欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    初二數(shù)學(xué)教案

    時(shí)間:2022-03-02 13:38:15 教案 投訴 投稿

    初二數(shù)學(xué)教案

      作為一名老師,通常需要準(zhǔn)備好一份教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。如何把教案做到重點(diǎn)突出呢?下面是小編幫大家整理的初二數(shù)學(xué)教案 ,歡迎閱讀與收藏。

    初二數(shù)學(xué)教案

    初二數(shù)學(xué)教案 1

      初二上冊數(shù)學(xué)知識點(diǎn)總結(jié):等腰三角形

      一、等腰三角形的性質(zhì):

      1、等腰三角形兩腰相等.

      2、等腰三角形兩底角相等(等邊對等角)。

      3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

      4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

      5、等邊三角形的'性質(zhì):

      ①等邊三角形三邊都相等.

     、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于60°

     、鄣冗吶切蚊織l邊上都存在三線合一.

     、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).

      6.基本判定:

     、诺妊切蔚呐卸ǎ

      ①有兩條邊相等的三角形是等腰三角形.

     、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊).

     、频冗吶切蔚呐卸ǎ

      ①三條邊都相等的三角形是等邊三角形.

     、谌齻(gè)角都相等的三角形是等邊三角形.

      ③有一個(gè)角是60°的等腰三角形是等邊三角形.

    初二數(shù)學(xué)教案 2

       教學(xué)目標(biāo):

      1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識,主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

      2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識及能力。

      重點(diǎn)難點(diǎn):

      重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡單的問題。

      難點(diǎn):勾股定理的發(fā)現(xiàn)

      教學(xué)過程

      一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

      出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的.數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

      出示投影2(書中的P2圖1—2)并回答:

      1、觀察圖1-2,正方形A中有_______個(gè)小方格,即A的面積為______個(gè)單位。

      正方形B中有_______個(gè)小方格,即A的面積為______個(gè)單位。

      正方形C中有_______個(gè)小方格,即A的面積為______個(gè)單位。

      2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:

      3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?

      學(xué)生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關(guān)系呢?

      二、做一做

      出示投影3(書中P3圖1—4)提問:

      1、圖1—3中,A,B,C之間有什么關(guān)系?

      2、圖1—4中,A,B,C之間有什么關(guān)系?

      3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

      學(xué)生討論、交流形成共識后,教師總結(jié):

      以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

      三、議一議

      1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

      2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

      在同學(xué)的交流基礎(chǔ)上,老師板書:

      直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

      也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

      那么

      我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

      3、分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)

      四、想一想

      這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

      五、鞏固練習(xí)

      1、錯(cuò)例辨析:

      △ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應(yīng)滿足=25

      即:c=5

      辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題

      △ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

      (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

      綜上所述這個(gè)題目條件不足,第三邊無法求得。

      2、練習(xí)P7§1.11

      六、作業(yè)

      課本P7§1.12、3、4

    初二數(shù)學(xué)教案 3

      教學(xué)目標(biāo)

      1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計(jì)量的直方圖;

      2、讓學(xué)生進(jìn)一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

      教學(xué)重點(diǎn)

      掌握頻率分布直方圖概念及其應(yīng)用;

      教學(xué)難點(diǎn)

      繪制連續(xù)統(tǒng)計(jì)量的直方圖

      教學(xué)過程

     、瘢岢鰡栴},創(chuàng)設(shè)情境,引入新課:

      問題:我們班準(zhǔn)備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個(gè)想法可以實(shí)現(xiàn)嗎?應(yīng)該選擇身高在哪個(gè)范圍的學(xué)生參加?

      63名學(xué)生的身高數(shù)據(jù)如下:

      158158160168159159151158159

      168158154158154169158158158

      159167170153160160159159160

      149163163162172161153156162

      162163157162162161157157164

      155156165166156154166164165

      156157153165159157155164156

      解:(確定組距)最大值為172,最小值為149,他們的差為23

      (身高x的變化范圍在23厘米,)

      (分組劃記)頻數(shù)分布表:

      身高(x)劃記頻數(shù)(學(xué)生人數(shù))

      149≤x<1522

      152≤x<1556

      155≤x<15812

      158≤x<16119

      161≤<16410

      164≤x<1678

      167≤x<1704

      170≤x<1732

      從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學(xué)生中選隊(duì)員

     。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)

      探究:上面對數(shù)據(jù)分組時(shí),組距取3,把數(shù)據(jù)分成8個(gè)組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個(gè)組,這樣做能否選出身高比較整齊的隊(duì)員?

