欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)

    時(shí)間:2024-11-12 15:58:15 教學(xué)資源 投訴 投稿

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)

      作為一名教師,就不得不需要編寫教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么寫教學(xué)設(shè)計(jì)需要注意哪些問題呢?以下是小編收集整理的高二數(shù)學(xué)教學(xué)設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)1

      本人這個(gè)學(xué)期擔(dān)任高二(9)(10)班的數(shù)學(xué)科的教學(xué)工作,兩班人數(shù)為132名學(xué)生,是理科普通班,學(xué)生基礎(chǔ)比較薄弱,學(xué)習(xí)態(tài)度一般,個(gè)別比較積極。

      一、指導(dǎo)思想:

      使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

      1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

      2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

      3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

      4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

      5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

      6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

      二、 教材特點(diǎn):

      我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(A版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):

      1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

      2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。

      3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

      4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。

      三.提高教學(xué)質(zhì)量的主要措施:

      1、認(rèn)真鉆研教材和新課程標(biāo)準(zhǔn)。

      2、認(rèn)真?zhèn)湔n,精心設(shè)計(jì)教案。

      3、轉(zhuǎn)變傳統(tǒng)的教育教學(xué)觀念,優(yōu)化教學(xué)方法。

      4、采取直觀教學(xué),注意理論聯(lián)系實(shí)際。

      四、 教法分析:

      1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

      2.通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

      3.在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

      五、教學(xué)要求:

      1、了解合情推理的含義,能利用歸納和類比等進(jìn)行簡(jiǎn)單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用;了解演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理;了解合情推理和演繹推理之間的聯(lián)系和差異。

      2、了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點(diǎn);了解間接證明的一種基本方法──反證法;了解反證法的思考過程、特點(diǎn)。

      3、(理)了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題。

      4、理解復(fù)數(shù)相等的充要條件;了解復(fù)數(shù)的代數(shù)表示法及其幾何意義;會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算;了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義。

      5、(理)理解分類加法計(jì)數(shù)原理和分類乘法計(jì)數(shù)原理;會(huì)用分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理分析和解決一些簡(jiǎn)單的實(shí)際問題;理解排列、組合的概念;能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,能解決簡(jiǎn)單的實(shí)際問題;能用計(jì)數(shù)原理證明二項(xiàng)式定理,會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開式有關(guān)的簡(jiǎn)單問題。

      6、(理)理解取有限個(gè)值的離散型隨機(jī)變量及其分布列的概念,了解分布列對(duì)于刻畫隨機(jī)現(xiàn)象的重要性;理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡(jiǎn)單的應(yīng)用;了解條件概率和兩個(gè)事件相互獨(dú)立的概念,理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解決一些簡(jiǎn)單的實(shí)際問題;理解取有限個(gè)值的離散型隨機(jī)變量均值、方差的概念,能計(jì)算簡(jiǎn)單離散型隨機(jī)變量的均值、方差,并能解決一些實(shí)際問題;利用實(shí)際問題的直方圖,了解正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義。

      7、了解下列一些常見的'統(tǒng)計(jì)方法,并能應(yīng)用這些方法解決一些實(shí)際問題:了解獨(dú)立性檢驗(yàn)(只要求22列聯(lián)表)的基本思想、方法及其簡(jiǎn)單應(yīng)用;了解假設(shè)檢驗(yàn)的基本思想、方法及其簡(jiǎn)單應(yīng)用;了解聚類分析的基本思想、方法及其簡(jiǎn)單應(yīng)用;了解回歸的基本思想、方法及其簡(jiǎn)單應(yīng)用。

      9、了解程序框圖;了解工序流程圖(即統(tǒng)籌圖);能繪制簡(jiǎn)單實(shí)際問題的流程圖,了解流程圖在解決實(shí)際問題中的作用;了解結(jié)構(gòu)圖;會(huì)運(yùn)用結(jié)構(gòu)圖梳理已學(xué)過的知識(shí)、整理收集到的資料信息。

      8、所有考生都學(xué)習(xí)選修4-4 坐標(biāo)系與參數(shù)方程,理科考生還需學(xué)習(xí)選修4-5不等式選講這部分專題內(nèi)容。

      六、教學(xué)措施:

      1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

      2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

      3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

      4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

      5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。

      6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

      七、提高自身素質(zhì)的主要措施

      1、認(rèn)真學(xué)習(xí)專業(yè)知識(shí),不斷獲取新知識(shí)、新信息,多進(jìn)行總結(jié)與反思。

      2、積極參加教研課改活動(dòng),多聽同行老師的課,經(jīng)常和經(jīng)驗(yàn)豐富的老師交流心得。

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)2

      一、教材分析

      1、從在教材中的地位與作用來看

      《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,從教材的編寫順序上來看,等比數(shù)列的前n項(xiàng)和是第一章“數(shù)列”第六節(jié)的內(nèi)容,它是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、與前面學(xué)習(xí)的函數(shù)等知識(shí)也有著密切的聯(lián)系。就知識(shí)的應(yīng)用價(jià)值上來看,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。就內(nèi)容的人文價(jià)值上來看,等比數(shù)列的前n項(xiàng)和公式的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生應(yīng)用意識(shí)和數(shù)學(xué)能力的良好載體。

      2、從學(xué)生認(rèn)知角度來看

      從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。

      3、學(xué)情分析

      教學(xué)對(duì)象是剛進(jìn)入高二的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但對(duì)問題的分析缺乏深刻性和嚴(yán)謹(jǐn)性。

      4、重點(diǎn)、難點(diǎn)

      教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

      教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

      公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。

      二、目標(biāo)分析

      1、知識(shí)與技能目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項(xiàng)和公式并能運(yùn)用公式解決一些簡(jiǎn)單問題。

