叔參加飛鏢運(yùn)動(dòng)比賽,投了5鏢,成績是41環(huán),張叔叔至少有一鏢不低于(?)環(huán)。

      在練習(xí)本上算一算,講給你的同桌聽聽。

      誰來給大家說說你是怎么想的?(5相當(dāng)于鴿巢,41相當(dāng)于鴿子。把......)

      41÷5=8……1? 8+1=9

      在我們同學(xué)身上也有鴿巢問題,讓我們先了解一下六年級(jí)的情況。

      3、我們六年級(jí)共有367名學(xué)生,其中六(2班)有49名學(xué)生。

     。1)六年級(jí)里至少有兩人的生日是同一天。

     。2)六(2)班中至少有5人的生日是在同一個(gè)月。

      他們說的對(duì)嗎?為什么?

      同桌討論一下。

      誰來說說你們的想法?

      (1、367人相當(dāng)于鴿子,365、或366天相當(dāng)于鴿巢......

      ? 2、49人相當(dāng)于鴿子,12個(gè)月相當(dāng)于鴿巢......)

      真理是越辯越明!

      3、星座測試命運(yùn)

      說起生日,我想起了現(xiàn)在非常流行的星座。采訪幾位同學(xué),你是什么星座?

      你用星座測試過命運(yùn)嗎?你相信星座測試的命運(yùn)嗎?

      我們用鴿巢原理來說說你的想法。

      全中國13億人,12個(gè)星座,總有至少一億以上的人命運(yùn)相同。盡管他們的出身、經(jīng)歷、天資、機(jī)遇各不相同,但他們卻具有完全相同的命,可能嗎?這真的很荒謬。用星座測試命運(yùn),充其量是一種游戲娛樂一下而已,命運(yùn)掌握在自己手中。

      4、柯南破案:

      ?? “鴿巢問題”的原理不僅在數(shù)學(xué)中有用,在現(xiàn)實(shí)生活中也隨處可見,看,誰來了?

     。ㄕn件)有一次,小柯南走在大街上,無意間聽到了一位老大爺和一個(gè)年輕人的對(duì)話:

      年輕人:大爺,我最近急用錢,想把我的一個(gè)手機(jī)號(hào)賣掉,價(jià)格500元,請(qǐng)問您要嗎?

      大爺:是什么手機(jī)號(hào)呢?這么貴?

      年輕人:我的手機(jī)號(hào)很特別,它所有的數(shù)字中沒有一個(gè)數(shù)字重復(fù)......所以才這么貴的!

      老大爺:哦!

      聽到這里,柯南馬上跑過去悄悄提醒老大爺:“大爺,這是一個(gè)騙子,您要小心!”并且馬上報(bào)了警,警察趕到后調(diào)查發(fā)現(xiàn)這個(gè)人果真是個(gè)騙子。

      聰明的你,知道柯南是根據(jù)什么判斷那個(gè)年輕人是騙子的嗎?

     。ㄊ謾C(jī)號(hào)11位數(shù)字相當(dāng)于鴿子。0-9這十個(gè)數(shù)字相當(dāng)于鴿巢,11÷10=1…1? 1+1=2,總有至少一個(gè)數(shù)字重復(fù)出現(xiàn)。)

      4、回顧與整理。

      這節(jié)課我們認(rèn)識(shí)了“鴿巢問題”,其實(shí)生活中還有許多的類似于“鴿巢問題”這樣的知識(shí)等待我們?nèi)グl(fā)現(xiàn),去挖掘。只要你留心觀察加上細(xì)心思考,一定會(huì)在平凡的事件中有不平凡的發(fā)現(xiàn),也能創(chuàng)造一條真正屬于你自己的原理!

    鴿巢問題教學(xué)設(shè)計(jì)8

      一、教學(xué)內(nèi)容

      教材第6

      二、教學(xué)目標(biāo)

      1.經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會(huì)用“鴿巢問題”解決簡單的實(shí)際問題。

      2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3.通過“鴿巢問題”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      三、教學(xué)重難點(diǎn)

      重點(diǎn):經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。難點(diǎn):理解“鴿巢問題”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      四、教學(xué)準(zhǔn)備

      多媒體課件

      紙杯

      吸管

      五、教學(xué)過程

      一、課前游戲引入。

      師:孩子們,你們知道劉謙嗎?你們喜歡魔術(shù)嗎?今天老師很高興和大家見面,初次見面,所以老師特地練了個(gè)小魔術(shù),準(zhǔn)備送給大家做見面禮。孩子們,想不想看老師表演一下?

