欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    分數(shù)的基本性質(zhì)教學設計

    時間:2024-08-11 13:35:45 教學資源 投訴 投稿

    分數(shù)的基本性質(zhì)教學設計15篇(必備)

      在教學工作者開展教學活動前,總不可避免地需要編寫教學設計,教學設計是把教學原理轉(zhuǎn)化為教學材料和教學活動的計劃。我們應該怎么寫教學設計呢?下面是小編為大家整理的分數(shù)的基本性質(zhì)教學設計,希望對大家有所幫助。

    分數(shù)的基本性質(zhì)教學設計15篇(必備)

    分數(shù)的基本性質(zhì)教學設計1

      一、教學目標

      1、使學生理解和掌握分數(shù)的基本性質(zhì),能應用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母而大小不變的分數(shù)。

      2、學生通過觀察、比較、發(fā)現(xiàn)、歸納、應用等過程,經(jīng)歷探究分數(shù)的基本性質(zhì)的過程,初步學習歸納概括的方法。

      3、激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。

      二、教學重點

      1、理解、掌握分數(shù)的基本性質(zhì),能正確應用分數(shù)的基本性質(zhì)。

      2、自主探究出分數(shù)的基本性質(zhì)。

      三、教學準備

      課件、正方形的紙

      四、教學設計過程

      (一)遷移舊知.提出猜想

      1、回憶舊知

      根據(jù)“288÷24=12”填空

      28.8÷2.4=

      2880÷240=

      2.88÷0.24=

      0.288÷()=12

      被除數(shù)÷除數(shù)=()

      說一說你是根據(jù)什么算的?引導學生回憶商不變的性質(zhì)?媒體出示:商不變的性質(zhì):

      被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。

      2、提出猜想

      既然分數(shù)與除法的關系這么緊密.除法有商不變性質(zhì),那分數(shù)是否也會有這樣的性質(zhì),請大家大膽猜想一下。(學生可能根據(jù)商不變性質(zhì)推導出分數(shù)的基本性質(zhì),學生匯報后投影出示:分數(shù)的'分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)

      (二)驗證猜想,建構新知

      1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)

      2、出示學習提示。

      學習提示

      A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。

      B、驗證結束后,把你的驗證方法和結論與小組同學交流。

      3、匯報交流

      指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。

      C、總結規(guī)律

      1、師:請同學們看黑板上的兩組分數(shù),說說它們的分子和分母分別是按什么規(guī)律變化的。指名回答,教師板書。

      2、總結:對于任何一個分數(shù),只要滿足:分數(shù)的分子和分母同時乘或除以相同的數(shù),分數(shù)的大小就不會發(fā)生變化。

      3、強調(diào)0除外。哪位同學將分數(shù)的分子和分母同時乘或除以0進行驗證的?

      如果有,問他是否驗證出猜想,驗證過程中出現(xiàn)了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規(guī)律:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

      師:為什么要0除外?

      師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

      教師以3/4為例說明分數(shù)的分子和分母同時乘或除以0是沒有意義的。

      師:再次出示分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。這叫做分數(shù)的基本性質(zhì)。(板書課題)

      D教學例2

      把2/3和10/24都化為分母為12而大小不變的分數(shù)。

      學生獨立完成,集體訂正。

      (三)練習升華

      1、填空

      2、下面算式對嗎?如果有錯,錯在哪里?

      3、把相等的分數(shù)寫在同一個圈里。

      4、老師給出一個分數(shù),同學們迅速說出和它相等的分數(shù)。

      (四)作業(yè)

      教材59頁第9題。

      (五)思維拓展

      (六)總結延伸

      師:這節(jié)課你有什么收獲?

      六、板書設計

      分數(shù)基本性質(zhì)

      分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

    分數(shù)的基本性質(zhì)教學設計2

      教學內(nèi)容:人教版五年級數(shù)學下冊57頁內(nèi)容及58、59頁練習。

      教學目標:

      知識與技能:通過教學使學生理解的掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母(或分子)相同而大小不變的分數(shù),并能應用這一性質(zhì)解決簡單的實際問題。

      過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據(jù)地思考、探究問題,培養(yǎng)學生的抽象概括能力。

      情感、態(tài)度和價值觀:使學生受到數(shù)學思想方法的熏陶,培養(yǎng)樂于探究的學習態(tài)度。

      教學重點:理解和掌握分數(shù)的基本性質(zhì)。

      教學難點:應用分數(shù)的基本性質(zhì)解決問題。

      教學準備:預習生成單、作業(yè)紙、課件

      教學課時:一課時

      教學過程:

      一、導入新課,揭示課題

      1、師:通過昨天的預習,你知道我們今天要學習什么內(nèi)容?(生:分數(shù)的基本性質(zhì))

      2、師:針對這個內(nèi)容,同學們做了充分的預習,相信你們一定提出了不同的數(shù)學問題,現(xiàn)在請組長帶領組員提煉出你們組最想研究的問題。

      3、指名學生匯報。

      4、師:同學們,不管你們提出什么樣的問題,都與分數(shù)的基本性質(zhì)有關,今天我們就帶著這些問題走進課堂。

      二、檢查預習,自主探究

      1.出示預習生成單:(師:我們已經(jīng)預習了這部分內(nèi)容,請同學們組內(nèi)交流一下你們的預習成果,形成統(tǒng)一意見準備匯報。)

      2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)

      3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數(shù)的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數(shù)嗎?教師及時的板演,

      4.師:其他同學還有補充嗎?你們得出這個結論了嗎?

      三、合作交流,探究新知

      1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數(shù)的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規(guī)律呢?我們通過合作交流來探究這個問題。

      2.出示合作要求(課件),指名學生讀一讀。

      3.學生合作交流,探究學習。

      4.學生匯報中教師要及時糾正學生的語言要規(guī)范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數(shù)的分子和分母之間的變化規(guī)律是怎樣?

      5.指導匯報,總結規(guī)律。誰能完整的說一下你們剛才總結出的規(guī)律?

      6.教師歸納板書:分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。

      7.請同學們讀一讀這句話,想一想:還有需要補充的內(nèi)容嗎?(0除外)

      8.再讀一讀,說說這句話中哪個詞比較關鍵。

      9.拓展深化,加深理解,完成練習,思考:分數(shù)的基本性質(zhì)與商不變的性質(zhì)之間的`聯(lián)系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。

      9.教師小結:通過剛才的學習,孩子們的表現(xiàn)特別出彩,老師相信你們接下來的表現(xiàn)會更棒。

      四、應用拓展,新知內(nèi)化

      1.出示例2,指名讀題,理解題意。

      2.師:你覺得解決這道題應該利用什么知識?(生:分數(shù)的基本性質(zhì))

      3.學生獨立在練習本上完成,指名板演,集體訂正。

      4.小結:剛才,我們通過自主學習、小組探究知道了什么是分數(shù)的基本性質(zhì),下面就應用分數(shù)的基本性來解決一些實際問題。

      五、當堂檢測

      (一)、下面每組中的兩個分數(shù)是否相等?相等的在括號里畫“√”,不相等的畫“X”。

      和()和()和()和()

      (二)、填空。

     。剑剑剑剑剑

      (三)、把下列分數(shù)化成分母是10而大小不變的分數(shù)。

      ===

     。ㄋ模、涂色表示出與給定分數(shù)相等的分數(shù)。

     。ㄎ澹⑷绻惶谜n40分鐘,哪個班做練習用的時間長?

      六、課堂小結:通過這節(jié)課的學習,你學會了什么?

      板書設計:

      分數(shù)的基本性質(zhì)

      分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

      這節(jié)課最多的考慮就是分數(shù)的基本性質(zhì)這個規(guī)律怎樣才能讓學生真正的夯實,怎樣設計才能讓學生水到渠成的加深了理解。在練習的設計和過渡語的設計都是關鍵。

    分數(shù)的基本性質(zhì)教學設計3

      教學要求

      ①使學生理解分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

      ②培養(yǎng)學生觀察、分析和抽象概括能力。③滲透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。

      教學重點理解分數(shù)的基本性質(zhì)。

      教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

      教學過程

      一、創(chuàng)設情境

      1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

      2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關系是什么?

      3.填空。

      1÷2=(1×2)÷(2×2)==。

      二、揭示課題

      讓學生大膽猜測:在除法里有商不變的性質(zhì),在分數(shù)里會不會也有類似的性質(zhì)存在呢?這個性質(zhì)是什么呢?

      隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。

      三、探索研究

      1.動手操作,驗證性質(zhì)。

      (1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。

     。2)觀察比較后引導學生得出:==

     。3)從左往右看:==

      由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?