      2、過程與方法目標(biāo):通過公式的推導(dǎo)過程,培養(yǎng)學(xué)生猜想、分析、綜合的思維能力,提高學(xué)生的建模意識(shí)及探究問題、分析與解決問題的能力,體會(huì)公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。

      3、情感態(tài)度與價(jià)值觀:通過經(jīng)歷對(duì)公式的探索,激發(fā)學(xué)生的求知欲,鼓勵(lì)學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗(yàn),感受思維的奇異美、結(jié)構(gòu)的對(duì)稱美、形式的簡(jiǎn)潔美、數(shù)學(xué)的嚴(yán)謹(jǐn)美。用數(shù)學(xué)的觀點(diǎn)看問題,一些所謂不可理解的事就可以給出合理的解釋,從而幫助我們用科學(xué)的態(tài)度認(rèn)識(shí)世界。

      三、教學(xué)方法與教學(xué)手段

      本節(jié)課屬于新授課型,主要利用計(jì)算機(jī)輔助教學(xué),采用啟發(fā)探究,合作學(xué)習(xí),自主學(xué)習(xí)等的教學(xué)模式。

      四、教學(xué)過程分析

      學(xué)生是認(rèn)知的主體,也是教學(xué)活動(dòng)的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我按照自主學(xué)習(xí)的教學(xué)模式來設(shè)計(jì)如下的教學(xué)過程,目的是在教學(xué)過程中促使學(xué)生自主學(xué)習(xí),培養(yǎng)自主學(xué)習(xí)的習(xí)慣和意識(shí),形成自主學(xué)習(xí)的能力。

      1、創(chuàng)設(shè)情境,提出問題

      一個(gè)窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應(yīng)了下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,以后每天所借的錢數(shù)都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后每天所還的錢數(shù)都是上一天的兩倍,30天后互不相欠。窮人聽后覺得挺劃算,本想定下來,但又想到此富人是吝嗇出了名的,怕上當(dāng)受騙,所以很為難!闭(qǐng)?jiān)谧腵同學(xué)思考討論一下,窮人能否向富人借錢?

      啟發(fā)引導(dǎo)學(xué)生數(shù)學(xué)地觀察問題,構(gòu)建數(shù)學(xué)模型。

      學(xué)生直覺認(rèn)為窮人可以向富人借錢,教師引導(dǎo)學(xué)生自主探求,得出:

      窮人30天借到的錢:(萬元)

      窮人需要還的錢:?

      2、學(xué)生探究,解決情境

     。2)教師緊接著把如何求?的問題讓學(xué)生探究,①若用公比2乘以上面等式的兩邊,得到

     、

      若②式減去①式,可以消去相同的項(xiàng),得到:

     。ǚ郑1073(萬元)>465(萬元)

      由此得出窮人不能向富人借錢

      【設(shè)計(jì)意圖】留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是很顯然的事,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而培養(yǎng)學(xué)生的辯證思維能力.

      解決情境問題:經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就可以消去了,得到:≈1073(萬元)>465(萬元)。老師強(qiáng)調(diào)指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

      【設(shè)計(jì)意圖】經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了,讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心,同時(shí)也為推導(dǎo)一般等比數(shù)列前n項(xiàng)和提供了方法。

      3、類比聯(lián)想,解決問題

      這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,設(shè)等比數(shù)列為,公比為q,如何求它的前n項(xiàng)和?讓學(xué)生自主完成,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。

      一般等比數(shù)列前n項(xiàng)和:

      即

      方法:錯(cuò)位相減法

      這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?

      在學(xué)生推導(dǎo)完成之后,我再問:由得

      【設(shè)計(jì)意圖】在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。

      4、小組合作,交流展示

      探究1.求和

      探究2.求等比數(shù)列的第5項(xiàng)到第10項(xiàng)的和.

      方法1:觀察、發(fā)現(xiàn):.

      方法2:此等比數(shù)列的連續(xù)項(xiàng)從第5項(xiàng)到第10項(xiàng)構(gòu)成一個(gè)新的等比數(shù)列。

      探究3:求的前n項(xiàng)和.

      【設(shè)計(jì)意圖】采用變式教學(xué)設(shè)計(jì)題組,深化學(xué)生對(duì)公式的認(rèn)識(shí)和理解,通過直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個(gè)層次的問題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成.通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生自主學(xué)習(xí)的意識(shí).解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥。

      5、總結(jié)歸納,加深理解

      以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再從知識(shí)點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。

      1、等比數(shù)列的前n項(xiàng)和公式

      2、數(shù)學(xué)思想:(1)分類討論(2)方程思想

      3、數(shù)學(xué)方法:錯(cuò)位相減法

      【設(shè)計(jì)意圖】以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。

      6、當(dāng)堂檢測(cè)

      (1)口答:

      在公比為q的等比數(shù)列中

      若,則________,若,則________

      若=3,=81,求q及,若,求及q。

      (2)判斷是非:

     、伲ǎ

     、冢ǎ

     、廴簪矍,則

      ()

      【設(shè)計(jì)意圖】對(duì)公式的再認(rèn)識(shí),剖析公式中的基本量及結(jié)構(gòu)特征,識(shí)記公式,并加強(qiáng)計(jì)算能力的訓(xùn)練。

      7、課后作業(yè),分層練習(xí)

      必做:P30習(xí)題1—3 A組第1題,選作題1:求的前n項(xiàng)和

      (2)思考題:能否用其他方法推導(dǎo)等比數(shù)列前n項(xiàng)和公式

      【設(shè)計(jì)意圖】布置彈性作業(yè)以使各個(gè)層次的學(xué)生都有所發(fā)展。讓學(xué)有余力的學(xué)生有思考的空間,便于學(xué)生開展自主學(xué)習(xí)。

      五、評(píng)價(jià)分析

      本節(jié)課通過推導(dǎo)方法的研究,使學(xué)生掌握了等比數(shù)列前n項(xiàng)和公式.錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性.同時(shí)通過展示交流,學(xué)生點(diǎn)評(píng),教師總結(jié),使學(xué)生既鞏固了知識(shí),又形成了技能,在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì),形成學(xué)習(xí)能力。

      六、教學(xué)設(shè)計(jì)說明

      1、情境設(shè)置生活化。

      本著新課程的教學(xué)理念,考慮到高二學(xué)生的心理特點(diǎn),讓學(xué)生學(xué)生初步了解“數(shù)學(xué)來源于生活”,采用故事的形式創(chuàng)設(shè)問題情景,意在營造和諧、積極的學(xué)習(xí)氣氛,激發(fā)學(xué)生主動(dòng)探究的欲望。

      2、問題探究活動(dòng)化.