      生:想

      師:我這里有一副撲克牌,我找五位同學(xué)每人抽一張。老師猜。(至少有兩張花色一樣)

      師:老師厲害嗎?佩服嗎?那就給老師點(diǎn)獎(jiǎng)勵(lì)吧!想不想學(xué)老師的這個(gè)絕招。下面老師就教給你這個(gè)魔術(shù),可要用心學(xué)了。有沒有信心學(xué)會(huì)?

      二、通過操作,探究新知

      (一)探究例1

      1、研究3根小棒放進(jìn)2個(gè)紙杯里。

     。1)要把3枝小棒放進(jìn)2個(gè)紙杯里,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。

     。2)反饋:兩種放法:(3,0)和(2,1)。(教師板書)(3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)

     。4)“總有”什么意思?(一定有)

     。5)“至少”有2枝什么意思?(不少于2枝)

      小結(jié):在研究3根小棒放進(jìn)2個(gè)紙杯時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)紙杯里放進(jìn)2根小棒)

      2、研究4根小棒放進(jìn)3個(gè)紙杯里。

      (1)要把4根小棒放進(jìn)3個(gè)紙杯里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

     。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)紙杯里至少有2根小棒)

     。4)你是怎么發(fā)現(xiàn)的?

     。5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)紙杯里放進(jìn)2根小棒”。

      師:大家看,全放到一個(gè)杯子里,就有四個(gè)了。太多了。那怎么樣讓每個(gè)杯子里都盡可能少,你覺得應(yīng)該要怎樣放?(小組合作,討論交流)(每個(gè)紙杯里都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)紙杯,總會(huì)有一個(gè)紙杯里至少有2根小棒)(你真是一個(gè)善于思想的孩子。)

     。6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個(gè)紙杯里里放1根小棒,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)

     。7)誰能用算式來表示這位同學(xué)的想法?(4÷3=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?

     。8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問題,同學(xué)們的方法有兩種,一是

      2枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來說明理由,你覺得哪種方法更明了更簡單?

      3、類推:把5枝小棒放進(jìn)4個(gè)紙杯,總有一個(gè)紙杯里至少有幾根小棒?為什么?

      把6枝小棒放進(jìn)5個(gè)紙杯,總有一個(gè)紙杯里至少有幾根小棒?為什么?

      把7枝小棒放進(jìn)6個(gè)紙杯,是不是總有一個(gè)紙杯里至少有幾根小棒?為什么?

      把100枝小棒放進(jìn)99個(gè)紙杯,是不是總有一個(gè)紙杯里至少有幾根小棒?為什么?

      4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的小棒比紙杯的'數(shù)量多1,總有一個(gè)紙杯里至少放進(jìn)2根小棒。)

      5、小結(jié):剛才我們分析了把小棒放進(jìn)紙杯的情況,只要小棒數(shù)量多于紙杯數(shù)量時(shí),總有一個(gè)紙杯里至少放進(jìn)2根小棒。

      這就是今天我們要學(xué)習(xí)的鴿巢問題,也叫抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?小棒相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么紙杯就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體。

      小練習(xí):

      1、任意13人中,至少有幾人的出生月份相同?

      2、任意367名學(xué)生中,至少有幾名學(xué)生,他們?cè)谕惶爝^生日?為什么?

      3、任意13人中,至少有幾人的屬相相同?”