      分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊(duì)員。

      歸納:組距和組數(shù)的確定沒有固定的標(biāo)準(zhǔn),要憑借經(jīng)驗(yàn)和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當(dāng)數(shù)據(jù)在100個(gè)以內(nèi)時(shí),根據(jù)數(shù)據(jù)的多少通常分為5~12個(gè)組。

      我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。

      首先取直方圖中每一個(gè)長方形上邊的中草藥點(diǎn),然后在橫軸上取兩個(gè)頻數(shù)為0的'點(diǎn),在上方圖的左邊取(147、5,0),在直方圖的右邊取點(diǎn)(174、5,0),將這些點(diǎn)用線段依次連接起來,就得到頻數(shù)折線圖。

      頻數(shù)折線圖也可以不通過直方圖直接畫出。

      根據(jù)表12.2-2,求了各個(gè)小組兩個(gè)端點(diǎn)的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標(biāo),各小組對應(yīng)的頻數(shù)為縱坐標(biāo)描點(diǎn),另外再在橫軸上取兩個(gè)點(diǎn),依次連接這些點(diǎn),就得到頻數(shù)分布折線圖如課本P73圖。

      II課堂小結(jié):

     。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

     。2)組距和組數(shù)沒有確定標(biāo)準(zhǔn),當(dāng)數(shù)據(jù)在1000個(gè)以內(nèi)時(shí),通常分成5~12組

     。3)如果取個(gè)長方形上邊的中點(diǎn),可以得到頻數(shù)折線圖

      (4)求各小組兩個(gè)斷點(diǎn)的平均數(shù),這些平均數(shù)叫組中值。

    初二數(shù)學(xué)教案 4

      教學(xué)目標(biāo)

      1.知道梯形、等腰梯形、直角梯形的有關(guān)概念;能說出并證明等腰梯形的兩個(gè)性質(zhì);等腰梯形同一底上的兩個(gè)角相等;兩條對角線相等。

      2.會(huì)運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計(jì)算。

      3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想。

      教學(xué)模式問題解決教學(xué)

      教學(xué)過程

      想一想:

      什么樣的四邊形是平行四邊形?平行四邊形有哪些性質(zhì)?學(xué)生回答后,教師板書以下關(guān)系圖中的有關(guān)部分:

      畫一畫:

      畫一個(gè)梯形,并指出梯形的上、下底,畫出梯形的高。

      問題教學(xué)

      問題1:根據(jù)剛才的畫圖,請給梯形下一個(gè)定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學(xué)生自己給梯形下定義,有助于訓(xùn)練學(xué)生觀察、概括和語言表述的能力。如果學(xué)生定義時(shí),遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學(xué)生討論以下問題:一組對邊平行且這組對邊不相等的四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關(guān)系圖,并結(jié)合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的公垂線段,在計(jì)算面積時(shí)高即為上下兩底(平行線)間的距離,也就是夾在兩底間的`公垂線段的長度。畫高時(shí)可以從上底任一點(diǎn)向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構(gòu)造直角三角形,便于計(jì)算。)

      問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學(xué)生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會(huì)有困難;教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當(dāng)CD⊥BC時(shí),另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)

      練一練:課本例1后練習(xí)第l、2題。

      問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質(zhì)。并能證明你的猜想嗎?

      說明與建議:(l)教師要用微笑、點(diǎn)頭、贊嘆、激勵(lì)的表情和話語來鼓勵(lì)學(xué)生大膽猜想。(2)學(xué)生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導(dǎo)學(xué)生關(guān)注等腰梯形特有的性質(zhì)---等腰梯形的底角相等。(3)如何證明這個(gè)猜想,可讓學(xué)生自己思考、探索、交流,教師給以引導(dǎo),鼓勵(lì)證明多樣化,如課本第174頁的證法。教師可提醒學(xué)生證明過程中用到了"夾在平行線間的平行線段相等"這一性質(zhì)。并指出:這種證法的實(shí)質(zhì)是把一腰平移,從而構(gòu)造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構(gòu)造出兩個(gè)全等的直三角形等。