      教學(xué)中本著以學(xué)生發(fā)展為本的理念,充分給學(xué)生想的時(shí)間、說的機(jī)會(huì)以及展示思維過程的舞臺(tái),通過他們自主學(xué)習(xí)、合作探究,展示學(xué)生解決問題的思想方法,共享學(xué)習(xí)成果,體驗(yàn)數(shù)學(xué)學(xué)習(xí)成功的喜悅。通過師生之間不斷合作和交流,發(fā)展學(xué)生的數(shù)學(xué)觀察能力和語言表達(dá)能力,培養(yǎng)學(xué)生思維的發(fā)散性和嚴(yán)謹(jǐn)性。

      3、辨析質(zhì)疑結(jié)構(gòu)化.

      在理解公式的基礎(chǔ)上,及時(shí)進(jìn)行正反兩方面的“短、平、快”填空和判斷是非練習(xí)。通過總結(jié)、辨析和反思,強(qiáng)化了公式的結(jié)構(gòu)特征,促進(jìn)學(xué)生主動(dòng)建構(gòu),有助于學(xué)生形成知識(shí)模塊,優(yōu)化知識(shí)體系。

      4、鞏固提高梯度化.

      例題通過公式的正用和逆用進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力;由教科書中的例題改編而成,并進(jìn)行適當(dāng)?shù)淖兪,可以提高學(xué)生的模式識(shí)別的能力,培養(yǎng)學(xué)生思維的深刻性和靈活性。

      5、思路拓廣數(shù)學(xué)化.

      從整理知識(shí)提升到強(qiáng)化方法,由課內(nèi)鞏固延伸到課外思考,變“知識(shí)本位”為“學(xué)生本位”,使數(shù)學(xué)學(xué)習(xí)成為提高學(xué)生素質(zhì)的有效途徑。以生活中的實(shí)例作為思考,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)來源于生活并應(yīng)用于生活,生活中處處有數(shù)學(xué).

      6、作業(yè)布置彈性化.

      通過布置彈性作業(yè),為學(xué)有余力的學(xué)生提供進(jìn)一步發(fā)展的空間,有利于豐富學(xué)生的知識(shí),拓展學(xué)生的視野,提高學(xué)生的數(shù)學(xué)素養(yǎng).

      七、教學(xué)反思

      學(xué)生的根據(jù)高二學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,案例為淺層次要求,使學(xué)生有概括印象。公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。

      其中,案例是基礎(chǔ),使學(xué)生感知教材;公式為關(guān)鍵,使學(xué)生理解教材;練習(xí)為應(yīng)用,使學(xué)生鞏固知識(shí),舉一反三。

      在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀完整的板書和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,不僅加深了學(xué)生理解鞏固與應(yīng)用,也培養(yǎng)了

      思維能力。

      這節(jié)課總體上感覺備課比較充分,各個(gè)環(huán)節(jié)相銜接,能夠形成一節(jié)完整就為系統(tǒng)的課。本節(jié)課教學(xué)過程分為導(dǎo)入新課、公式推導(dǎo)、合作探究、課堂小結(jié)、當(dāng)堂檢測(cè)、布置作業(yè)。本節(jié)課總體上講對(duì)于內(nèi)容的把握基本到位,對(duì)學(xué)生的定位準(zhǔn)確,教學(xué)過程中留給學(xué)生思考的時(shí)間,以學(xué)生為主體。

      亮點(diǎn)之處:

      學(xué)生成為課堂的主體,教師要甘當(dāng)學(xué)生的綠葉

      由于數(shù)學(xué)的抽象、思維嚴(yán)謹(jǐn)?shù)忍攸c(diǎn),學(xué)生往往對(duì)于一些較為復(fù)雜或者變化多樣的題目容易望而生畏,出現(xiàn)懶得動(dòng)腦思考、動(dòng)筆去做的現(xiàn)象。教師也常因?yàn)闀r(shí)間的限制不可能給學(xué)生過多的時(shí)間去做“無用功”。在本節(jié)課上我放手讓學(xué)生去思考,讓學(xué)生去摸索。不怕學(xué)生出錯(cuò),就是讓學(xué)生能夠在摸索中增強(qiáng)思維能力、解題技能和計(jì)算經(jīng)驗(yàn)。特別是在例3中,教師針對(duì)題目做了簡(jiǎn)要的分析和提示,讓學(xué)生去嘗試著解題。張漫同學(xué)的板書詳盡,將思路方法概括表述出來,過程完整。只是結(jié)果出現(xiàn)了一個(gè)小錯(cuò)誤,教師在點(diǎn)評(píng)過程中給予指出,同時(shí)也個(gè)結(jié)果錯(cuò)誤也是學(xué)生經(jīng)常犯的。

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)3

      教學(xué)準(zhǔn)備

      教學(xué)目標(biāo)

      1、掌握平面向量的數(shù)量積及其幾何意義;

      2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

      3、了解用平面向量的數(shù)量積可以處理垂直的問題;

      4、掌握向量垂直的條件。

      教學(xué)重難點(diǎn)

      教學(xué)重點(diǎn):平面向量的數(shù)量積定義

      教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

      教學(xué)過程

      1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的'夾角是θ,則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

      并規(guī)定0向量與任何向量的數(shù)量積為0。

      ×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎渴裁磿r(shí)候?yàn)樨?fù)?