      6、剛才我們研究的是小棒數(shù)比紙杯多1的情況,如果小棒比紙杯數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)紙杯里至少有2根小棒。”

    鴿巢問題教學(xué)設(shè)計(jì)9

      教學(xué)內(nèi)容

      人教版教材小學(xué)數(shù)學(xué)六年級(jí)第十二冊(cè)“數(shù)學(xué)廣角”例1及相關(guān)內(nèi)容。

      教學(xué)目標(biāo)

      (1)經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會(huì)用“鴿巢問題”解決簡單的實(shí)際問題。

     。2)通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

     。3)通過“鴿巢問題”的'靈活應(yīng)用感受數(shù)學(xué)的魅力。

      教學(xué)重點(diǎn)

      經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。

      教學(xué)難點(diǎn)

      理解“鴿巢問題”里的先“平均分”,再得出至少數(shù)的過程。并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教具、學(xué)具準(zhǔn)備

      若干個(gè)紙杯(每小組3個(gè))、筆(每小組4根)、撲克牌1副

      教學(xué)過程

      一、撲克魔術(shù)導(dǎo)入。

      請(qǐng)同學(xué)們看我表演一個(gè)“魔術(shù)”。拿出一副撲克牌(去掉大小王)52張中有四種花色,請(qǐng)一個(gè)同學(xué)幫我從中隨意抽5張牌,無論怎么抽,總有一種花色至少有2張牌是同花色的你相信嗎?

      你能說明其中的道理嗎?老師不用看就知道“一定有2張牌是同花色的對(duì)不對(duì)?假如請(qǐng)這位同學(xué)再抽取,不管怎么抽,總有2張牌是同花色的,同意么?

      其實(shí)這里蘊(yùn)含了一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們一起探究這個(gè)數(shù)學(xué)原理?(板書課題:鴿巢問題)

      二、學(xué)習(xí)例1,列舉探究

      1、用枚舉法深入研究4支筆放進(jìn)3個(gè)紙杯里。

     。1)要把4支筆放進(jìn)3個(gè)紙杯里(紙杯代替),有幾種放法?請(qǐng)同學(xué)們想一想,小組擺一擺,記一記;再把你的想法在小組內(nèi)交流。(提醒學(xué)生左3右1與左1右3是同一種方法——不管杯子的順序)

      (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)

     。3)觀察這四種放法,同學(xué)們有什么發(fā)現(xiàn)呢?(不管怎么放,總有一個(gè)紙杯里至少放有2枝鉛筆)讓孩子們充分地說。

      板書:枚舉法

     。4)“總有”什么意思?(一定有)

      (5)“至少”有2本是什么意思?(最少是2本,2本或者2本以上)。

      2、假設(shè)法

     、龠可以這樣想:先放3支,在每個(gè)筆筒中平均放1支,剩下的1支再放進(jìn)其中的一個(gè)筆筒。所以至少有一個(gè)筆筒中有2支鉛筆

     、谒伎迹簽槭裁匆仍诿總(gè)筆筒里平均放一支呢?

     、劾^續(xù)思考:

      6只鉛筆放進(jìn)5個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)()支鉛筆。

      10只鉛筆放進(jìn)9個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)()支鉛筆。

      100只鉛筆放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)()支鉛筆。

     、芡ㄟ^剛才的分析,你有什么發(fā)現(xiàn)?誰能試著說一說?

      只要鉛筆數(shù)比筆筒多1,總有一個(gè)筆筒里至少放進(jìn)2支鉛筆。

      3、介紹鴿巢問題的由來。

     。1)抽屜原理是組合數(shù)學(xué)中的一個(gè)重要原理,它最早由德國數(shù)學(xué)家狄利克雷(Dirichlet)提出并運(yùn)用于解決數(shù)論中的問題,所以該原理又稱“狄利克雷原理”。

     。2)總結(jié):把m個(gè)物體任意放進(jìn)n個(gè)抽屜中,(m>n,m和n是非0自然數(shù)),若m÷ n= 1……a,那么一定有一個(gè)抽屜中至少放進(jìn)了2個(gè)物體。

      三、鞏固練習(xí):

      1、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?

      2、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?

      四、總結(jié)全課:這節(jié)課你有哪些收獲呢?

     。ㄉ厦纥c(diǎn)學(xué)生說一說,不全的老師補(bǔ)充)

      五、設(shè)疑留懸念。

      如果是把7本書放進(jìn)3個(gè)抽屜里,那么總有一個(gè)抽屜至少放進(jìn)()本書。

      如果有8本書呢?