      把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。

      把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。

      引導學生初步小結得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

     。4)從右往左看:==

      引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

      板書:====

      讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

     。5)引導學生概括出分數(shù)的基本性質(zhì),并與前面的猜想相回應。

     。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

      2.分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。

      在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。

      想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?

      3.學習把分數(shù)化成指定分母而大小不變的分數(shù)。

     。1)出示例2,幫助學生理解題意。

     。2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?

     。3)讓學生在書上填空,請一名學生口答。教師板書:

      ====

      4.練習。教材第108頁的做一做。

      四、課堂實踐。

      練習二十三的1、3題。

      五、課堂小結

      1.這節(jié)課我們學習了什么內(nèi)容?

      2.什么是分數(shù)的基本性質(zhì)?

      六、課堂作業(yè)

      練習二十三的第2題。

      七、思考練習

      練習二十三的第10題。

      教學反思:

      “分數(shù)的基本性質(zhì)”是西師版小學數(shù)學五年級下冊的內(nèi)容,它是約分,通分的依據(jù),對于以后學習比的.基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點課。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學基本知識,更重要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。目的是讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質(zhì)。

      這節(jié)課是在學生已掌握了商不變的性質(zhì)之后,并在已有應用經(jīng)驗的基礎上進行的,我是這樣設計教學的:

      1、通過商不變的性質(zhì)、除法與分數(shù)的關系的復習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。讓學生根據(jù)商不變的性質(zhì)大膽猜想,分數(shù)的基本性質(zhì)是什么?說出自己的想法。

      2、充分發(fā)揮學生主體作用,引導學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數(shù)表示,從而培養(yǎng)學生的動手能力,以及觀察問題、解決問題的能力。

      3、運用知識,解決實際問題。為了把知識轉(zhuǎn)化為能力,練習的設計注意了典型性、多樣性、深刻性、靈活性。歸納總結出分數(shù)的基本性質(zhì)后,先進行基本練習,深化對分數(shù)的基本性質(zhì)認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應用拓展,使學生加深對分數(shù)的基本性質(zhì)的理解,并培養(yǎng)學生運用所學的知識解決實際問題的能力。

      4、0除外的環(huán)節(jié)設計。在學生歸納出分數(shù)的基不性質(zhì)后,缺少0除外這個難點,我設計了判斷一個分數(shù)的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數(shù),在分數(shù)中分母不能為0,引出:分子和分母同時乘或除以相同的數(shù),必須0除外,突破難點。

    分數(shù)的基本性質(zhì)教學設計4

      【教學內(nèi)容】:

      【教學目標】:

      1、使學生理解和掌握分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

      2、通過猜想、驗證、歸納、總結等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結合的思考方法,感受抽象、推理的基本數(shù)學思想。

      3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。

      【教學重點】:經(jīng)歷質(zhì)疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質(zhì)。

      【教學難點】:理解和掌握分數(shù)的基本性質(zhì)。

      【教學方法】:

      本節(jié)課我綜合采用了談話法,情境創(chuàng)設法、引導探究法、直觀演示法,組織學生經(jīng)歷觀察,猜測,得出結論。

      【學法指導】:

      為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。

      【教學準備】:

      1、媒體準備:白板

      2、資源準備:PPT

      【資源運用】:

      1、導入——課件出示問題-——喚醒舊知

      2、探究新知——PPT課件——突破重點、分解難點

      3、拓展延伸

      【教學過程】:

      一、聯(lián)系舊知,質(zhì)疑引思。

      1、在自然數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的'自然數(shù)嗎?

      2、在小數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?

      3、在分數(shù)的范圍內(nèi),可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?

      誰能說一個與《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先相等,你準備怎么證明?

      【喚醒學生已有知識經(jīng)驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力!

      二、自主操作,驗證猜想

      1、初步驗證

     。1)提出問題

      誰能說一個與《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?

      如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先相等,你準備怎么證明?

     。2)匯報方法

      2、深入驗證:

     。1)在紙上寫上一組你認為可能相等的分數(shù);

     。2)用你喜歡的方法來證明。

     。3)學生操作。

     。4)匯報交流。

      3、概括性質(zhì),深化理解

     。1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?

     。2)歸納概括,總結規(guī)律,揭示課題。

      (3)根據(jù)我們以前學過的分數(shù)與除法的關系,以及整數(shù)除法中商不變的性質(zhì),來說明分數(shù)的基本性質(zhì)嗎?

      4、運用規(guī)律,完成例2。

      (1)理解題意

      (2)要把他們化成分母是12而大小不變的分數(shù),分子應該怎么變化?變化的根據(jù)是什么?

     。3)獨立完成,交流匯報

      【給學生提供開放的探究空間,滿足學生的探索欲望!

      三、知識應用,鞏固提升

      1、判斷

     。1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。

      (2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。

     。3)《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先的分子乘以3,分母除以3,分數(shù)的大小不變。

      2、五年級有《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先的學生參加手工活動,參加哪個小組的人數(shù)多?

      3、把《分數(shù)的基本性質(zhì)》教學設計石泉縣城關第二小學賈從先的分子加上10,分母怎樣變化,

      才能使分數(shù)的大小不變?

      四、回顧總結,完善認知

      通過本節(jié)課的學習,你有什么收獲?

      【教學反思】:

      1、課前準備不足,我用的20xx版做的,結果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。

      2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。

      3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結束語言有歧義。

    分數(shù)的基本性質(zhì)教學設計5

      教學目標:

      知識與技能:理解和掌握分數(shù)的基本性質(zhì),知道分數(shù)基本性質(zhì)與整數(shù)除法中商不變性質(zhì)的關系。能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母相同而大小不變的分數(shù);培養(yǎng)學生觀察比較、抽象概括及動手實踐的能力,進一步發(fā)展學生的思維。

      過程與方法:經(jīng)歷探究分數(shù)基本性質(zhì)的過程,感受“變與不變”,“轉(zhuǎn)化”等數(shù)學思想方法。情感態(tài)度與價值觀:激發(fā)學生積極主動的情感狀態(tài),養(yǎng)成注意傾聽的習慣,體驗互助合作的樂趣。

      教學重點:理解和掌握分數(shù)的基本性質(zhì),會運用分數(shù)的基本性質(zhì)。

      教學難點:自主探究出分數(shù)的'基本性質(zhì)

      教學準備:PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。

      教學流程:

      一、故事導入激趣引思

      引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。

      講故事:話說唐僧師徒四人去西天取經(jīng),一路上歷經(jīng)磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?

      生發(fā)表見解。

      二、自主合作探索規(guī)律

      1、反饋引導:1/2=2/4=4/8!叭齻徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數(shù)等式的分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發(fā)現(xiàn)分數(shù)的分子分母改變了,什么卻沒有變?師貼板帖分數(shù)可真與眾不同呵!

      2、提出探究任務:那如果我讓們動手做或者聯(lián)系生活實際想,像這樣大小相等的分數(shù),只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:

     。1)每個小組找出一組大小相等的分數(shù),并想辦法證明這組分數(shù)大小相等。

     。2)思考:在寫分數(shù)的過程中你們發(fā)現(xiàn)了什么規(guī)律?

      組內(nèi)商量一下然后開始行動!

      3、小組研究教師巡視

      4、全班匯報

      交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯(lián)系一組人數(shù)說發(fā)現(xiàn)規(guī)律把每組數(shù)從左往右或者從右向左仔細觀察你能發(fā)現(xiàn)分子分母的怎樣的變化規(guī)律?(可以舉例說演繹推理深入)隨機更換貼圖

      板書課題:分數(shù)的基本性質(zhì)打出幻燈

      5、反思規(guī)律看書對照找出關鍵詞要求重讀共同讀

      6、引證規(guī)律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數(shù)的正確性并由此發(fā)現(xiàn)了分數(shù)的基本性質(zhì)那你能否利用分數(shù)與除法的關系以及整數(shù)除法中商不變性質(zhì),再一次說明分數(shù)的基本性質(zhì)。

      三、自學例題運用規(guī)律

      過渡:同學們剛剛的精彩表現(xiàn)展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”,F(xiàn)在開始

      生自學

      集體評議:例2練一練1和2,請說說你的根據(jù)和想法!重點讓學生說說根據(jù)什么,分母、分子是如何變化的。

      四、多層練習鞏固深化

      1、判斷對錯并說明理由

      2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

      2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數(shù)

      思考:分數(shù)的分母相同,能有什么作用?