      2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

      (1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定。

     。2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書寫時(shí)要嚴(yán)格區(qū)分。符號(hào)“· ”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替。

     。3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0。因?yàn)槠渲衏osq有可能為0。

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)4

      一、教學(xué)背景分析

      1.教學(xué)內(nèi)容分析

      本節(jié)課是高中數(shù)學(xué)(北師大版必修5)第一章第3節(jié)第二課時(shí),是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù),與函數(shù)等知識(shí)有著密切的聯(lián)系,也為以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等做好鋪墊。而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng),如在“分期付款”等實(shí)際問題中也經(jīng)常涉及到。本節(jié)以數(shù)學(xué)文化背境引入課題有助于提升學(xué)生的創(chuàng)新思維和探索精神,是提高數(shù)學(xué)文化素養(yǎng)和培養(yǎng)學(xué)生應(yīng)用意識(shí)的良好載體。

      2.學(xué)情分析

      從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是,本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。教學(xué)對(duì)象是高二理科班的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不完全。

      二.教學(xué)目標(biāo)

      依據(jù)新課程標(biāo)準(zhǔn)及教材內(nèi)容,結(jié)合學(xué)生的認(rèn)知發(fā)展水平和心理特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)如下:

      1.知識(shí)與技能目標(biāo): 理解等比數(shù)列前n項(xiàng)和公式推導(dǎo)方法;掌握等比數(shù)列前n項(xiàng)和公式并能運(yùn)用公式解決一些簡(jiǎn)單問題。

      2.過程與方法目標(biāo):感悟并理解公式的推導(dǎo)過程,感受公式探求過程所蘊(yùn)涵的從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì),初步提高學(xué)生的建模意識(shí)和探究、分析與解決問題的能力。

      3.情感與態(tài)度目標(biāo):通過經(jīng)歷對(duì)公式的探索過程,對(duì)學(xué)生進(jìn)行思維嚴(yán)謹(jǐn)性的訓(xùn)練,激發(fā)學(xué)生的求知欲,鼓勵(lì)學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗(yàn),感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對(duì)稱美、形式的簡(jiǎn)潔美和數(shù)學(xué)的嚴(yán)謹(jǐn)美。

      三.重點(diǎn),難點(diǎn)

      教學(xué)重點(diǎn):等比數(shù)列前“等比數(shù)列的前n項(xiàng)和”項(xiàng)和公式的推導(dǎo)及其簡(jiǎn)單應(yīng)用。

      教學(xué)難點(diǎn):公式的推導(dǎo)思想方法及公式應(yīng)用中q與1的關(guān)系。

      四.教學(xué)方法

      啟發(fā)引導(dǎo),探索發(fā)現(xiàn),類比。

      五. 教學(xué)過程

     。ㄒ唬┙柚鷶(shù)學(xué)文化背境提出問題

      在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當(dāng)時(shí)的印度國王大為贊賞,對(duì)他說:我可以滿足你的任何要求。西薩說:請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚。為什么呢?

      【設(shè)計(jì)意圖】:設(shè)計(jì)這個(gè)數(shù)學(xué)文化背境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事內(nèi)容也緊扣本節(jié)課的主題與重點(diǎn)。

      問題1:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?

      引導(dǎo)學(xué)生寫出麥?倲(shù)“等比數(shù)列的前n項(xiàng)和”

     。ǘ⿴熒(dòng),探究問題

      問題2:“等比數(shù)列的前n項(xiàng)和”

      有些學(xué)生會(huì)說用計(jì)算器來求(老師當(dāng)然肯定這種做法,但學(xué)生很快發(fā)現(xiàn)比較難求。)

      問題3:同學(xué)們,我們來分析一下這個(gè)和式有什么特征?

     。▽W(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

      問題4:如果我們把(1)式每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),那么我們?nèi)粼诖说仁絻蛇呁?,得到(2)式:

      “等比數(shù)列的前n項(xiàng)和”

      比較(1)(2)兩式,你有什么發(fā)現(xiàn)?(學(xué)生經(jīng)過比較發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng))

      問題5:將兩式相減,相同的項(xiàng)就消去了,得到什么呢?。(學(xué)生會(huì)發(fā)現(xiàn):“等比數(shù)列的前n項(xiàng)和”

      【設(shè)計(jì)意圖】:這五個(gè)問題層層深入,剖析了錯(cuò)位相減法中減的妙用,使學(xué)生容易接受為什么要錯(cuò)位相減,經(jīng)過繁難的計(jì)算之后,突然發(fā)現(xiàn)上述解法,也讓學(xué)生感受到這種方法的神奇。

      問題6:老師指出這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思為什么(1)式兩邊要同乘以2呢?

      【設(shè)計(jì)意圖】:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,讓學(xué)生對(duì)錯(cuò)位相減法有一個(gè)深刻的認(rèn)識(shí),也為探究等比數(shù)列求和公式的推導(dǎo)做好鋪墊。

     。ㄈ╊惐嚷(lián)想,構(gòu)建新知

      這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化。

      問題7:如何求等比數(shù)列“等比數(shù)列的前n項(xiàng)和”的前“等比數(shù)列的前n項(xiàng)和”項(xiàng)和“等比數(shù)列的前n項(xiàng)和”:

      即:“等比數(shù)列的前n項(xiàng)和”

      (學(xué)生相互合作,討論交流,老師巡視課堂,并請(qǐng)學(xué)生上臺(tái)板演。)

      注:學(xué)生已有上面問題的處理經(jīng)驗(yàn),肯定有不少學(xué)生會(huì)想到“錯(cuò)位相減法”,教師可放手讓學(xué)生探究。