      六、作業(yè)布置

      1.完成教材課后習(xí)題p71第5、6題;

      2.完成練習(xí)冊(cè)本課時(shí)的習(xí)題。

    鴿巢問題教學(xué)設(shè)計(jì)10

      【教學(xué)內(nèi)容】人教版六年級(jí)下冊(cè)第68--69 頁《數(shù)學(xué)廣角 --- 鴿巢問題 》

      【教學(xué)目標(biāo)】

      1、知識(shí)與技能

      經(jīng)歷鴿巢問題的探究過程, 初步理解“鴿巢問題”,會(huì)用“鴿巢問題”解決簡單的實(shí)際問題。

      2、過程與方法

      通過操作、觀察、比較、列舉、假設(shè)、推理等活動(dòng)發(fā)展學(xué)生的類推能力, 形成比較抽象的數(shù)學(xué)思維。

      3、情感態(tài)度與價(jià)值觀

      (1)通過“鴿巢問題”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

     。2)使學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,培養(yǎng)學(xué)生的“建!彼枷。【教學(xué)重點(diǎn)】經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。

      【教學(xué)難點(diǎn)】理解“鴿巢問題”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      【教學(xué)過程】

      一、創(chuàng)設(shè)情境引入課題

      1 .游戲:上課前咱們先玩?zhèn)游戲

      規(guī)則:一副牌,取出大小王,還剩52 張,上來5 人每人隨意抽一張。抽 到牌后藏好,老師能猜出你們這5張牌中至少有2 張牌是同花色的。

      請(qǐng)5 個(gè)同學(xué)參加游戲,然后舉起手中的牌讓同學(xué)們見證奇跡。猜對(duì)了,給老師點(diǎn)掌聲。有的同學(xué)會(huì)說這是巧合,那咱們?cè)俪橐淮危@次讓5個(gè)同學(xué)看著牌抽,選好自己要抽的花色,我猜你們這5張牌中還會(huì)至少有2 張牌是同花色的。誰有興趣,請(qǐng)舉手,再玩一次。

      2. 導(dǎo)入課題:

      知道剛才的游戲老師為什么能猜對(duì)嗎?這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)問題,你們想不想來研究研究?好這節(jié)課我們就一起來研究這類問題,“鴿巢問題”。 (板書課題)

      下面我們先從簡單的情況入手。

      二、合作探究發(fā)現(xiàn)規(guī)律

     。ㄒ唬┙虒W(xué)例1 (由枚舉法引出假設(shè)法, 初步“建模” ——平均分。 )

      出示例1:把4 支筆放進(jìn) 3 個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有 2 支筆。

      1.理解 “總有”和“至少”的.意思。

      2 .運(yùn)用“枚舉法”初步探究。

     。1 ) 把 4 支筆放進(jìn) 3 個(gè)筆筒里,有幾種不同的放法?自己動(dòng)手在小組內(nèi)擺一擺,畫一畫,說一說,把出現(xiàn)的幾種情況都記錄下來。

     。2 )展示不同的方法。

      (3)講解:像這樣一一列舉出來的方法,在數(shù)學(xué)上叫枚舉法。

      3 .通過比較,引導(dǎo)“假設(shè)法”。

      啟發(fā):你們?cè)诜值倪^程中有沒有一種更為直接的方法,只擺一種情況也能得到這個(gè)結(jié)論?小組商量后再交流。課件展示

      總結(jié):假設(shè)每個(gè)筆筒先平均分1支,剩下的一支筆隨便放入哪一個(gè)筆筒,總有一個(gè)筆筒至少有2支筆。

      4.初步“建! ----平均分 。

      引導(dǎo):運(yùn)用“假設(shè)法”先在每個(gè)筆筒里分 1 支,這種均等的分法,又叫平均分,用什么方法計(jì)算?你能列式表示嗎?

      板書: 4 ÷ 3=1 …… 1 1+1=2

      5.對(duì)比擇優(yōu),體會(huì)“假設(shè)法”的優(yōu)越。

      對(duì)比:剛才用枚舉和假設(shè)法兩種方法進(jìn)行思考,你認(rèn)為哪一種方法更好呢?為什么?

      發(fā)現(xiàn):枚舉法是一一列舉來驗(yàn)證,在數(shù)字比較大的時(shí)候有局限性,而假設(shè)法先用平均分的方法在數(shù)據(jù)大的時(shí)候也同樣適用。

      6.概括“鴿巢問題”的一般規(guī)律。

      追問:如果增加筆和筆筒的數(shù)量,又會(huì)怎樣呢?