      問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學(xué)生用折紙的方法,確認(rèn)等腰梯形是軸對稱圖形;教學(xué)中,還可引導(dǎo)學(xué)生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點(diǎn)E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個(gè)等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點(diǎn)的直線。)

      例題解析(課本例1)說明:本例的結(jié)論,為學(xué)生在討論"問題3"時(shí)已提及,則可由學(xué)生自已完成證明,并概括成為一個(gè)文字命題。如學(xué)生討論問題3時(shí)未提及,則可由教師引導(dǎo)學(xué)生猜想,然后再完成證明。

      課堂練習(xí)1.課本例1后練習(xí)第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點(diǎn)C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點(diǎn)C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)

    初二數(shù)學(xué)教案 5

    重難點(diǎn)分析

      本節(jié)的重點(diǎn)是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個(gè)角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。

      本節(jié)的難點(diǎn)是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時(shí)還具有自己獨(dú)特的性質(zhì)。如果得到一個(gè)平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。

      教法建議

      根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:

      1.矩形的知識,學(xué)生在小學(xué)時(shí)接觸過一些,可由小學(xué)學(xué)過的知識作為引入。

      2.矩形在現(xiàn)實(shí)中的實(shí)例較多,在講解矩形的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.

      3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁圖4-30所示,制作一個(gè)平行四邊形作為教學(xué)過程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對知識的掌握更輕松些.

      4. 在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對事先準(zhǔn)備后的圖形進(jìn)行邊、角、對角線的測量,然后在組內(nèi)進(jìn)行整理、歸納.

      5. 由于矩形的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進(jìn)行具體的證明.

      6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

      矩形教學(xué)設(shè)計(jì)

      教學(xué)目標(biāo)

      1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個(gè)角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。

      2.能運(yùn)用以上性質(zhì)進(jìn)行簡單的證明和計(jì)算。

      此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會(huì)特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點(diǎn)。

      引導(dǎo)性材料

      想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。

      小學(xué)里已學(xué)過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個(gè)角都是直角(小學(xué)里已學(xué)過)等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個(gè)圈表示矩形,這個(gè)圈應(yīng)畫在哪里?

      (讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)

      演示:用四根木條制作一個(gè)平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個(gè)內(nèi)角由銳角變?yōu)殁g角的過程中,會(huì)發(fā)生怎樣的特殊情況,這時(shí)的圖形是什么圖形(矩形)。

      問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?

      說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學(xué)生深切地感受到短形是無數(shù)個(gè)平行四邊形中的一個(gè)特例,同時(shí),又使學(xué)生能正確地給出矩形的定義。

      問題2:矩形是特殊的平行四邊形,它除了有一個(gè)角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質(zhì)呢?

      說明與建議:讓學(xué)生分組探索,有必要時(shí),教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗(yàn),分別從邊、角、對角線三個(gè)方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個(gè)角是直角矩形的四個(gè)角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。

      學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個(gè)角是直角本質(zhì)上是一致的,所以不必另列為一個(gè)性質(zhì)。

      學(xué)生探索矩形的四條對角線的大小關(guān)系時(shí),如有困難,可引導(dǎo)學(xué)生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質(zhì)定理2。

      問題3:矩形的一條對角線把矩形分成兩個(gè)直角三角形,矩形的'對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?

      說明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個(gè)直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:

      證明:在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,AC=BD(矩形的對角線相等)。

      ,AO=CO

      在Rt△ABC中,BO是斜邊AC上的中線,且 。

      直角三角形斜邊上的中線等于斜邊的一半。

      例題解析

      例1:(即課本例1)

      說明:本題難度不大,又有助于學(xué)生加深對性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:

      如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個(gè)銳角的度數(shù),再從已知條件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計(jì)算題書寫格式的示范;第二種解法如下:

      ∵四邊形ABCD是矩形,

      AC=BD(矩形的對角線相等)。

      又 。

      OA=BO,△AOB是等腰三角形,

      ∵AOD=120,AOB=180- 120= 60

      AOB是等邊三角形。

      BO=AB=4cm,

      BD=2BO=244cm=8cm。

      例2:(補(bǔ)充例題)

      已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點(diǎn),EF平分BED交BD于點(diǎn)F。

      (l)猜想:EF與BD具有怎樣的關(guān)系?