      將“等比數(shù)列的前n項(xiàng)和”兩邊同時(shí)乘以公比“等比數(shù)列的前n項(xiàng)和”后會(huì)得到“等比數(shù)列的前n項(xiàng)和”,兩個(gè)等式相減后,哪些項(xiàng)被消去,還剩下哪些項(xiàng),剩下項(xiàng)的符號(hào)有沒有改變?這些都是用錯(cuò)位相減法求等比數(shù)列前“等比數(shù)列的前n項(xiàng)和”項(xiàng)和的關(guān)鍵所在,讓學(xué)生先思考,再討論,最后師在突出強(qiáng)調(diào),加深印象。

      兩式作差得到“等比數(shù)列的前n項(xiàng)和”時(shí),肯定會(huì)有學(xué)生直接得到“等比數(shù)列的前n項(xiàng)和”,不忙揭露錯(cuò)誤,后面再反饋這個(gè)易錯(cuò)點(diǎn),從而掌握公式的本質(zhì)。

      【設(shè)計(jì)意圖】:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的成就感。增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

      問題8:由 “等比數(shù)列的前n項(xiàng)和” 得 “等比數(shù)列的前n項(xiàng)和”對(duì)不對(duì)呢?這里的“等比數(shù)列的前n項(xiàng)和”能不能等于1呀?等比數(shù)列中的公比能不能為1?那么“等比數(shù)列的前n項(xiàng)和”時(shí)是什么數(shù)列?此時(shí)“等比數(shù)列的前n項(xiàng)和”?你能歸納出等比數(shù)列的前n項(xiàng)和公式嗎? (這里引導(dǎo)學(xué)生對(duì)“等比數(shù)列的前n項(xiàng)和” 進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)

      再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式“等比數(shù)列的前n項(xiàng)和” ,如何把“等比數(shù)列的前n項(xiàng)和” 用“等比數(shù)列的前n項(xiàng)和” 、“等比數(shù)列的前n項(xiàng)和” 、“等比數(shù)列的前n項(xiàng)和” 表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)

      公式:

      “等比數(shù)列的'前n項(xiàng)和”

      注:公式的理解

      知三求二:n q a1 an Sn ;

      n的含義:項(xiàng)數(shù)(通項(xiàng)公式是qn-1);

      q的含義:公比(注意q=1,分類討論);

      錯(cuò)位相減法:乘公比(作用是構(gòu)造許多相同項(xiàng))后錯(cuò)開一項(xiàng)后再減。

      【設(shè)計(jì)意圖】:通過反問學(xué)生歸納,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。

     。ㄋ模┯懻摻涣,延伸拓展

      問題9: 探究等比數(shù)列前n項(xiàng)和公式,還有其它方法嗎?

      “等比數(shù)列的前n項(xiàng)和”(學(xué)生討論交流,老師指導(dǎo)。依學(xué)生的認(rèn)知水平可能會(huì)有以下幾種方法)

     。1)錯(cuò)位相減法

      “等比數(shù)列的前n項(xiàng)和”(2)提出公比q

      “等比數(shù)列的前n項(xiàng)和”(3)累加法

      【設(shè)計(jì)意圖】:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營造一個(gè)讓學(xué)生主動(dòng)觀察、思考、討論的氛圍. 這有非常重要的研究?jī)r(jià)值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對(duì)學(xué)生的思維發(fā)展有促進(jìn)作用.

      (五) 應(yīng)用公式,深化理解

      例1:在等比數(shù)列{ an }中,

      (1)已知a1=3,q=2,n=6,求Sn;

      (2)已知a1=8,q=1/2,an =1/2,求Sn;

      (3)已知a1=-1.5,a4=96,求q與S4;

      (4)已知a1=2,S3=26,求q與a3。

      【設(shè)計(jì)意圖】:初步應(yīng)用公式,理解等比數(shù)列的基本量也可“知三求二”,體會(huì)方程思想。

      例2:等比數(shù)列{ an }中,已知a3=3/2,S3=9/2,求a1與q。

      【設(shè)計(jì)意圖】:注意公式中的分類討論思想。

      例3:求數(shù)列{n+ }的前n項(xiàng)和。

      【設(shè)計(jì)意圖】:將未知問題轉(zhuǎn)化為已知問題,進(jìn)一步體會(huì)等比數(shù)列前n項(xiàng)和公式的應(yīng)用。

      練習(xí)1:求等比數(shù)列“等比數(shù)列的前n項(xiàng)和”前8項(xiàng)和;

      練習(xí)2:a3= ,S9= ,求a1和q;

      練習(xí)3:求數(shù)列{n+an}的前n項(xiàng)和。

      (先由學(xué)生獨(dú)立求解,然后抽學(xué)生板演,教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予適時(shí)的表揚(yáng)。)

      【設(shè)計(jì)意圖】:通過練習(xí),深化認(rèn)識(shí),增加思維的梯度的同時(shí),提高學(xué)生的模式識(shí)別能力,滲透轉(zhuǎn)化思想.

      (六)總結(jié)歸納,加深理解

      問題10:這節(jié)課你有什么收獲?學(xué)到了哪些知識(shí)和方法?