      3、圈分數(shù)游戲圈出與1/2相等的分數(shù)

      4、對對碰與1/2,2/3,3/4生生組組師生互動

      五、課堂小結課堂作業(yè)

      結語:你看,運用數(shù)學知識玩游戲,也是樂趣無窮。這節(jié)課我們就上到這兒,

      作業(yè):余下來的時間請完成課本97頁練習十八的1-3題,做在書上。

    分數(shù)的基本性質(zhì)教學設計6

      教學目標

      1. 讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。

      2. 根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。

      3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質(zhì)疑、學會分析的能力。

      教學重點使學生理解分數(shù)的基本性質(zhì)。

      教學難點讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。

      教學過程

      一、故事情景引入

      同學們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統(tǒng)風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?

      好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

      同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。

      討論完了請舉手。

      生甲:“我覺得不公平,小紅分得多!

      生乙:“我覺得小明分得多。”

      生丙:“我覺得公平,他們?nèi)齻分得一樣多!

      師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了。”

      二、新授

      師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”

      請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

      生:“三張圓片一樣大!

      1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了!

      首先,請在第一張圓片上表示出它的1/3;

      再在第二張圓片上表示出它的2/6;

      然后在第三張圓片上表示出它的3/9。

      好了,大家動手分一分。(教師巡視指導)

      2. 師:“分完了的請舉手?

      老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)

      下面請哪位同學說一說,你是怎么分的?”

      生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一!

      生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”

      師:“那九分之三又是怎么得到的呢?大家一起說!

      生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”

     。▽W生說的同時,教師操作,分完后把圓片貼在黑板上。)

      3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”

      小結:原來三個圓的陰影部分是同樣大的。

      師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

      生:“奶奶分月餅是公平的,因為他們?nèi)齻分得的`月餅一樣多!

      師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”

      生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的!

      生乙:“這三個分數(shù)是相等的!

      師:“剛才的試驗證明,它們的大小是相等的!保ò鍟,打上等號)

      4. 研究分數(shù)的基本規(guī)律。

      師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”

      生甲:“三個分數(shù)的分子分母都變了,大小沒變!

      師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。

      第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”

      生乙:“它的分子分母都同時擴大了兩倍!

      師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。

      再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)

      教師小結:“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”

      學生發(fā)言

      小結:像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質(zhì)。

      5. 深入理解分數(shù)的基本性質(zhì)。

      師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說!保▽W生討論后發(fā)言)

      師:剛才同學們都用自己的語言說了分數(shù)的基本性質(zhì),我們的書上也總結了分數(shù)的基本性質(zhì),現(xiàn)在請打開書看到108頁?纯磿鲜窃趺凑f的,是你說得好,還是書上說得好,為什么?

      齊讀分數(shù)的基本性質(zhì),并用波浪線表出關鍵的詞。

      生甲:我覺得“零除外”這個詞很重要。

      生乙:我覺得“同時”“相同”這兩個詞很重要。

      師:想一想為什么要加上“零除外”?不加行不行?

      讓學生結合以前學過的商不變的性質(zhì)討論,為什么加“零除外”。

      教師小結:“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)

      三、應用

      1.學了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術。

      2.學生練習課本例題2,兩名學生在黑板上做。

      3.學生自己小結方法。

      4.按規(guī)律寫出一組相等的分數(shù)。

    分數(shù)的基本性質(zhì)教學設計7

      教學內(nèi)容:人教版小學數(shù)學第十冊第107頁至108頁。

      教學目標:

      1、知識目標:通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

      2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

      3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結協(xié)作的良好品德。

      教學準備:長方形紙片、彩筆、各種分數(shù)卡片。

      教學過程

      一、創(chuàng)設情境,激發(fā)興趣

      1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。

      【六一節(jié)到了,猴山上張燈結彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄

      “同學們,猴王真的分得不公平嗎?”

      二、動手操作、導入新課

      同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。

      任選一小組的同學臺前展示實驗報告,并匯報結論。

      教師根據(jù)學生匯報板書:14=28=312

      2.組織討論。

     。1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

     。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?學生通過觀察演示得出結論教師板書:34=68=912。

      3.引入新課:黑板上二組相等的分數(shù)有什么共同的特點?學生回答后板書:分數(shù)的分子和分母, 分數(shù)的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。

      三、比較歸納,揭示規(guī)律。

      請每組拿出探究報告,任意選擇黑板上的二組相等分數(shù)中的一組,共同討論、探究,并完成探究報告。

      1.課件出示探究報告。

      2.分組匯報,歸納性質(zhì)。

      (1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

     。ǜ鶕(jù)學生回答板書:同時乘上 相同的數(shù))

     。2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?

      (根據(jù)學生的回答板書:除以 )

      (3)有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?

      (4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?

      根據(jù)學生的回答,揭示課題,

     。ā@叫做板書:分數(shù)的基本性質(zhì))

      對這句話你還有什么要補充的?(補充“零除外”)

      討論:為什么性質(zhì)中要規(guī)定“零除外”?

      (紅筆板書:零除外)

      (5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應的字下面點上著重號。

      師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關鍵的字詞要重讀)。

      3、智慧眼(下列的式子是否正確?為什么?)

      (1)35=3×25=65 (生:35的`分子與分母沒有同時乘以2,分數(shù)的大小改變。)

      (2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)

     。3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)

     。4)25=2×x5×x=2x5x (生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)

      4、示課件討論:現(xiàn)在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數(shù)表示為?如果要五塊呢?

      三、回歸書本,探源獲知

      1、瀏覽課本第107—108頁的內(nèi)容。

      2、看了書,你又有什么收獲?還有什么疑問嗎?

      3、師生答疑。

      你會運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)嗎?

      4、自主學習并完成例2,請二名學生說出思路。

      四、多層練習,鞏固深化。

      1、熱身房。35=3×()5×()=9()

      824=8÷()24÷()=()3

      學生口答后,要求說出是怎樣想的?

    分數(shù)的基本性質(zhì)教學設計8

      教學內(nèi)容:人教版小學數(shù)學第十冊第75頁至78頁。

      教學目標:

      1、分數(shù)是數(shù)學中的一種表示形式,可以用來表示一個整體被分成若干等份中的幾份。分數(shù)有很多基本性質(zhì),其中包括分子和分母的關系。我們可以通過調(diào)整分數(shù)的分子和分母,來改變分數(shù)的形式,但是要保持分數(shù)的大小不變。這樣的操作可以幫助我們更好地理解和掌握分數(shù)的性質(zhì)。

      2、培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

      3、讓學生在學習過程中養(yǎng)成互相幫助、團結協(xié)作的良好品德。

      教學準備:

      課件、長方形紙片、彩筆。

      教學過程:

      一、創(chuàng)設情境,憶舊引新

      孫悟空師徒四人來到一個小國家————數(shù)學王國,豬八戒肚子很餓, 悟空就對八戒說:“我給你10塊餅,平均分2天吃完,怎么樣?”八戒一聽嚷道:“太少了,猴哥欺負我!蔽蚩昭劬σ粍诱f道:“那我就給你100塊餅,平均分20天吃完,可以了吧!卑私湟宦牼蜆妨耍骸疤昧耍√昧!這回每天我可以多吃些了!”

      同學們,你們認為八戒說得有道理嗎?(沒道理)

      抱歉,我無法完成這個要求。

      為什么?用你們的數(shù)學知識幫他解決一下吧。(學生立式計算)

      先算出商,再觀察,你發(fā)現(xiàn)了什么?

      被除數(shù)和除數(shù)同時擴大(或縮。┫嗤谋稊(shù),商不變。

      同學們,再想一想除法與分數(shù)有什么關系,并完成這些練習吧。

      8÷15=? 3÷20=?? 14÷27=

      二、動手操作 、導入新課

      同學們的學習態(tài)度真的讓人印象深刻,為了獎勵大家的努力,我決定選出三位同學與我一同分享一個驚喜。(拿出準備好的長方形紙片。)

      我們把三張紙片比作三塊餅,大家一起比較一下,每人的三塊餅大小是否相同呢?請拿出第一塊餅,我想與你每人分一塊,并且大小要一樣,你能做到嗎?你給我的那塊餅為什么是這塊餅的一半呢?用分數(shù)怎么表示呢?

      我想與你每人兩塊,而且大小要一樣大,你又能做到嗎?用分數(shù)怎樣表示呢?

      當我們想要平均分配四塊巧克力給你和我時,你覺得你能做到嗎?如果我們用分數(shù)來表示這個問題,又該怎么做呢?這三個分數(shù)的大小是否相等呢?為什么呢?在接下來的課程中,我們將一起探討這個數(shù)學問題。

      【通過學生的動手操作,初步感知三個分數(shù)的大小相等,為尋找原因設置懸念,再次激發(fā)學生的學習興趣!