      (2)試證明你的猜想。

      解:(l)EF垂直平分BD。

      (2)證明:∵ABC=90,點(diǎn)E是AC的中點(diǎn)。

      (直角三角形的斜邊上的中線等于斜邊的一半)。

      同理: 。

      BE=DE。

      又∵EF平分BED。

      EFBD,BF=DF。

      說明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實(shí)際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對了沒有?證明了沒有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個(gè)基本圖形。

      課堂練習(xí)

      1.課本例1后練習(xí)題第2題。

      2.課本例1后練習(xí)題第4題。

      小結(jié)

      1.矩形的定義:

      2.歸納總結(jié)矩形的性質(zhì):

      對邊平行且相等

      四個(gè)角都是直角

      對角線平行且相等

      3.直角三角形斜邊上的中線等于斜邊的一半。

      4.矩形的一條對角線把矩形分成兩個(gè)全等的直角三角形;矩形的兩條對角線把矩形分成四個(gè)全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。

      作業(yè)

      l.課本習(xí)題4.3A組第2題。

      2.課本復(fù)習(xí)題四A組第6、7題。

    初二數(shù)學(xué)教案 6

      教學(xué)目標(biāo)

      教學(xué)知識點(diǎn):能運(yùn)用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實(shí)際問題.

      能力訓(xùn)練要求:1.學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.

      2.在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

      情感與價(jià)值觀要求:1.通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.

      2.在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性,體現(xiàn)人人都學(xué)有用的數(shù)學(xué).

      教學(xué)重點(diǎn)難點(diǎn):

      重點(diǎn):探索、發(fā)現(xiàn)給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題.

      難點(diǎn):利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題.

      教學(xué)過程

      1、創(chuàng)設(shè)問題情境,引入新課:

      前幾節(jié)課我們學(xué)習(xí)了勾股定理,你還記得它有什么作用嗎?

      例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?

      根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

      所以至少需13米長的梯子.

      2、講授新課:①、螞蟻怎么走最近

      出示問題:有一個(gè)圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對的B點(diǎn)處的食物,需要爬行的的最短路程是多少?(π的值取3).

      (1)同學(xué)們可自己做一個(gè)圓柱,嘗試從A點(diǎn)到B點(diǎn)沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)

      (2)如圖,將圓柱側(cè)面剪開展開成一個(gè)長方形,從A點(diǎn)到B點(diǎn)的最短路線是什么?你畫對了嗎?

      (3)螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?(學(xué)生分組討論,公布結(jié)果)

      我們知道,圓柱的側(cè)面展開圖是一長方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側(cè)面展開(如下圖).

      我們不難發(fā)現(xiàn),剛才幾位同學(xué)的走法:

      (1)A→A′→B;(2)A→B′→B;

      (3)A→D→B;(4)A—→B.

      哪條路線是最短呢?你畫對了嗎?

      第(4)條路線最短.因?yàn)椤皟牲c(diǎn)之間的連線中線段最短”.

     、凇⒆鲆蛔觯航滩14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結(jié)BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個(gè)需用勾股定理的逆定理來解決的實(shí)際問題.

     、邸㈦S堂練習(xí)

      出示投影片

      1.甲、乙兩位探險(xiǎn)者,到沙漠進(jìn)行探險(xiǎn).某日早晨8∶00甲先出發(fā),他以6千米/時(shí)的速度向東行走.1時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn).上午10∶00,甲、乙兩人相距多遠(yuǎn)?

      2.如圖,有一個(gè)高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應(yīng)有多長?

      1.分析:首先我們需要根據(jù)題意將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型.

      解:(如圖)根據(jù)題意,可知A是甲、乙的`出發(fā)點(diǎn),10∶00時(shí)甲到達(dá)B點(diǎn),則AB=2×6=12(千米);乙到達(dá)C點(diǎn),則AC=1×5=5(千米).

      在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.

      2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個(gè)取值范圍而不是固定的長度,所以鐵棒最長時(shí),是插入至底部的A點(diǎn)處,鐵棒最短時(shí)是垂直于底面時(shí).

      解:設(shè)伸入油桶中的長度為x米,則應(yīng)求最長時(shí)和最短時(shí)的值.

      (1)x2=1.52+22,x2=6.25,x=2.5

      所以最長是2.5+0.5=3(米).

      (2)x=1.5,最短是1.5+0.5=2(米).