      【設(shè)計(jì)意圖】:以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再從知識(shí)點(diǎn)及數(shù)學(xué)思想方法等方面總結(jié)。以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。

     。▽W(xué)生小結(jié)歸納,不足之處老師補(bǔ)充說明。)

      1.公式:等比數(shù)列前n項(xiàng)和

      當(dāng)q≠1時(shí),Sn= =

      當(dāng)q=1時(shí), Sn=na1

      2.方法:錯(cuò)位相減法(乘以公比)

      3.思想:分類討論(公式選擇)

      (七)故事結(jié)束,首尾呼應(yīng)

      最后我們回到故事中的問題,可以計(jì)算出國王獎(jiǎng)賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾了。

      【設(shè)計(jì)意圖】:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。

     。ò耍┱n后作業(yè),分層練習(xí)

     。1)閱讀本節(jié)內(nèi)容,預(yù)習(xí)下一節(jié)內(nèi)容;

     。2) 書面作業(yè):習(xí)題P30 8 .10;

      (3)拓展作業(yè):求和:“等比數(shù)列的前n項(xiàng)和”

      【設(shè)計(jì)意圖】:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)5

      (1)知識(shí)目標(biāo):

      1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;

      2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

      (2)能力目標(biāo):

      1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

      2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;

      3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

      (3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

      2.教學(xué)重點(diǎn).難點(diǎn)

      (1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

      (2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

      當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.

      3.教學(xué)過程

      (一)創(chuàng)設(shè)情境(啟迪思維)

      問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

      [引導(dǎo)] 畫圖建系

      [學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

      解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

      將x=2.7代入,得 .

      即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

      (二)深入探究(獲得新知)

      問題二:1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

      答:x2 y2=r2

      2.如果圓心在 ,半徑為 時(shí)又如何呢?

      [學(xué)生活動(dòng)] 探究圓的方程。

      [教師預(yù)設(shè)] 方法一:坐標(biāo)法

      如圖,設(shè)M(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}

      由兩點(diǎn)間的距離公式,點(diǎn)M適合的條件可表示為 ①

      把①式兩邊平方,得(x―a)2 (y―b)2=r2

      方法二:圖形變換法

      方法三:向量平移法

      (三)應(yīng)用舉例(鞏固提高)

      I.直接應(yīng)用(內(nèi)化新知)

      問題三:1.寫出下列各圓的方程(課本P77練習(xí)1)

      (1)圓心在原點(diǎn),半徑為3;

      (2)圓心在 ,半徑為 ;

      (3)經(jīng)過點(diǎn) ,圓心在點(diǎn) .

      2.根據(jù)圓的方程寫出圓心和半徑

      (1) ; (2) .

      II.靈活應(yīng)用(提升能力)

      問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

      [教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

      2.已知圓的方程為 ,求過圓上一點(diǎn) 的切線方程.

      [學(xué)生活動(dòng)]探究方法

      [教師預(yù)設(shè)]

      方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

      方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

      方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

      方法四:軌跡法(利用向量垂直列關(guān)系式)

      3.你能歸納出具有一般性的結(jié)論嗎?

      已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是: .

      III.實(shí)際應(yīng)用(回歸自然)

      問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).

      [多媒體課件演示創(chuàng)設(shè)實(shí)際問題情境]

      (四)反饋訓(xùn)練(形成方法)

      問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.

      2.已知點(diǎn)A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.

      3.求圓x2 y2=13過點(diǎn)(-2,3)的切線方程.

      4.已知圓的方程為 ,求過點(diǎn) 的切線方程.

      (五)小結(jié)反思(拓展引申)

      1.課堂小結(jié):

      (1)圓心為C(a,b),半徑為r 的圓的標(biāo)準(zhǔn)方程為:

      當(dāng)圓心在原點(diǎn)時(shí),圓的標(biāo)準(zhǔn)方程為:

      (2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法

      (3) 已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是:

      (4) 求解應(yīng)用問題的一般方法

      2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習(xí)題7.6)1.2.4

      (B)思維拓展型作業(yè):

      試推導(dǎo)過圓 上一點(diǎn) 的.切線方程.

      3.激發(fā)新疑:

      問題七:1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

      2.方程: 的曲線是什么圖形?

      教學(xué)設(shè)計(jì)說明

      圓是學(xué)生比較熟悉的曲線,初中平面幾何對(duì)圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點(diǎn)確定為用解析法研究圓的標(biāo)準(zhǔn)方程及其簡(jiǎn)單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實(shí)際問題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問題,并通過圓的方程在實(shí)際問題中的應(yīng)用,增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,能力與知識(shí)的形成相伴而行,這樣的設(shè)計(jì)不但突出了重點(diǎn),更使難點(diǎn)的突破水到渠成.

      本節(jié)課的設(shè)計(jì)了五個(gè)環(huán)節(jié),以問題為紐帶,以探究活動(dòng)為載體,使學(xué)生在問題的指引下、教師的指導(dǎo)下把探究活動(dòng)層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識(shí)的過程轉(zhuǎn)變?yōu)閷W(xué)生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時(shí)鍛煉了思維.提高了能力。

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)6

      一、概述

      教材內(nèi)容:等比數(shù)列的概念和通項(xiàng)公式的推導(dǎo)及簡(jiǎn)單應(yīng)用教材難點(diǎn):靈活應(yīng)用等比數(shù)列及通項(xiàng)公式解決一般問題教材重點(diǎn):等比數(shù)列的概念和通項(xiàng)公式

      二、教學(xué)目標(biāo)分析

      1、知識(shí)目標(biāo)

      1)

      2)掌握等比數(shù)列的定義理解等比數(shù)列的通項(xiàng)公式及其推導(dǎo)

      2.能力目標(biāo)

      1)學(xué)會(huì)通過實(shí)例歸納概念

      2)通過學(xué)習(xí)等比數(shù)列的通項(xiàng)公式及其推導(dǎo)學(xué)會(huì)歸納假設(shè)

      3)提高數(shù)學(xué)建模的能力

      3、情感目標(biāo):

      1)充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型

      2)體會(huì)數(shù)學(xué)是來源于現(xiàn)實(shí)生活并應(yīng)用于現(xiàn)實(shí)生活

      3)數(shù)學(xué)是豐富多彩的而不是枯燥無味的

      三、教學(xué)對(duì)象及學(xué)習(xí)需要分析

      1、教學(xué)對(duì)象分析:

      1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對(duì)各方面的.知識(shí)有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個(gè)別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

      2)對(duì)歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)

      2、學(xué)習(xí)需要分析:

      四、教學(xué)策略選擇與設(shè)計(jì)

      1、課前復(fù)習(xí)

      1)復(fù)習(xí)等差數(shù)列的概念及通向公式

      2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

      2、情景導(dǎo)入

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)7

      一、學(xué)生基本情況

      261班共有學(xué)生75人,268班共有學(xué)生72人。268班學(xué)習(xí)數(shù)學(xué)的氣氛較濃,但由于高一函數(shù)部分基礎(chǔ)特別差,對(duì)高二乃至整個(gè)高中的數(shù)學(xué)學(xué)習(xí)有很大的影響,數(shù)學(xué)成績(jī)尖子生多或少,但若能雜實(shí)復(fù)習(xí)好函數(shù)部分,加上學(xué)生又很努力,將來前途無量。若能好好的引導(dǎo),進(jìn)一步培養(yǎng)他們的學(xué)習(xí)興趣

      二、教學(xué)要求

     。ㄒ唬┣橐饽繕(biāo)

     。1)通過分析問題的方法的教學(xué)、通過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

     。2)提供生活背景,使學(xué)生體驗(yàn)到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。

     。3)在探究不等式的性質(zhì)、圓錐曲線的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評(píng)價(jià),提高學(xué)生的合作意識(shí)

     。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。

     。5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

     。6)讓學(xué)生體驗(yàn)發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程的幻妙多姿

     。ǘ┠芰σ

      1、培養(yǎng)學(xué)生記憶能力。

     。1)在對(duì)不等式的性質(zhì)、平均不等式及思維方法與邏輯模式的學(xué)習(xí)中,進(jìn)一步培養(yǎng)記憶能力。做到記憶準(zhǔn)確、持久,用時(shí)再現(xiàn)得迅速、正確。

     。2)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。

     。3)通過揭示解析幾何有關(guān)概念、公式和圖形直觀值見的對(duì)應(yīng)關(guān)系,培養(yǎng)記憶能力。

      2、培養(yǎng)學(xué)生的運(yùn)算能力。

      (1)通過解不等式及不等式組的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。

      (2)加強(qiáng)對(duì)概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。

     。3)通過解析法的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡(jiǎn)捷性能力。

     。4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識(shí)間的滲透和遷移。

     。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。

      3、培養(yǎng)學(xué)生的思維能力。

     。1)通過含參不等式的求解,培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。

     。2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。

      (3)通過不等式引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。

     。4)加強(qiáng)知識(shí)的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的能力。

      (5)通過解析幾何的概念教學(xué),培養(yǎng)學(xué)生的正向思維與逆向思維的能力。

      (6)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。

      4、培養(yǎng)學(xué)生的觀察能力。

     。1)在比較鑒別中,提高觀察的準(zhǔn)確性和完整性。

     。2)通過對(duì)個(gè)性特征的分析研究,提高觀察的深刻性。

     。ㄈ┲R(shí)要求

      1、掌握不等式的概念、性質(zhì)及證明不等式的方法,不等式的解法;

      2、通過直線與圓的教學(xué),使學(xué)生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關(guān)系,掌握簡(jiǎn)單線性規(guī)劃問題,掌握曲線方程、圓的概念。

      3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質(zhì)。

      三、教材簡(jiǎn)要分析

      1、不等式的主要內(nèi)容是:不等式性質(zhì)、不等式證明、不等式解法。不等式性質(zhì)是基礎(chǔ),不等式證明是在其基礎(chǔ)上進(jìn)行的;不等式的解法是在這一基礎(chǔ)上、依據(jù)不等式的性及同解變形來完成的。20xx年高二下數(shù)學(xué)教學(xué)計(jì)劃20xx年高二下數(shù)學(xué)教學(xué)計(jì)劃。不等式在整個(gè)高中數(shù)學(xué)中是一個(gè)重要的工具,是培養(yǎng)運(yùn)算能力、邏輯思維能力的強(qiáng)有力載體。

      2、直線是最簡(jiǎn)單的'幾圖形,是學(xué)習(xí)圓錐曲線、導(dǎo)數(shù)和微分等知識(shí)的的基礎(chǔ)。是直線方程的一個(gè)直接應(yīng)用。主要內(nèi)容有:直線方程的幾種形式,線性規(guī)劃的初步知識(shí),兩直線的位置關(guān)系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數(shù)形結(jié)合解析幾何相互為用思想的載體。

      3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),以及它們?cè)趯?shí)際中的一些運(yùn)用。橢圓、雙曲線、拋物線分別是滿足某些條件的點(diǎn)的軌跡,由這些條件可以求出它們的方程,并通過分析標(biāo)準(zhǔn)方程研究它們的性質(zhì)。

      四、重點(diǎn)與難點(diǎn)

      (一)重點(diǎn)

      1、不等式的證明、解法。

      2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關(guān)系,圓的方程。

      3、橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì)。

     。ǘ╇y點(diǎn)

      1、含絕對(duì)值不等式的解法,不等式的證明。

      2、到角公式,點(diǎn)到直線距離公式的推導(dǎo),簡(jiǎn)單線性規(guī)劃的問題的解法。

      3、用坐標(biāo)法研究幾何問題,求曲線方程的一般方法。

      五、教學(xué)措施

      1、教學(xué)中要傳授知識(shí)與培育能力相結(jié)合,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性,培育學(xué)生的概括能力,是學(xué)生掌握數(shù)學(xué)基本方法、基本技能。

      2、堅(jiān)持與高三聯(lián)系,切實(shí)面向高考,以五大數(shù)學(xué)思想為主線,有目的、有計(jì)劃、有重點(diǎn),避免面面俱到,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。