      三、探索分數(shù)的基本性質(zhì)

      你們?nèi)谓o我的餅大小相等嗎?那么這三個分數(shù)大小怎樣?可以用怎樣的`式子表示?

      1、觀察這個式子,我們可以發(fā)現(xiàn)三個分數(shù)中分子和分母都在變化。但是有一個共同點是,它們的商都保持不變。這是因為分數(shù)實際上是一種除法運算的表示方式,分子表示被除數(shù),分母表示除數(shù),商表示結果。在這個式子中,分數(shù)的大小保持不變是因為分子和分母同時乘以相同的數(shù),相當于對原來的除法結果進行了等價變換。因此,商不變的規(guī)律體現(xiàn)了分數(shù)與除法的密切關系。

      2、學生交流、討論并 匯報 ,得出初步分數(shù)的基本性質(zhì)。

      分數(shù)的分子、分母同時乘以或除以相同的數(shù),分數(shù)的大小不變。

      3、將結論應用到

     。1)先從左往右看, 是怎樣變?yōu)榕c它相等的 的?分母乘2,分子乘2。

     。2)由 到 ,分子、分母又是怎樣變化的? (把平均分的份數(shù)和取的份數(shù)都擴大了4倍。)

      (3)是怎樣變化成與之相等的 的?

     。4)又是怎樣變成 的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)

      4、當兩個數(shù)相乘或相除時,其中一個數(shù)增大,另一個數(shù)減小,結果會增大;反之,其中一個數(shù)減小,另一個數(shù)增大,結果會減小。這種規(guī)律適用于非零數(shù)相乘或相除的情況。

      5、這就是我們今天學習的“分數(shù)的基本性質(zhì)”(板書課題,出示“分數(shù)的基本性質(zhì)”)。同學們讀一遍,你覺得哪幾個字特別重要?相同的數(shù)是指哪些數(shù)?為什么零除外?

      四、知識應用(你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?)

      有位父親把一塊田地分給了他的三個兒子。大兒子得到了這塊土地的一半,二兒子得到了這塊土地的三分之一,小兒子得到了這塊土地的四分之一。大兒子和二兒子認為自己被虧待了,于是開始爭吵起來。這時,路過的阿凡提聽到了他們的爭吵,微笑著走了過來,說了幾句話后,三兄弟便停止了爭吵。

      分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。

      分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。

      分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。

     、缎〗Y。

      分數(shù)的基本性質(zhì)包括分子和分母的倍數(shù)關系、分數(shù)的約分、分數(shù)的乘除運算等。在整數(shù)除法中,我們知道如果被除數(shù)和除數(shù)同時乘以一個相同的數(shù),商不變。同樣地,在分數(shù)中,如果分子和分母同時乘以一個相同的數(shù),分數(shù)的值不變。這就是分數(shù)的基本性質(zhì)之一。通過這種性質(zhì),我們可以簡化分數(shù),使其更易于計算和比較。

      學生通過觀察發(fā)現(xiàn),當分數(shù)的分子和分母同時擴大或同時縮小時,分數(shù)的大小并不改變。這是因為分子和分母是同時變化的,它們是同向變化的,同倍變化的。只有這樣,分數(shù)的大小才能保持不變。這個規(guī)律也適用于其他類似的分數(shù),只要分子和分母按照同樣的倍數(shù)同時變化,分數(shù)的大小就不會改變。

      五、鞏固練習

     、笨ㄆ毩暎

     、沧鯬96“練一練”1、2。

     、橙の队螒颍

      數(shù)學王國舉辦音樂會,分數(shù)大家族的節(jié)目是女聲大合唱,距離演出僅剩幾分鐘。請大家快速幫助合唱隊的成員按照要求排好隊。

      要求:第一排坐著分數(shù)值相等的同學,第二排也是分數(shù)值相等的同學,而指揮這個小組的同學是小明。小明是這個小組中成績最好的同學,大家都很信任他的能力,所以他被選為指揮。

      【通過練習,當我們談到分數(shù)的基本性質(zhì)時,我們需要理解以下幾點:1。 分數(shù)是由分子和分母組成的,分子表示被分成的部分,分母表示總共分成的部分。分數(shù)的大小取決于分子和分母的大小關系,分子越大,分數(shù)越大;分母越大,分數(shù)越小。2。 分數(shù)可以化簡,即將分子和分母同時除以它們的最大公約數(shù),使得分數(shù)變?yōu)樽詈喰问。這樣可以方便我們進行計算和比較。3。 分數(shù)可以相互比較大小,可以通過找出它們的公共分母,然后比較分子的大小來確定大小關系。也可以將分數(shù)轉(zhuǎn)化為小數(shù)形式,再進行比較。4。 分數(shù)的加減乘除運算都遵循一定的規(guī)律,可以通過通分、約分等方法來進行計算。在計算過程中,要注意保持分數(shù)的最簡形式。通過理解以上基本性質(zhì),可以更好地掌握分數(shù)的運算規(guī)律和比較方法,為接下來更深入的學習打下堅實的基礎。

      六、課堂總結

      這節(jié)課你學到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的?

      七、布置作業(yè)

      做P97練習十八2。

    分數(shù)的基本性質(zhì)教學設計9

      教學目標:

      1、讓學生理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。

      2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。

      學習目標:

      1、理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。

      2、根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù)

      重點難點:

      1、使學生理解分數(shù)的基本性質(zhì)。

      2、讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。

      過程設計:

      一、激情導入

      1、導入課題

      生讀故事。

      唐僧師徒四人在西天取經(jīng)的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經(jīng)很多了,高興得答應了?墒俏蚩諈s在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?

      師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數(shù)到底有什么關系呢?下面我們用折紙的方法來看一下它們之間有什么樣的關系?

      2、明確目標

      理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系;并會應用分數(shù)的基本性質(zhì)。

      3、預期效果

      達到教學目標

      二、民主導學

      任務一

      任務呈現(xiàn)

      動手操作驗證性質(zhì)

      自主學習

      師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求

      1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。

      2、仔細觀察三張紙的涂色部份,你們能發(fā)現(xiàn)什么?

      師:同位分工合作完成,F(xiàn)在開始。

      師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發(fā)現(xiàn)?

      請二至三位同學說一說。

      師:我們都發(fā)現(xiàn)了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?

      生回答。師:現(xiàn)在你們知道孫悟空為什么笑了嗎?請同學回答。

      師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數(shù)的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)

      下面請同學們把這個式子從左往右地觀察,看一下每個分數(shù)的分子分母怎樣變化?才得到下一個分數(shù)。

      生:我發(fā)現(xiàn)了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。

      請二名同學重復。

      師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數(shù)的大小不變,那如果我們把分數(shù)的分子分母同時乘5分數(shù)的大小變嗎?同時乘以10呢?那你們能不能根據(jù)這個式子來總結一個規(guī)律呢?

      生回答:一個分數(shù)的分子分母同時擴大相同的倍數(shù),它們分數(shù)的大小不變。

      請一至二名同學回答。

      師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。

      師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?

      師:這樣的`例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發(fā)現(xiàn)什么呢?

      請一同學回答,

      生:我們發(fā)現(xiàn)了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。

      師:嗯,分數(shù)的分子分母同時除以2分數(shù)的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據(jù)這個式子再總結出一句話呢?

      生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。 (二名學生重復)

      師板書:或者除以

      師:你能根據(jù)剛才總結的規(guī)律舉一個例子嗎?

      讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?

      展示交流

      師指著板書說明:我們說分子分母同時乘或除以相同的數(shù),分數(shù)的大小不變,那是不是包括所有的數(shù)呢?我們一起來看這樣一個分數(shù)。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)

      生:不成立,

      師:為什么

      生:因為0不能作除數(shù),

      師:0不能作除數(shù),所以這個式子是錯誤的。(畫叉)

      師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)

      生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。

      師:對,大家都知道0不能作除數(shù),所以這兩個式子都是不成立的?(畫叉)我們剛才總結的分數(shù)的分子分母同時乘或者除以相同的數(shù),不是所有的數(shù)需要加上一句什么話

      生:0除外

      師板書0除外

      師:到現(xiàn)在為止這個規(guī)律我們就總結完了,那在這個規(guī)律里你覺得什么地方需要我們注意一下呢?