      答:這根鐵棒的長應(yīng)在2~3米之間(包含2米、3米).

      3.試一試(課本P15)

      在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請問這個(gè)水池的深度和這根蘆葦?shù)拈L度各為多少?

      我們可以將這個(gè)實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型.

      解:如圖,設(shè)水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得

      (x+1)2=x2+52,x2+2x+1=x2+25

      解得x=12

      則水池的深度為12尺,蘆葦長13尺.

     、堋⒄n時(shí)小結(jié)

      這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個(gè)實(shí)際問題.我們從中可以發(fā)現(xiàn)用數(shù)學(xué)知識解決這些實(shí)際問題,更為重要的是將它們轉(zhuǎn)化成數(shù)學(xué)模型.

     、荨⒄n后作業(yè)

      課本P25、習(xí)題1.52

    初二數(shù)學(xué)教案 7

      知識與技能

      1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運(yùn)算。

      2.會(huì)用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實(shí)際問題。

      3.體驗(yàn)勾股定理的探索過程,會(huì)運(yùn)用勾股定理解決簡單問題。會(huì)運(yùn)用勾股定理的逆定理判定直角三角形。

      4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運(yùn)用這些知識進(jìn)行有關(guān)的證明和計(jì)算。

      5.進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義,會(huì)計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會(huì)用它們表示數(shù)據(jù)的波動(dòng)情況。

      過程與方法

      進(jìn)一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達(dá)能力;解決一些實(shí)際問題,體會(huì)化歸思想和函數(shù)的變化與對應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實(shí)事求是的.科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動(dòng)中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨(dú)立思考,主動(dòng)探索的習(xí)慣。

      情感、態(tài)度與價(jià)值觀

      豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)和體驗(yàn),通過對問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對教學(xué)活動(dòng)中的困難,能通過合作交流解決遇到的困難。

    初二數(shù)學(xué)教案 8

      新課指南

      1.知識與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項(xiàng)及合并同類項(xiàng)法則和去括號法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.

      2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會(huì)列簡單的代數(shù)式.在具體情境中體會(huì)同類項(xiàng)的意義及合并同類項(xiàng)、去括號法則的必要性,總結(jié)合并同類項(xiàng)及去括號的法則,并利用它們進(jìn)行整式的加減運(yùn)算和解決簡單的實(shí)際問題.

      3.情感態(tài)度與價(jià)值觀:通過對整式加減的學(xué)習(xí),深入體會(huì)代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時(shí),也使我們體會(huì)到數(shù)學(xué)知識的產(chǎn)生來源于實(shí)際生產(chǎn)和生活的需求,反之,它又服務(wù)于實(shí)際生活的方方面面.

      4.重點(diǎn)與難點(diǎn):重點(diǎn)是用含有字母的'式子表式規(guī)律,理解整式的意義,合并同類項(xiàng)的法則和去括號的法則.難點(diǎn)是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識別整式的項(xiàng)、系數(shù)等知識.

      教材解讀精華要義

      數(shù)學(xué)與生活

      如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個(gè)圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.

      思考討論由圖15-1可以看到,當(dāng)n=1時(shí),一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時(shí),一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時(shí),一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個(gè)圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?

      知識詳解

      知識點(diǎn)1代數(shù)式

      用基本的運(yùn)算符號(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式.

      例如:5,a,(a+b),ab,a2-2ab+b2等等.

      知識點(diǎn)2列代數(shù)式時(shí)應(yīng)該注意的問題

      (1)數(shù)與字母、字母與字母相乘時(shí)常省略“×”號或用“·”.

      如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

      (2)數(shù)字通常寫在字母前面.

      如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

      (3)帶分?jǐn)?shù)與字母相乘時(shí)要化成假分?jǐn)?shù).

      如:2×ab=ab,切勿錯(cuò)誤寫成“2ab”.

      (4)除法常寫成分?jǐn)?shù)的形式.

      如:S÷x=.

    初二數(shù)學(xué)教案 9

      教學(xué)目的

      通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。

      重點(diǎn)、難點(diǎn)

      1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。

      2.難點(diǎn):找出能表示整個(gè)題意的等量關(guān)系。

      教學(xué)過程

      一、復(fù)習(xí)

      1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)

      本利和=本金×利息×年數(shù)+本金

      2.商品利潤等有關(guān)知識。

      利潤=售價(jià)—成本; =商品利潤率

      二、新授

      問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價(jià)值48.6元的計(jì)算器,問小明爸爸前年存了多少元?