      出示

     。1 ) 把 5 支筆放進(jìn) 4 個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少放進(jìn)幾支筆?為什么?

     。2 )把 6 支筆放進(jìn) 5 個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少放進(jìn)幾支筆?為什么?

     。3 )把 100 支筆放進(jìn) 99 個(gè)筆筒里,不管怎么放 , 總有一個(gè)筆筒里至少放進(jìn)幾支筆?為什么?

      啟發(fā):“照樣子,你能說一句這樣的話嗎?”

      提問:發(fā)現(xiàn)了什么規(guī)律?

      概括:只要筆的數(shù)量比筆筒數(shù)量多1, 總有一個(gè)筆筒里至少放進(jìn) 2 支筆。

      7.提問:難道這個(gè)規(guī)律只有在這種情況下才存在嗎?如果余數(shù)不是1, 這個(gè)規(guī)律還存在嗎?

      出示課件:7只鴿子飛進(jìn)了5個(gè)鴿籠,那么至少又會(huì)有幾只鴿子飛進(jìn)同一個(gè)鴿籠呢?

      反饋質(zhì)疑:運(yùn)用“假設(shè)法”,每個(gè)鴿籠里先平均飛進(jìn) 1 只,余下的兩只會(huì)怎樣飛呢?

      追問: 哪種情況更符合“至少”這個(gè)結(jié)論呢?

      優(yōu)化答案:5 ÷ 3=1 …… 2 1+1=2

      8只鴿子飛進(jìn)了5個(gè)鴿籠,那么至少又會(huì)有幾只鴿子飛進(jìn)同一個(gè)鴿籠呢?11只呢?24只呢?

      8. 總結(jié)規(guī)律。

      看來你們又發(fā)現(xiàn)規(guī)律了,是嗎?說一說。

      總結(jié)概括:咱們把筆和鴿子數(shù)量叫做物體數(shù),筆筒和鴿籠數(shù)量叫抽屜數(shù),如果平均分后有剩余,那么總有一個(gè)鴿籠里放進(jìn)“商 +1 ”本書。

      (二)了解小資料—— “鴿巢問題”。

     。ㄈ┠憷斫馍险n前表演的撲克牌游戲的道理了嗎?

      三、聯(lián)系生活學(xué)以致用

      1.基礎(chǔ)園 ---- 我會(huì)填空

     。1)把50本書放入49個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有( )支筆。

     。2)10只鴿子飛回4個(gè)鴿巢,不管怎么飛,總有一個(gè)鴿巢里至少有()只鴿子。

      2、 拓展練習(xí)。

      (1)三個(gè)小朋友做游戲,至少有( 。﹤(gè)小朋友性別相同。

      (2)咱們學(xué)校有15位老師,我們中至少有(  。┤藢傧嘞嗤。

      四、課堂總結(jié)反思提升

      師:通過這節(jié)課的學(xué)習(xí),說說自己的收獲或感受吧!

      1. 學(xué)生反思總結(jié)數(shù)學(xué)思想方法,歸納所學(xué)知識(shí)。

      2. 師:最后,老師送同學(xué)們一句話 , 在學(xué)習(xí)中“ 只要留心觀察加上細(xì)心思考, 總有 新的發(fā)現(xiàn)!”

      五、作業(yè)

      (1)南奇小學(xué)有學(xué)生367人,我們可以肯定,在這367人中,至少有( )人的生日在同一日。

     。2)一副撲克牌(除去大小王)52張牌,從中隨意抽14張牌,無論怎么抽, 至少有2張牌是同一點(diǎn)數(shù)的?為什么?

      板書:鴿巢問題(抽屜原理)

      物體數(shù)抽屜數(shù)商余數(shù)至少數(shù)=商+1

      5 ÷4=1……1 1+1=2

      6 ÷5=1……1 1+1=2

      100÷99=1……1 1+1=2

      7 ÷ 5= 1……2 1+1=2

      8 ÷ 5= 1……3 1+1=2

      11÷ 5=2……12+1=3

      24÷ 5=4……44+1=5

    鴿巢問題教學(xué)設(shè)計(jì)11

      教學(xué)內(nèi)容:教科書第68頁例1。

      教學(xué)目標(biāo):