      3、加強(qiáng)教育教學(xué)研究,堅(jiān)持學(xué)生主體性原則,堅(jiān)持循序漸進(jìn)原則,堅(jiān)持啟發(fā)性原則。研究并采用以發(fā)現(xiàn)式教學(xué)模式為主的教學(xué)方法,全面提高教學(xué)質(zhì)量。

      4、積極參加與組織集體備課,共同研究,努力提高授課質(zhì)量

      5、堅(jiān)持向同行聽課,取人所長(zhǎng),補(bǔ)己之短。相互研究,共同進(jìn)步。

      6、堅(jiān)持學(xué)法研討,加強(qiáng)個(gè)別輔導(dǎo)(差生與優(yōu)生),提高全體學(xué)生的整體數(shù)學(xué)水平,培育尖子學(xué)生。

      7、加強(qiáng)數(shù)學(xué)研究課的教學(xué)研究指導(dǎo),培養(yǎng)學(xué)識(shí)的動(dòng)手能力。

      六、課時(shí)安排

      本學(xué)期共81課時(shí)

      1、不等式18課時(shí)

      2、直線與圓的方程25課時(shí)

      3、圓錐曲線20課時(shí)

      4、研究課18課時(shí)

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)8

      一、課前預(yù)習(xí):

      1、預(yù)習(xí)目標(biāo):

     、偻ㄟ^實(shí)例,理解等差數(shù)列的概念;探索并掌握等差數(shù)列的通項(xiàng)公式;

     、谀茉诰唧w的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問題;

     、垠w會(huì)等差數(shù)列與一次函數(shù)的關(guān)系。

      2、預(yù)習(xí)內(nèi)容:

      (1)、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從起,每一項(xiàng)與它的前一項(xiàng)的'差等于同一個(gè),那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的,通常用字母表示。

     。2)、等差中項(xiàng):若三個(gè)數(shù)組成等差數(shù)列,那么A叫做與的,即或。

     。3)、等差數(shù)列的單調(diào)性:等差數(shù)列的公差時(shí),數(shù)列為遞增數(shù)列;時(shí),數(shù)列為遞減數(shù)列;時(shí),數(shù)列為常數(shù)列;等差數(shù)列不可能是。

     。4)、等差數(shù)列的通項(xiàng)公式:。

      二、課內(nèi)探究學(xué)案

      例1、1、求等差數(shù)列8、5、2… …的第20項(xiàng)

      解:由得:

      2、是不是等差數(shù)列、 、 … …的項(xiàng)?如果是,是第幾項(xiàng)?

      解:由得

      由題意知,本題是要回答是否存在正整數(shù)n,使得:

      成立

      解得:即是這個(gè)數(shù)列的第100項(xiàng)。

      例2、某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)為1.2元/km,起步價(jià)為10元,即最初的4km(不含4km)計(jì)費(fèi)為10元,如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時(shí)間為0,需要支付多少車費(fèi)?

      分析:可以抽象為等差數(shù)列的數(shù)學(xué)模型。4km處的車費(fèi)記為:公差

      當(dāng)出租車行至目的地即14km處時(shí),n=11求

      所以:

      例3:數(shù)列是等差數(shù)列嗎?

      變式練習(xí):已知數(shù)列{}的通項(xiàng)公式,其中、為常數(shù),這個(gè)數(shù)列是等差數(shù)列嗎?若是,首項(xiàng)和公差分別是多少?

     。ㄖ付▽W(xué)生求解)

      解:取數(shù)列{}中任意兩項(xiàng)和

      它是一個(gè)與n無關(guān)的常數(shù),所以{}是等差數(shù)列?

      并且:

      三、課后練習(xí)與提高

      在等差數(shù)列中,已知求=

      已知求

      已知求

      已知求

      2、已知,則的等差中項(xiàng)為()

      A B C D

      3、20xx是等差數(shù)列4,6,8…的()

      A第998項(xiàng)B第999項(xiàng)C第1001項(xiàng)D第1000項(xiàng)

      4、在等差數(shù)列40,37,34,…中第一個(gè)負(fù)數(shù)項(xiàng)是()

      A第13項(xiàng)B第14項(xiàng)C第15項(xiàng)D第16項(xiàng)

      5、在等差數(shù)列中,已知?jiǎng)t等于()

      A 10 B 42 C43 D45

      6、等差數(shù)列-3,1,5…的第15項(xiàng)的值為

      7、等差數(shù)列中,且從第10項(xiàng)開始每項(xiàng)都大于1,則此等差數(shù)列公差d的取值范圍是

      8、在等差數(shù)列中,已知,求首項(xiàng)與公差d

      9、在公差不為零的等差數(shù)列中,為方程的跟,求的通項(xiàng)公式。

      10、數(shù)列滿足,設(shè)

      判斷數(shù)列是等差數(shù)列嗎?試證明。

      求數(shù)列的通項(xiàng)公式

      11、數(shù)列滿足,問是否存在適當(dāng)?shù),使是等差?shù)列?

    【高二數(shù)學(xué)教學(xué)設(shè)計(jì)】相關(guān)文章:

    高二數(shù)學(xué)教學(xué)設(shè)計(jì)03-26

    高二化學(xué)教學(xué)設(shè)計(jì)06-25

    高二數(shù)學(xué)教學(xué)總結(jié)02-10

    高二數(shù)學(xué)教學(xué)反思11-29

    數(shù)學(xué)教學(xué)教學(xué)設(shè)計(jì)04-15

    《數(shù)學(xué)》教學(xué)設(shè)計(jì)06-27

    數(shù)學(xué)教學(xué)設(shè)計(jì)02-19

    數(shù)學(xué)教學(xué)設(shè)計(jì)01-06

    (優(yōu)秀)高二化學(xué)教學(xué)設(shè)計(jì)08-04

    高二數(shù)學(xué)下冊(cè)教學(xué)總結(jié)05-17