      利息—利息稅=48。6

      可設(shè)小明爸爸前年存了x元,那么二年后共得利息為

      2.43%×X×2,利息稅為2.43%X×2×20%

      根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6

      問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得

      2.43%x·2.80%=48.6

      解方程,得x=1250

      例1.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?

      大家想一想這15元的利潤是怎么來的?

      標(biāo)價(jià)的80%(即售價(jià))-成本=15

      若設(shè)這種服裝每件的成本是x元,那么

      每件服裝的`標(biāo)價(jià)為:(1+40%)x

      每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%

      每件服裝的利潤為:(1+40%)x·80%—x

      由等量關(guān)系,列出方程:

     。1+40%)x·80%—x=15

      解方程,得x=125

      答:每件服裝的成本是125元。

      三、鞏固練習(xí)

      教科書第15頁,練習(xí)1、2。

      四、小結(jié)

      當(dāng)運(yùn)用方程解決實(shí)際問題時(shí),首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。

      五、作業(yè)

      教科書第16頁,習(xí)題6.3.1,第4、5題。

    初二數(shù)學(xué)教案 10

      教學(xué)建議

      知識結(jié)構(gòu):

      重點(diǎn)難點(diǎn)分析:

      是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.

      教學(xué)難點(diǎn)是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計(jì)算結(jié)果形式.

      教法建議:

      1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.

      2. 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時(shí)討論二次根式的除法法則,并運(yùn)用這一法則進(jìn)行簡單的二次根式的除法運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時(shí)運(yùn)算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.

      3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵(lì)學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.

      教學(xué)設(shè)計(jì)示例

      一、教學(xué)目標(biāo)

      1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算;

      2.會(huì)進(jìn)行簡單的二次根式的除法運(yùn)算;

      3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計(jì)算問題;

      4. 培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡與計(jì)算的能力;

      5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;

      6. 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.

      二、教學(xué)重點(diǎn)和難點(diǎn)

      1.重點(diǎn):會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡,會(huì)進(jìn)行簡單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.

      2.難點(diǎn):二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.

      三、教學(xué)方法

      從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)

      內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對比.

      四、教學(xué)手段

      利用投影儀.

      五、教學(xué)過程

      (一) 引入新課

      學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的'方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)

      學(xué)生觀察下面的例子,并計(jì)算:

      由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

      類似地,每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

      (二)新課

      商的算術(shù)平方根.

      一般地,有 (a0,b0)

      商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.

      讓學(xué)生討論這個(gè)式子成立的條件是什么?a0,b0,對于為什么b0,要使學(xué)生通過討論明確,因?yàn)閎=0時(shí)分母為0,沒有意義.

      引導(dǎo)學(xué)生從運(yùn)算順序看,等號左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個(gè)算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡單的二次根式的化簡與運(yùn)算.

      例1 化簡:

      (1) ; (2) ; (3) ;

      解∶(1)

      (2)

      (3)

      說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時(shí),一般先化成假分?jǐn)?shù);本節(jié)根號下的字母均為正數(shù).

      例2 化簡:

      (1) ; (2) ;

      解:(1)

      (2)

      讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?

      再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.

      學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).

      (三)小結(jié)

      1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)

      2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.

      (四)練習(xí)

      1.化簡:

      (1) ; (2) ; (3) .

      2.化簡:

      (1) ; (2) ; (3)

      六、作業(yè)

      教材P.183習(xí)題11.3;A組1.

      七、板書設(shè)計(jì)

    初二數(shù)學(xué)教案 11

      一、教學(xué)目標(biāo)

      1. 掌握等腰梯形的判定方法.

      2. 能夠運(yùn)用等腰梯形的性質(zhì)和判定進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.

      3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想

      二、教法設(shè)計(jì)

      小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固

      三、重點(diǎn)、難點(diǎn)

      1.教學(xué)重點(diǎn):等腰梯形判定.

      2.教學(xué)難點(diǎn):解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線).