      1、使學(xué)生理解“抽屜原理”(“鴿巢原理”)的基本形式,并能初步運(yùn)用“抽屜原理”解決相關(guān)的實(shí)際問題或解釋相關(guān)的現(xiàn)象。

      2、通過操作、觀察、比較、說理等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷抽屜原理的形成過程,體會(huì)和掌握邏輯推理思想和模型思想,提高學(xué)習(xí)數(shù)學(xué)的興趣。

      教學(xué)重點(diǎn):

      經(jīng)歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。

      教學(xué)難點(diǎn):

      理解“抽屜原理”,并對(duì)一些簡單的實(shí)際問題加以“模型化”。

      教學(xué)模式:

      學(xué)、探、練、展

      教學(xué)準(zhǔn)備:

      多媒體課件一套

      教學(xué)過程:

      一、游戲?qū)?/p>

      1.師生玩“撲克牌魔術(shù)”游戲。

     。1)教師介紹:一副牌,取出大小王,還剩下52張牌,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?

     。2)玩游戲,組織驗(yàn)證。

      通過玩游戲驗(yàn)證,引導(dǎo)學(xué)生體會(huì)到:不管怎么抽,總有兩張牌是同花色的。

      2.導(dǎo)入新課。

      剛才這個(gè)游戲當(dāng)中,蘊(yùn)含著一個(gè)數(shù)學(xué)問題,這節(jié)課我們就一起來研究這個(gè)有趣的.問題。

      二、呈現(xiàn)問題,探究新知

      課件呈現(xiàn):例1.把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。為什么呢?

      課件出示自學(xué)提示:

     。1)“總有”和“至少”是什么意思?

     。2)把4支鉛筆放進(jìn)3個(gè)筆筒中,可以怎么放?有幾種

      不同的放法?(請(qǐng)大家用擺一擺、畫一畫、寫一寫等方法把自己的想法表示出來。)

     。3)把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放總有一個(gè)筆筒至少放進(jìn)xxx支鉛筆?

     。ㄒ唬┳灾魈骄,初步感知

      1、學(xué)生小組合作探究。

      2、反饋交流。

     。1)枚舉法。

     。2)數(shù)的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

      (3)假設(shè)法。

      師:除了像這樣把所有可能的情況都列舉出來,還有沒有別的

      方法也可以證明這句話是正確的呢?

      生:我是這樣想的,先假設(shè)每個(gè)筆筒中放1支,這樣還剩1支。這時(shí)無論放到哪個(gè)筆筒,那個(gè)筆筒中就有2支了。

      師:你為什么要先在每個(gè)筆筒中放1支呢?

      生:因?yàn)榭偣灿?支,平均分,每個(gè)筆筒只能分到1支。

      師:你為什么一開始就平均分呢?(板書:平均分)

      生:平均分就可以使每個(gè)筆筒里的筆盡可能少一點(diǎn)。

      師:我明白了。但是這樣只能證明總有一個(gè)筆筒中肯定有2支筆,怎么能證明至少有2支呢?

      生:平均分已經(jīng)使每個(gè)筆筒里的筆盡可能少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。

      (4)確認(rèn)結(jié)論。

      師:到現(xiàn)在為止,我們可以得出什么結(jié)論?

      生(齊):把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。

     。ǘ┨嵘季S,構(gòu)建模型

      師:(口述)那要是

     。1)把5支鉛筆放進(jìn)4個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有xx支鉛筆。

      (2)把6支鉛筆放進(jìn)5個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有xx支鉛筆。

      (3)10支鉛筆放進(jìn)9個(gè)筆筒中呢?100支鉛筆放進(jìn)99個(gè)筆筒中

      2.建立模型。

      師:通過剛才的分析,你有什么發(fā)現(xiàn)?

      生:只要鉛筆的數(shù)量比筆筒的數(shù)量多1,那么總有一個(gè)筆筒至少要放進(jìn)2支筆。

      師:對(duì)。鉛筆放進(jìn)筆筒我們會(huì)解釋了,那么有關(guān)鴿子飛入鴿巢的問題,大家會(huì)解釋嗎?(課件出示)

      師:以上這些問題有什么相同之處呢?