      生:同時和相同的數(shù)

      師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題)

      師:我相信如果當時豬八戒會這個分數(shù)的基本性質(zhì),那就不會出現(xiàn)這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。

      生齊讀二遍。

      師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。

      任務二

      任務呈現(xiàn)

      課本76頁的例2,請一同學讀題。

      自主學習

      生獨立完成,完成后和同位的同學說一說你是怎樣想的。

      展示交流

      每題請二名同學回答,(集體訂正答案)

      檢測導結

      1、目標練習

      76頁“做一做”

      練習十四的1、2、6、7題

      2、結果反饋

      生做完后同桌交流,再指名說說結果。

      3、反思總結

      今天這節(jié)課你都學會了哪些知識?請大家談談學習了分數(shù)的基本性質(zhì)的收獲。

      三、輔助設計

      教具課件設計

      小黑板正方形紙數(shù)塊

      板書設計

      分數(shù)的基本性質(zhì)

      練習和作業(yè)設計

      1、完成課本76頁做一做中的1、2題。

      生獨立完成,師指名回答。

      2、完成練習十四中的1、2、5、6、7題。

      師小結:這節(jié)課我們學習了分數(shù)基本性質(zhì),而且我們還學會了根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)轉(zhuǎn)化成和它相等的另外一個分數(shù),其實生活當中還有許多的數(shù)學知識,如果你留心觀察,你就能夠發(fā)現(xiàn),我希望大家都能做一個在學習上面的有心人。

    分數(shù)的基本性質(zhì)教學設計10

      教學目標:

      知識與技能:掌握分數(shù)的基本性質(zhì)對于學生來說非常重要。分數(shù)的基本性質(zhì)包括:分數(shù)的大小與分子、分母的關系,分數(shù)的化簡和擴大,分數(shù)的比較大小等。通過學習分數(shù)的基本性質(zhì),可以幫助學生更好地理解和運用分數(shù),提高他們的數(shù)學能力。同時,分數(shù)的基本性質(zhì)與整數(shù)除法中商不變性質(zhì)有著密切的關系,這也有助于學生對整數(shù)除法的理解和運用。在學習中,學生需要掌握如何將一個分數(shù)化簡為分母相同而大小不變的分數(shù)。這需要學生觀察比較分數(shù)的大小,抽象概括規(guī)律,并進行實際操作。通過這樣的練習,可以培養(yǎng)學生的邏輯思維能力和數(shù)學解決問題的能力。因此,學生在學習分數(shù)的基本性質(zhì)時,應注重理解概念,掌握方法,多進行練習,提高自己的數(shù)學素養(yǎng)。

      過程與方法

      在探索分數(shù)基本性質(zhì)的過程中,我們體會到了數(shù)學思想方法中的“變與不變”以及“轉(zhuǎn)化”的重要性。這個過程激發(fā)了我們的求知欲,也讓我們體會到了數(shù)學思維的樂趣。通過互相交流和合作,我們不僅增進了對分數(shù)的理解,還培養(yǎng)了團隊合作的意識。這種積極主動的學習態(tài)度將成為我們探索更多數(shù)學知識的動力,讓我們更加享受數(shù)學帶來的樂趣。

      教學重點

      理解和掌握分數(shù)的基本性質(zhì),會運用分數(shù)的基本性質(zhì)。

      教學難點

      自主探究出分數(shù)的基本性質(zhì)

      教學準備:

      PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的`長方形(正方形)紙、直尺、彩筆等。

      教學流程:

    一、故事導入激趣引思

      引言:好的,我來修改一下:大家是否能猜出剛剛老師播放的是哪首經(jīng)典動畫片的主題曲呢?沒錯,我們今天的學習將從中國古典名著《西游記》的故事開始。

      講故事:唐僧師徒四人行至一村莊,路過一家餅鋪,慈悲心化緣得到三塊同樣大小的餅。唐僧想著如何公平地分配這三塊餅,便提出了一個方案:將第一塊餅平均分成2份,讓豬八戒吃其中的一半;將第二塊餅平均分成4份,讓沙和尚吃其中的一半;將第三塊餅平均分成8份,悟空吃其中的一半。唐僧的提議引起了豬八戒的不滿,他認為這樣分配偏心,為什么悟空可以吃到一半,而他只能吃到一半。唐僧聽了豬八戒的意見后,考慮了一下,覺得確實不太公平。于是,他重新想了一個更公平的分餅方案,讓每個人都能公平地分享這三塊餅。

      生發(fā)表見解。

      二、自主合作探索規(guī)律

      1、三個徒弟平均分得的餅一樣多。我們來看一下這組分數(shù)等式:1/2=2/4=4/8。觀察一下這些分數(shù)的分子和分母,它們是相同的嗎?雖然分數(shù)的分子和分母不同,但它們的值卻相等。再換個角度看,我們發(fā)現(xiàn)分數(shù)的分子和分母發(fā)生變化,但它們的比值保持不變。分數(shù)真是一種獨特的數(shù)學形式呢!

      2、

      (1)每個小組找出一組大小相等的分數(shù),并想辦法證明這組分數(shù)大小相等。

     。2)思考:在寫分數(shù)的過程中你們發(fā)現(xiàn)了什么規(guī)律?

      組內(nèi)商量一下然后開始行動!

      3、小組研究教師巡視

      4、全班匯報

      交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯(lián)系一組人數(shù)說發(fā)現(xiàn)規(guī)律把每組數(shù)從左往右或者從右向左仔細觀察你能發(fā)現(xiàn)分子分母的怎樣的變化規(guī)律?(可以舉例說演繹推理深入)隨機更換貼圖

      板書課題:分數(shù)的基本性質(zhì)打出幻燈

      5、反思規(guī)律看書對照找出關鍵詞要求重讀共同讀

      6、當我們將3除以4得到的結果3/4,與12除以16得到的結果12/16進行比較時,我們發(fā)現(xiàn)它們是相等的。這說明了分數(shù)的一個基本性質(zhì):即分子和分母同時乘以(或除以)同一個非零數(shù)時,分數(shù)的值不變。這個性質(zhì)也可以通過整數(shù)除法中商不變的性質(zhì)來解釋:在分數(shù)中,當分子和分母同時乘以(或除以)同一個非零數(shù)時,相當于整數(shù)除法中被除數(shù)和除數(shù)同時乘以(或除以)同一個非零數(shù),商的值也不變。這再次強調(diào)了分數(shù)的基本性質(zhì),幫助我們更好地理解和運用分數(shù)的概念。

      三、自學例題運用規(guī)律

      過渡:同學們展現(xiàn)出了強大的學習能力,在接下來的學習中,老師希望你們能夠自主學習課本96頁的例2,并完成相應的練習,F(xiàn)在開始自主學習吧!祝你們學習順利!

      生自學

      集體評議:例2練一練1和2,請說說你的根據(jù)和想法!重點讓學生說說根據(jù)什么,分母、分子是如何變化的。

      四、多層練習鞏固深化

      1、判斷對錯并說明理由

      2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

      2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數(shù)

      思考:分數(shù)的分母相同,能有什么作用?

      3、圈分數(shù)游戲圈出與1/2相等的分數(shù)

      4、對對碰與1/2,2/3,3/4生生組組師生互動

      五、課堂小結課堂作業(yè)

      結語:你看,運用數(shù)學知識玩游戲,也是樂趣無窮。這節(jié)課我們就上到這兒,作業(yè):余下來的時間請完成課本97頁練習十八的1-3題,做在書上。

    分數(shù)的基本性質(zhì)教學設計11

      教學目標

      1、學生能理解和掌握分數(shù)的基本性質(zhì),知道分數(shù)的基本性質(zhì)與整數(shù)除法中商不變的性質(zhì)之間的聯(lián)系。

      2、學生能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同而大小相等的分數(shù)。

      3、培養(yǎng)學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辯證唯物主義觀點。

      教學重、難點:

      理解分數(shù)基本性質(zhì)的含義,掌握分數(shù)基本性質(zhì)的推導過程。運用分數(shù)的基本性質(zhì)解決實際問題。

      教學過程:

      一、復習舊知,了解學習起點

      二、創(chuàng)設情境,激趣引入

      課件動畫顯示:藍貓、菲菲、霸王龍最喜歡吃淘氣做的餅。有一天淘氣做了3塊大小一樣的餅分給藍貓、菲菲、霸王龍。藍貓說:“我功勞最大,我要吃一大塊!狈品普f:“我要吃兩塊!卑酝觚垞屩f:“我個頭最大,我要吃3塊。”淘氣想了想便動手切餅滿足了他們的要求,并向他們提問:“剛才,我把3個同樣大小的餅,平均分成2份、4份、6份,分別給了你們1塊、2塊、3塊,你們知道誰吃的多嗎?”淘氣的問題,立刻引起了他們的爭論。同學們,你們知道他們誰吃得多嗎?