      四、課時(shí)安排

      1課時(shí)

      五、教具學(xué)具準(zhǔn)備

      多媒體,小黑板,常用畫圖工具

      六、師生互動(dòng)活動(dòng)設(shè)計(jì)

      教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線

      七、教學(xué)步驟

      【復(fù)習(xí)提問】

      1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

      2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

      3.在研究解決梯形問題時(shí)的基本思想和方法是什么?常用的輔助線有哪幾種?

      我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個(gè)梯形是否是等腰梯形呢?今天我們就共同來研究這個(gè)問題.

      【引人新課】

      等腰梯形判定定理:在同一底上的.兩個(gè)角相等的梯形是等腰梯形.

      前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

      例1已知:如圖,在梯形 中, , ,求證: .

      分析:我們學(xué)過“如果一個(gè)三角形中有兩個(gè)角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個(gè)角轉(zhuǎn)化為等腰三角形的兩個(gè)底角,定理就容易證明了.

      (引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)

      (1)如圖,過點(diǎn) 作 、 ,交 于 ,得 ,所以得 .

      又由 得 ,因此可得 .

      (2)作高 、 ,通過證 推出 .

      (3)分別延長 、 交于點(diǎn) ,則 與 都是等腰三角形,所以可得 .

      (證明過程略).

      例3 求證:對角線相等的梯形是等腰梯形.

      已知:如圖,在梯形 中, , .

      求證: .

      分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.

      在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .

      (引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)

      證明:過點(diǎn) 作 ,交 延長線于 ,得 ,

      ∴ .

      ∵ , ∴

      ∴

      ∵ , ∴

      又∵ 、 ,∴

      ∴ .

      說明:如果 、 交于點(diǎn) ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點(diǎn)為頂點(diǎn)的兩個(gè)等腰三角形,這個(gè)結(jié)論雖不能直接引用,但可以為以后解題提供思路.

      例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計(jì)算這個(gè)等腰梯形的周長和面積.

      分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

      畫法:①畫 ,使 .

      .

     、谘娱L 到 使 .

     、鄯謩e過 、 作 , , 、 交于點(diǎn) .

      四邊形 就是所求的等腰梯形.

      解:梯形 周長 .

      答:梯形周長為26cm,面積為 .

      【總結(jié)、擴(kuò)展】

      小結(jié):(由學(xué)生總結(jié))

      (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個(gè)角相等”來判定它是等腰梯形.

      (2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

      八、布置作業(yè)

      l.已知:如圖,梯形 中, , 、 分別為 、 中點(diǎn),且 ,求證:梯形 為等腰梯形.

      九、板書設(shè)計(jì)

      十、隨堂練習(xí)

      教材P177中l(wèi);P179中B組2

    初二數(shù)學(xué)教案 12

      一、教學(xué)目標(biāo)

      1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.

      2.掌握矩形的性質(zhì)定理.

      3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識,解決簡單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力.

      4.通過性質(zhì)的學(xué)習(xí),體會(huì)矩形的應(yīng)用美.

      二、教法設(shè)計(jì)

      觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.

      三、重點(diǎn)、難點(diǎn)及解決辦法

      1.教學(xué)重點(diǎn):矩形的性質(zhì)及其推論.

      2.教學(xué)難點(diǎn):矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.

      四、課時(shí)安排

      1課時(shí)

      五、教具學(xué)具準(zhǔn)備

      教具(一個(gè)活動(dòng)的平行四邊形),投影儀及膠片,常用畫圖工具

      六、師生互動(dòng)活動(dòng)設(shè)計(jì)

      教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證

      七、教學(xué)步驟

      【復(fù)習(xí)提問】

      什么叫平行四邊形?它和四邊形有什么區(qū)別?

      【引入新課】

      我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的特殊性質(zhì),同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).

      【講解新課】

      制一個(gè)活動(dòng)的平行四邊形教具,堂上進(jìn)行演示圖,使學(xué)生注意觀察四邊形角的變化,當(dāng)變到一個(gè)角是直角時(shí),指出這時(shí)平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個(gè)角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).

      矩形的性質(zhì):

      既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時(shí)矩形又是特殊的平行四邊形,比平行四邊形多了一個(gè)角是直角的條件,因而它就增加了一些特殊性質(zhì).

      繼續(xù)演示教具,當(dāng)它變成矩形時(shí),學(xué)生容易看到它的四個(gè)角都是直角;它的'對角線也相等(寫出這兩個(gè)結(jié)論),指出觀察出來的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.