      生:其實(shí)都是一樣的,鴿巢就相當(dāng)于筆筒,鴿子就相當(dāng)于鉛筆。

      師:像這樣的數(shù)學(xué)問題,我們就叫做“鴿巢問題”或“抽屜問題”,它們里面蘊(yùn)含的這種數(shù)學(xué)原理,我們就叫做“鴿巢問題”或“抽屜問題”。(揭題)

      三、基本練習(xí)。

      四、拓展提升。

      五、課堂小結(jié)。

      六、作業(yè)布置。

      完成課本第71頁,練習(xí)十三,第1題。

    鴿巢問題教學(xué)設(shè)計(jì)12

      教學(xué)目標(biāo):

      1、引導(dǎo)學(xué)生經(jīng)歷鴿巢原理的探究過程,初步了解鴿巢原理,會(huì)運(yùn)用鴿巢原理解決一些簡單的實(shí)際問題。

      2、通過操作、觀察、比較、列舉、假設(shè)、推理等活動(dòng)發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3、使學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,初步形成模型思想。

      教學(xué)重點(diǎn):經(jīng)歷鴿巢原理的探究過程,初步了解鴿巢原理。

      教學(xué)難點(diǎn):理解鴿巢原理,并對(duì)一些簡單的實(shí)際問題加以模型化。

      教學(xué)過程:

      一、創(chuàng)設(shè)情境、導(dǎo)入新課

      1、師:同學(xué)們,你們玩過撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學(xué)隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)

      2、師:大家猜對(duì)了嗎?其實(shí)這里面藏著一個(gè)非常有趣的數(shù)學(xué)問題,叫做“鴿巢問題”。今天我們就一起來研究它。

      二、合作探究、發(fā)現(xiàn)規(guī)律

      師:研究一個(gè)數(shù)學(xué)問題,我們通常從簡單一點(diǎn)的情況開始入手研究。請(qǐng)看大屏幕。(生齊讀題目)

      1、教學(xué)例1:把4支鉛筆放進(jìn)3個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。

     。1)理解“總有”、“至少”的含義。(PPT)總有:一定有至少:最少

      師:這個(gè)結(jié)論正確嗎?我們要?jiǎng)邮謥眚?yàn)證一下。

      (2)同學(xué)們的課桌上都有一張作業(yè)紙,請(qǐng)同桌兩人合作探究:把4支鉛筆放進(jìn)3個(gè)筆筒里,有幾種不同的擺法?

      探究之前,老師有幾個(gè)要求。(一生讀要求)

     。3)匯報(bào)展示方法,證明結(jié)論。(展示兩張作品,其中一張是重復(fù)擺的。)

      第一張作品:誰看懂他是怎么擺的?(一生匯報(bào),發(fā)現(xiàn)重復(fù)的擺法)

      第二張作品:他是怎么擺的?這4種擺法有沒有重復(fù)的?還有其他的擺法嗎?板書:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)

      師:我們要證明的是總有一個(gè)筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報(bào):第一種擺法中哪個(gè)筆筒滿足要求?只要發(fā)現(xiàn)有一個(gè)筆筒里至少有2支鉛筆就行了。)

      總結(jié):把4支鉛筆放進(jìn)3個(gè)筆筒中一共只有四種情況,在每一種情況中,都一定有一個(gè)筆筒中至少有2支鉛筆。看來這個(gè)結(jié)論是正確的。

      師:像這樣把所有情況一一列舉出來的方法,數(shù)學(xué)上叫做“枚舉法”。(板書)

     。4)通過比較,引出“假設(shè)法”

      同桌討論:剛才我們把4種情況都列舉出來進(jìn)行驗(yàn)證,能不能找到一種更簡單直接的方法,只擺一種情況就能證明這個(gè)結(jié)論是正確的?

      引導(dǎo)學(xué)生說出:假設(shè)先在每個(gè)筆筒里放1支,還剩下1支,這時(shí)無論放到哪個(gè)筆筒,那個(gè)筆筒里就有2支鉛筆了。(PPT演示)

     。5)初步建!骄

      師:先在每個(gè)筆筒里放1支,這種分法實(shí)際上是怎么分的?

      生:平均分(師板書)

      師:為什么要去平均分呢?平均分有什么好處?