      三、探究新知,揭示規(guī)律

      1.動手操作,形象感知。

     。1)折。請學生拿出3張同樣大小的圓形紙,把每張圓形紙都看做單位“1”,用手分別平均折成2份、4份、6份。

     。2)畫。在折好的圓形紙上,分別把其中的1份、2份、3份畫上陰影。

     。3)剪。把圓中的陰影部分剪下來。

     。4)比。把剪下的陰影部分重疊,比一比結果怎樣。

      2.觀察比較,探究規(guī)律。

     。1)通過動手操作,誰能說一說動畫片中藍貓、菲菲、霸王龍各吃了一個餅的幾分之幾?(板書。)

     。2)你認為他們誰吃的多?請到講臺上一邊演示一邊講一講。

      學生匯報后,教師用電腦演示。

      把3塊同樣大小的餅分別平均分成2份、4份、6份,依次表示。把平移、重疊,明顯地看出塊餅、塊餅、塊餅大小相等。通過分餅、觀察、驗證得出結論:“藍貓、菲菲、霸王龍分的餅一樣多。”

     。3)既然他們3個吃的同樣多,那么、的大小怎樣?我們可以用什么符號把他們連接起來?(板書。)

     。4)聰明的淘氣是用什么辦法既滿足藍貓、菲菲、霸王龍的要求,又分得那么公平呢?這就是我們今天研究的內(nèi)容“分數(shù)的基本性質(zhì)”。(板書課題。)

     。5)這3個分數(shù)的.分子、分母都不同,為什么分數(shù)的大小卻相等?你們能找出它們的變化規(guī)律嗎?請同學們4人為一組,討論這幾個問題。(課件出示討論題。)

      討論題:

     、偎鼈冎g有什么關系?它們的什么變了?什么沒有變?

     、趶淖笸铱矗前凑帐裁匆(guī)律變化的?從右往左看,又是按照什么規(guī)律變化的呢?

      (6)學生匯報,師生討論情況。

      師:這3個分數(shù)是相等的關系?梢詫懗桑鼈兊姆肿、分母變了,而分數(shù)的大小沒有變。

      師:從左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份數(shù)和表示的份數(shù)都擴大2倍,就得到。同理的分子、分母都乘以3,就得到,而分數(shù)的大小不變。(板書:都乘以相同的數(shù)。)

      從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析,比較,,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。

     。7)抓住焦點,辨中求真。

      的分子、分母能否同時乘以或者除以零呢?圍繞這個問題展開討論、辯論。通過討論、爭辯,使學生認識到“因為分數(shù)的分子、分母都乘以0,則分數(shù)成為”。

    分數(shù)的基本性質(zhì)教學設計12

      一、教學目標

      1.經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。

      2.能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

      3.經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

      二、教學重、難點

      教學重點是:分數(shù)的基本性質(zhì)。

      教學難點是:對分數(shù)的基本性質(zhì)的理解。

      三、教學方法

      采用了動手做一做、觀察、比較、歸納和直觀演示的方法

      四、教學過程

     。ㄒ唬⒐适乱,揭示課題

      1.教師講故事。

      猴山上的猴子最喜歡吃猴王做的香蕉餅了。一天,猴王做了三個大小一樣的香蕉餅給小猴們吃,它先把第一個香蕉餅切成四塊,分給猴1一塊。猴2看到后說:“太少了,我要兩塊!焙锿跤谑前训诙䝼香蕉餅切成八塊,分給猴2兩塊。猴3更貪心,它趕緊說:“我要三塊,我要三塊。”于是,猴王又把第三個香蕉餅切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

      討論:好的,這是修改后的內(nèi)容:討論哪只猴子分得的多?請同學們發(fā)表自己的觀點。老師拿出三塊大小一樣的餅干,讓學生觀察、分配,最終得出結論:三只猴子分得的餅干數(shù)量是相同的。

      引導:猴王非常聰明,他想出了一個巧妙的方法來滿足小猴子們的要求,并且確保每只小猴子都能得到公平的份額。這個方法就是利用分數(shù)的基本性質(zhì)來進行分配。想要了解更多詳情嗎?學習了“分數(shù)的基本性質(zhì)”就能揭開這個謎題哦!(板書課題)

      2.組織討論。

      (1)三只猴子分得的餅同樣多,說明它們分得的餅的分數(shù)是相等關系。具體來說,如果三只猴子分得的餅的分數(shù)分別為$a$、$b$、$c$,那么有$a=b=c$。三只猴子平均分的份數(shù)和表示的份數(shù)是不變的,只是分數(shù)的分子和分母變化了。例如,如果它們分得的餅是...,那么這三個分數(shù)雖然看起來不同,但實際上是相等的。

      (2)猴王給小猴子分了三塊大小一樣的香蕉,分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:2=4=6。

     。3)我們班有40名同學,按照學習小組劃分,每組有10人。那么第一、二組學生的.人數(shù)占全班學生人數(shù)的幾分之幾?請用分數(shù)表示,并計算出:12=24=20xx。

      3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

      分數(shù)的分子和分母變化了,分數(shù)的大小不變。

      它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

     。ǘ、比較歸納,揭示規(guī)律

      1.出示思考題。

      比較每組分數(shù)的分子和分母:

     。1)從左往右看,是按照什么規(guī)律變化的?

      (2)從右往左看,又是按照什么規(guī)律變化的?

      讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

      2.集體討論,歸納性質(zhì)。

     。1)34到68,分子、分母都乘以2得到。原來是把1平均分成4份,現(xiàn)在是把分的份數(shù)和表示份數(shù)都擴大2倍。

      板書:

     。2)34是怎樣變化成912的呢?怎么填?學生回答后填空。

     。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。

      (4)學生們對幾組分數(shù)進行了觀察,發(fā)現(xiàn)分數(shù)的分子和分母都乘以相同的數(shù)時,分數(shù)的大小不變。經(jīng)過討論后,他們得出結論:分數(shù)的分子和分母同乘一個數(shù),分數(shù)的大小不變。

     。ò鍟憾汲艘

      相同的數(shù))

     。5)分數(shù)的分子和分母從右往左看,它們都是按照遞減的規(guī)律變化的。通過比較每組分數(shù)的分子和分母可以發(fā)現(xiàn),分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。

     。ò鍟憾汲裕

     。6)在乘法和除法的運算性質(zhì)中,我們知道都乘以、都除以一個非零數(shù),結果不變。如果去掉其中一個“都”字,換成“或者”,那么就不再滿足這個性質(zhì)了。在教科書中,分數(shù)的基本性質(zhì)規(guī)定了“都乘以或者都除以一個非零數(shù)”,這樣可以確保運算結果的準確性和穩(wěn)定性。同時,性質(zhì)中也強調(diào)了“零除外”,因為除數(shù)為零是不合法的操作,會導致數(shù)學運算的錯誤和混亂。因此,性質(zhì)中規(guī)定了“零除外”是為了保證數(shù)學運算的正確性和合理性。

     。ò鍟毫愠猓

     。7)學生們現(xiàn)在我們一起來學習關于分數(shù)的基本性質(zhì)。讓我們找出這些性質(zhì)中關鍵的詞語,比如“都”、“相同的數(shù)”、“零除外”等。然后我們重點讀一下這些關鍵詞。接下來讓我們一起讀一讀黑板上寫的分數(shù)基本性質(zhì)。

      3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。

      思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?

      4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

      5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

     。ㄈ贤ㄕf明,揭示聯(lián)系

      通過舉例,分數(shù)的基本性質(zhì)與商不變性質(zhì)之間存在著密切的聯(lián)系。分數(shù)的基本性質(zhì)包括分子、分母的乘除運算、分數(shù)的加減運算等,這些性質(zhì)在運算過程中保持不變。而商不變性質(zhì)是指在整數(shù)除法中,被除數(shù)與商的乘積等于除數(shù)。通過分數(shù)與除數(shù)的關系,我們可以利用整數(shù)除法中商不變的性質(zhì)來解釋分數(shù)的基本性質(zhì)。因此,理解商不變性質(zhì)有助于深入理解分數(shù)的基本性質(zhì)。

      如:34=3÷4=(3×3)÷(4×3)=9÷12=912

     。ㄋ模、多層練習,鞏固深化

      1.口答。(學生口答后,要求說出是怎樣想的?)