      生:平均分可以保證每個(gè)筆筒里的筆數(shù)量一樣,盡可能的少。這樣多出來的1支不管放進(jìn)哪個(gè)筆筒里,總有一個(gè)筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個(gè)筆筒里,這樣就不能保證一下子找到最少的情況了)

      師:這種先平均分的方法叫做“假設(shè)法”。怎么用算式表示這種方法呢?

      板書:4÷3=1……1 1+1=2

     。5)概括鴿巢問題的一般規(guī)律

      師:現(xiàn)在我們把題目改一改,結(jié)果會(huì)怎樣呢?

      PPT出示:把5支筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有幾支筆?(引導(dǎo)學(xué)生說清楚理由)

      師:為什么大家都選擇用假設(shè)法來分析?(假設(shè)法更直接、簡單)

      通過這些問題,你有什么發(fā)現(xiàn)?

      交流總結(jié):只要筆的數(shù)量比筆筒數(shù)量多1,總有一個(gè)筆筒里至少放進(jìn)2支筆。

      過渡語:師:如果多出來的數(shù)量不是1,結(jié)果會(huì)怎樣呢?

      2、出示:5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠里至少飛進(jìn)了幾只鴿子呢?

     。1)同桌討論交流、指名匯報(bào)。

      先讓一生說出5÷3=1……2 1+2=3的結(jié)果,再問:有不同的意見嗎?

      再讓一生說出5÷3=1……2 1+1=2

      師:你們同意哪種想法?

      (2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?

     。3)明確:再次平均分,才能保證“至少”的情況。

      3、教學(xué)例2

     。1)師:我們剛才研究的'把筆放入筆筒、鴿子飛進(jìn)鴿籠這樣的問題就叫做“鴿巢問題”,也叫“抽屜問題”。它最早是由德國數(shù)學(xué)家狄利克雷發(fā)現(xiàn)并提出的,當(dāng)他發(fā)現(xiàn)這個(gè)問題之后決定繼續(xù)深入研究下去。出示例2。

     。2)獨(dú)立思考后指名匯報(bào)。

      師板書:7÷3=2……1 2+1=3

     。3)如果有8本書會(huì)怎樣?10本書呢?

      指名回答,師相機(jī)板書:8÷3=2……2 2+1=3

      師:剩下的2本怎么放才更符合“至少”的要求?

      為什么不能用商+2?

      10÷3=3……1 3+1=4

     。4)觀察發(fā)現(xiàn)、總結(jié)規(guī)律

      同桌討論交流:學(xué)到這里,老師想請(qǐng)大家觀察這些算式并思考一個(gè)問題,把書放進(jìn)抽屜里,總有一個(gè)抽屜里至少放進(jìn)了幾本書?我們是用什么方法去找到這個(gè)結(jié)果的?(假設(shè)法,也就是平均分的方法)用書的數(shù)量去除以抽屜的數(shù)量,會(huì)得到一個(gè)商和一個(gè)余數(shù),最后的結(jié)果都是怎么計(jì)算得到的?為什么不能用商加余數(shù)?

      歸納總結(jié):總有一個(gè)抽屜里至少可以放“商+1”本書。(板書:商+1)

      三、鞏固應(yīng)用

      師:利用鴿巢問題中這個(gè)原理可以解釋生活中很多有趣的問題。

      1、做一做第1、2題。

      2、用抽屜原理解釋“撲克表演”。

      說清楚把4種花色看作抽屜,5張牌看作要放進(jìn)的書。

      四、全課小結(jié):

      通過這節(jié)課的學(xué)習(xí),你有什么收獲或感想?

    【鴿巢問題教學(xué)設(shè)計(jì)】相關(guān)文章:

    鴿巢問題的教學(xué)反思08-04

    《鴿巢問題》教學(xué)設(shè)計(jì)范文(精選10篇)11-11

    《鴿巢問題》優(yōu)秀的教學(xué)設(shè)計(jì)范文(通用6篇)03-08

    鴿巢問題教學(xué)反思(精選6篇)07-06

    《鴿巢問題》數(shù)學(xué)教學(xué)反思(通用10篇)08-02

    六年級(jí)數(shù)學(xué)《鴿巢問題》教學(xué)設(shè)計(jì)10-28

    《鴿巢原理》優(yōu)秀教學(xué)反思范文10-17

    《鴿巢原理》教學(xué)反思700字10-28

    工程問題教學(xué)設(shè)計(jì)04-03