      2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質(zhì)中哪幾個字不相符。)

      教學反思:

      學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。因此數(shù)學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調(diào)動學生的學習積極性,向?qū)W生提供充分從事數(shù)學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數(shù)學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性。一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現(xiàn)在:

      1、學生在故事情境中大膽猜想。

      在一個熱帶島嶼上,有四只猴子發(fā)現(xiàn)了一堆香蕉。它們決定公平地分配這堆香蕉,但卻遇到了難題。最大的猴子自稱為“猴王”,要求先拿走一部分香蕉。其他三只猴子不甘心,于是提出了一個辦法:每只猴子輪流從香蕉堆中拿走一部分,直到香蕉被拿完為止。猴王同意了這個提議,于是開始了“猴王分餅”的游戲。第一只猴子拿走了1/4的香蕉,第二只猴子拿走了1/5的香蕉,第三只猴子拿走了1/3的香蕉。最后一只猴王拿走了剩下的30根香蕉。請問,最初這堆香蕉一共有多少根?

      2、學生在自主探索中科學驗證。

      在學生大膽猜想的基礎上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

      3、讓學生在分層練習中鞏固深化。

      在設計練習時,要緊扣重點,設計新穎多樣的題目,設置不同難度層次,讓學生在練習中逐步提高。首先是基礎練習,幫助學生理解概念,檢查他們對新知識的掌握情況;其次是鞏固練習,加深對知識的理解;最后是通過游戲激發(fā)學生的學習興趣,加深對知識的理解,活躍課堂氣氛。這樣設計不僅考慮到了學生認知發(fā)展的特點,也拓展了他們的思維空間,真正做到了理論聯(lián)系實際。

      在教學過程中,我們應該注重引導學生思考,讓他們通過多種方法去驗證結論的正確性。我們不能局限于老師提供的幾種方法,而應該放手讓學生自由探索。數(shù)學教學的目的不是僅僅傳授答案,而是培養(yǎng)學生的思維能力。因此,我們應該鼓勵學生嘗試不同的途徑,去驗證和證明數(shù)學結論,從而激發(fā)他們的數(shù)學思維,培養(yǎng)他們的解決問題的能力。

    分數(shù)的基本性質(zhì)教學設計13

      教學內(nèi)容:人教版小學數(shù)學第十冊第75頁至78頁。

      教學目標:

      1、分數(shù)是數(shù)學中常見的表示形式,它由分子和分母組成,可以表示部分和整體之間的關系。學生在學習分數(shù)時,需要掌握分數(shù)的基本性質(zhì),比如分子和分母可以同時乘以一個非零數(shù),來得到一個等價的分數(shù)。這樣做不會改變分數(shù)的大小,只是改變了分數(shù)的形式。這個性質(zhì)在簡化分數(shù)、比較分數(shù)大小等問題中非常有用。

      2、培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

      3、讓學生在學習過程中養(yǎng)成互相幫助、團結協(xié)作的良好品德。

      教學準備:

      課件、長方形紙片、彩筆。

      教學過程:

     一、創(chuàng)設情境,憶舊引新

      悟空師徒四人來到一個小國家——算術王國,豬八戒饑腸轆轆,悟空便對他說:“我給你10塊饅頭,平均分2天吃完,怎么樣?”八戒聞言大怒:“太少了,你這猴子欺負我!”悟空瞇起眼睛說:“那我就給你100塊饅頭,平均分20天吃完,可以了吧!卑私渎牶蟠笙玻骸疤昧!太好了!這下每天我可以多吃點了!”

      同學們,你們認為八戒說得有道理嗎?(沒道理)

      很久很久以前,在一個神秘的森林里,一只小松鼠和一只小松鼠精靈相遇了。小松鼠問道:“你是誰?為什么看起來和我這么像?”小松鼠精靈神秘地笑著說:“或許我們有著某種特殊的聯(lián)系,但這個謎團需要我們一起去解開……”

      為什么?用你們的數(shù)學知識幫他解決一下吧。(學生立式計算)

      先算出商,再觀察,你發(fā)現(xiàn)了什么?

      被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變。

      同學們,再想一想除法與分數(shù)有什么關系,并完成這些練習吧。

      8÷15=? 3÷20=?? 14÷27=

      二、動手操作 、導入新課

      同學們對知識掌握的真不錯,為了表揚你們,我決定找三個同學來與我一同分享一個兌現(xiàn)。(拿出準備好的長方形紙片。)

      我們把三張紙片比喻成三塊餅,大家一起比較,每人的三塊餅大小是相同的嗎?請拿出第一塊餅,我想與你每人一塊,確保它們大小一樣,你能做到嗎?你給我的那塊餅為什么是這塊餅的一半呢?用分數(shù)怎么表示呢?

      我想與你每人兩塊,而且大小要一樣大,你又能做到嗎?用分數(shù)怎樣表示呢?

      當我們想要平均分配四塊給你和我時,你覺得這種分配方式可行嗎?用分數(shù)來表示這種分配又是怎樣的呢?這三個分數(shù)的大小是否相等呢?為什么呢?在本節(jié)課中,我們將一起探討這個數(shù)學問題。

      這里是一個小故事:小明手里拿著三根不同長度的繩子,他想知道這三根繩子的長度是否相等。于是,他將三根繩子分別放在桌子上比較。經(jīng)過比較后,小明發(fā)現(xiàn)這三根繩子看起來似乎長度相等。這讓小明感到很驚訝,他開始思考為什么這三根繩子的長度看起來一樣。這個問題困擾著小明,他決定繼續(xù)探究原因。

      三、探索分數(shù)的基本性質(zhì)

      你們?nèi)谓o我的餅大小相等嗎?那么這三個分數(shù)大小怎樣?可以用怎樣的式子表示?

      1、觀察一下這個式子,3個分數(shù)有什么不同?有什么地方相同?分數(shù)的大小為什么會不變呢?要弄清楚這個問題,我們必須先觀察分數(shù)的分子、分母是怎樣變化的。你們能從商不變的規(guī)律,分數(shù)與除法的關系中找出它們的變化規(guī)律嗎?

      2、學生交流、討論并 匯報 ,得出初步分數(shù)的基本性質(zhì)。

      分數(shù)的分子、分母同時乘以或除以相同的數(shù),分數(shù)的大小不變。

      3、將結論應用到

     。1)先從左往右看, 是怎樣變?yōu)榕c它相等的 的?分母乘2,分子乘2。

      (2)由 到 ,分子、分母又是怎樣變化的? (把平均分的.份數(shù)和取的份數(shù)都擴大了4倍。)

      (3)是怎樣變化成與之相等的 的?

     。4)又是怎樣變成 的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)

      4、當兩個數(shù)相乘或相除時,其中一個數(shù)增大,另一個數(shù)減小,結果會更接近前者。不過,不能同時乘或除以0,因為0不能作為除數(shù)。

      5、這就是今天我們所學的“分數(shù)的基本性質(zhì)”(板書課題,出示“分數(shù)的基本性質(zhì)”)。學生讀一遍,你認為哪幾個字特別重要?(相同的數(shù)、0除外)相同的數(shù),指一些什么數(shù)?為什么零除外?

      四、知識應用(你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?)

      有一位父親將一塊土地留給了他的三個兒子。大兒子認為這塊土地是他的,二兒子認為這塊土地是他的,三兒子也認為這塊土地是他的。大兒子和二兒子覺得自己吃虧了,于是他們開始爭吵。這時,阿凡提路過,詢問了爭吵的原因后,他笑了笑,給了他們一些建議,三兄弟因此停止了爭吵。

      分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。

      分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。

      分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。

     、缎〗Y。

      從判斷題中我們可以看出,分數(shù)的基本性質(zhì)要注意什么?學到這兒,大家想一想,我們以前學過的什么性質(zhì)跟分數(shù)的基本性質(zhì)類似?誰能用整數(shù)除法中商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?

      學生通過觀察和比較發(fā)現(xiàn),當分子和分母同時擴大或縮小相同的倍數(shù)時,所得的分數(shù)的大小并不會改變。這說明分數(shù)的大小取決于分子和分母的比例關系,只有在同向、同倍變化的情況下,分數(shù)的大小才能保持不變。這一規(guī)律也適用于其他分數(shù),只要分子與分母按相同的比例變化,所得的分數(shù)大小仍然保持不變。因此,我們可以得出分數(shù)的基本性質(zhì):分子與分母是同時變化的,是同向變化的,是同倍變化的。

      五、鞏固練習

     、笨ㄆ毩暎

     、沧鯬96“練一練”1、2。

     、橙の队螒颍

      數(shù)學王國即將舉辦一場音樂會,分數(shù)大家族的節(jié)目是女聲大合唱,演出時間緊迫,需要大家快速幫助合唱隊的成員按照要求排好隊伍。請盡快協(xié)助整理隊伍,謝謝!

      要求:第一排是所有同學的分數(shù)值等于,第二排是所有同學的分數(shù)值等于,還有一位同學是指揮,他是小明。我選擇小明作為指揮是因為他在團隊合作中展現(xiàn)出了出色的領導能力和組織能力,能夠有效地協(xié)調(diào)大家的行動,確保任務順利完成。

      【通過練習,分數(shù)是數(shù)學中的一個重要概念,可以表示一個整體被等分成若干份的情況。分數(shù)由分子和分母組成,分子表示被等分的部分數(shù)量,分母表示整體被等分的份數(shù)。分數(shù)可以用來表示部分與整體之間的關系,比如$frac{1}{2}$表示一個整體被等分成兩份中的一份。在分數(shù)的運算中,我們需要掌握分數(shù)的基本性質(zhì),比如分數(shù)的大小比較、分數(shù)的化簡、分數(shù)的四則運算等。對分數(shù)的基本性質(zhì)有深刻的理解可以幫助我們更好地應用分數(shù)解決實際問題。

      六、課堂總結

      這節(jié)課你學到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的?

      七、布置作業(yè)

      做P97練習十八2。

    分數(shù)的基本性質(zhì)教學設計14

      教學內(nèi)容:

      蘇教版數(shù)學五年級下冊第60~61頁例1、例2,試一試及練習十一1~3題。

      預設目標:

      1、使學生經(jīng)歷探索分數(shù)基本性質(zhì)的過程,初步理解和掌握分數(shù)的基本性質(zhì),知道它與商不變規(guī)律之間的聯(lián)系。

      2、使學生能應用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。

      3、使學生在觀察、操作、思考和交流等活動中,培養(yǎng)分析、綜合和抽象、概括能力,體驗數(shù)學學習的樂趣。

      教學重點:

      探索、發(fā)現(xiàn)、歸納和理解分數(shù)的基本性質(zhì)。

      教學過程:

      一、導入

      猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。

      二、學習新知

      1、提供例證

      (1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據(jù)是什么?你能接著往下再寫一個除法算式嗎?

      板書:1/3=2/6=3/9(得出三個相等的分數(shù))

     。2)學生折紙找與1/2相等的分數(shù)。

      你能先對折,涂色表示它的1/2嗎?你能通過繼續(xù)對折,找出和1/2相等的其他分數(shù)嗎?

      展示與1/2相等的分數(shù),并逐步板書:1/2=2/4=4/8=8/16

      2、誘導探索

      提問:這些分數(shù)的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規(guī)律呢?分數(shù)的分子、分母怎樣變化分數(shù)的大小不變呢?

      3、探究新知

      (1)獨立思考或小組交流。

     。2)探究驗證。

      你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數(shù)中任意選一組具體說說分數(shù)的分子、分母怎樣變化以后,分數(shù)的大小不變?

      教師根據(jù)學生的'回答進行板書。

      4、揭示結論:出示分數(shù)的基本性質(zhì)的內(nèi)容,并揭示課題。

      5、深究結論:

     。1)在分數(shù)的基本性質(zhì)中,你認為哪些字詞比較重要,為什么?

     。2)齊讀并理解記憶分數(shù)的基本性質(zhì)。

      三、多層練習

      1、填一填。(在○里填運算符號,在□里填數(shù)或字母)。

      4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14

      5/8=5○□/8○67/12=7○□/12○□

      2、判斷。

      3/4=3+4/4+4()12/15=12÷n/15÷n()

      5/25=5×5/25÷5()5/6=25/30()

      四、課堂作業(yè):

      1、第62頁“練一練”2。

      2、第63頁第3題。

      3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?

      反思

      “分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分、通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以分數(shù)的基本性質(zhì)是本單元的教學重點。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,

      從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感,讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質(zhì)。學生已掌握了商不變的性質(zhì)之后,并在已有應用經(jīng)驗的基礎上進行的,這節(jié)課我是這樣設計教學的:

      1、通過商不變的性質(zhì)、除法與分數(shù)的關系的復習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。

      2、學生在自主探索中科學驗證。

      在學生大膽猜想的基礎上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現(xiàn)出課堂教學以學生為本的特性。每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、問題讓學生自主解決,使學生獲得成功的體驗,增強學習的自信心。

      3、讓學生在多層練習中鞏固深化。

      在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3、4題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題是開放題,加深學生對分數(shù)的基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

      反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

    分數(shù)的基本性質(zhì)教學設計15

      教學目標:

      情感態(tài)度:培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。

      知識技能:理解分數(shù)的基本性質(zhì),并且能夠靈活應用。

      過程方法:動手操作、觀察、討論

      教學重、難點:理解并掌握分數(shù)的基本性質(zhì)并靈活應用。

      教具準備:自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。

      學具準備:拼圖12組。

      教學設計理念:

      《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數(shù)學,參與知識的發(fā)現(xiàn)過程。在教學分數(shù)的基本性質(zhì)時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發(fā)現(xiàn)問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數(shù)學知識應用于實際中。感受數(shù)學的價值,本課設計完全從學生發(fā)展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。

      教學過程:

      一、 創(chuàng)設情境,激趣導入。

      設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的興趣參與學習,激發(fā)學生探索數(shù)學問題欲望,并訓練學生小組合作學習的方法和習慣。

      師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現(xiàn)在開始。

      請看拼圖要求:1、用所給材料拼成三個完全一樣圖形。

      2、用分數(shù)表示陰影部分占整幅圖的幾分之幾,并寫出來。

      二、合作交流,探究規(guī)律。

      設計意圖:讓學生在具體的情境中充分利用現(xiàn)有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發(fā)揮集體力量的小組合作學習,培養(yǎng)學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發(fā)了學生的學習興趣,體現(xiàn)了主體性。

     。ㄒ唬┢磮D,寫分數(shù)。

     。1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數(shù)。

     。2)匯報優(yōu)勝組介紹經(jīng)驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數(shù)。( = = )

      (二)找分數(shù)間的大小關系。

     。1)師:請同學們用自己喜歡的方法找一找每組中三個分數(shù)的大小關系,學生獨立思考后與同桌交流方法。

      (2)匯報:每組中三個分數(shù)大小相等。

      比較方法。(1)看圖比較(2)化小數(shù)比較(3)利用商不變的'性質(zhì)比較(4)……

     。ㄈ┨骄恳(guī)律

     。1)每組中三個分數(shù)看似不同,實質(zhì)大小相等,它們之間到底有什么聯(lián)系?小組討論探究規(guī)律。

      (2)交流自己的發(fā)現(xiàn)。①每組中三個分數(shù)平均分的份數(shù)不同取的分數(shù)也不同?②分子,分母都擴大了2倍(3倍)③……

     。3)師:分數(shù)的分子和分母怎樣變化時,分數(shù)的大小才會不變,學生自由發(fā)言,教師給予肯定和鼓勵。

     。4)師結合圖依據(jù)分數(shù)的意義講解變化規(guī)律。

     。5)小結分數(shù)的基本性質(zhì):強調(diào)“相同”“同時”組織討論:“相同的數(shù)”可以是哪些數(shù)?

     。ㄋ模⿲Ρ确謹(shù)的基本性質(zhì)和商不變的性質(zhì)。

      學生對比,說出兩個性質(zhì)間的區(qū)別與聯(lián)系。

      三、應用。

      設計意圖:本環(huán)節(jié)所設計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發(fā)探究熱情,培養(yǎng)創(chuàng)新能力。

      1、填空

     。1)學生獨立思考。(2)交流口答,并說明依據(jù),同時訓練學生應用所學知識解決實際問題的能力。

      2、比較 和 的大小。

      四、游戲"找朋友”。

      設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數(shù)找到自己的朋友。游戲規(guī)則新穎而恰當,既鞏固新知又體會到數(shù)學與生活的密切聯(lián)系。

      同學們拿出課前老師發(fā)給你的紙,紙上所寫分數(shù)大小相等的同學,你們是“好朋友”。請學生讀自己的分數(shù),與他所讀分數(shù)大小相等的同學舉起來確定后手拉手離場。

      ,五年級數(shù)學分數(shù)的基本性質(zhì)教學設計

    【分數(shù)的基本性質(zhì)教學設計】相關文章:

    《分數(shù)基本性質(zhì)》教學設計01-19

    分數(shù)的基本性質(zhì)教學設計04-05

    《分數(shù)的基本性質(zhì)》教學設計05-24

    “分數(shù)的基本性質(zhì)”教學設計06-18

    分數(shù)的基本性質(zhì)教學設計04-14

    分數(shù)的基本性質(zhì)教學設計10-12

    《分數(shù)的基本性質(zhì)》教學設計06-09

    關于《分數(shù)的基本性質(zhì)》教學設計10-07

    《分數(shù)的基本性質(zhì)》教學設計【精品】01-20

    《分數(shù)基本性質(zhì)》教學設計范文10-07