      矩形性質(zhì)定理1:矩形的四個(gè)角都是直角.

      矩形性質(zhì)定理2:矩形對角線相等.

      由矩形性質(zhì)定理2我們可以得到

      推論:直角三角形斜邊上的中線等于斜邊的一半.

      (這實(shí)際上是 △的一個(gè)重要性質(zhì),即 △斜邊中點(diǎn)到三頂點(diǎn)的距離相等,它在求線段長或線段部分關(guān)系時(shí)經(jīng)常用到)

      例1 已知如圖1 矩形 的兩條對角線相交于點(diǎn), , ,求矩形對角線的長.(按教材的格式)

      (強(qiáng)調(diào)這種計(jì)算題的解題格式,防止學(xué)生離開幾何元素之間的關(guān)系,而單純進(jìn)行代數(shù)計(jì)算)

      【總結(jié)、擴(kuò)展】

      1.小結(jié):(用投影打出)

      (1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.

      (2)矩形性質(zhì).

      1.具有平行四邊形的所有性質(zhì).

      2.特有性質(zhì):四個(gè)角都是直角,對角線相等.

      3.思考題:已知如圖, 是矩形 對角線交點(diǎn), 平分 , ,求 的度數(shù)

      八、布置作業(yè)

      教材P158中2、5,P195中7.

      九、板書設(shè)計(jì)

      十、隨堂練習(xí)

      教材P146中1、2、3、4

    初二數(shù)學(xué)教案 13

     一、利用勾股定理進(jìn)行計(jì)算

      1.求面積

      例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個(gè)三角形面積。

      析解:若能求出這個(gè)等腰三角形底邊上的高,就可以求出這個(gè)三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時(shí)D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個(gè)三角形面積為×BC×AD=×16×6=48cm2。

      2.求邊長

      例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

      析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點(diǎn)B作BD⊥AC,交AC的延長線于D點(diǎn),構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因?yàn)椤螦CB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

      點(diǎn)評:這兩道題有一個(gè)共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊(yùn)含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請同學(xué)們要留心。

      二、利用勾股定理的逆定理判斷直角三角形

      例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

      析解:由于所給條件是關(guān)于a,b,c的一個(gè)等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的'關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因?yàn)閍2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因?yàn)?a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因?yàn)?2+122=132,所以a2+b2=c2,即△ABC是直角三角形。

      點(diǎn)評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

      三、利用勾股定理說明線段平方和、差之間的關(guān)系

      例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說明:BC2=BE2-AE2。

      析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因?yàn)椤螩=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

      點(diǎn)評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時(shí),則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。

    初二數(shù)學(xué)教案 14

      課型:

      復(fù)習(xí)課

      學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

      1. 針對函數(shù)及其圖象一章,查漏補(bǔ)缺,答疑解惑;

      2. 一次函數(shù)應(yīng)用的復(fù)習(xí).

      補(bǔ)充例題:

      例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系

      (1)B出發(fā)時(shí)與A相距 千米;

      (2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí);

      (3)B出發(fā)后 小時(shí)與A相遇;

      (4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式;

      (5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn), 小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn) 千米,在圖中表示出這個(gè)相遇點(diǎn)C.

      例2.在平面直角坐標(biāo)系中,過一點(diǎn)分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長與面積相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如,圖中過點(diǎn)P分別作x軸, y的垂線,與坐標(biāo)軸圍成矩形OAPB的周長與面積相等,則點(diǎn)P是和諧點(diǎn).

      (1)判斷點(diǎn)M(1,2),N(4,4)是否為和諧點(diǎn),并說明理由;

      (2)若和諧點(diǎn)P(a,3)在直線y=-x+b(b為常數(shù))上,求點(diǎn)a, b的值.

      例3.在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點(diǎn)組成的正方形邊線(如圖①)按一定方向運(yùn)動(dòng).圖②是P點(diǎn)運(yùn)動(dòng)的路程s(個(gè)單位)與運(yùn)動(dòng)時(shí)間 (秒)之間的.函數(shù)圖象,圖③是P點(diǎn)的縱坐標(biāo)y與P點(diǎn)運(yùn)動(dòng)的路程s之間的函數(shù)圖象的一部分.

      (1)求s與t之間的函數(shù)關(guān)系式.

      (2)與圖③相對應(yīng)的P點(diǎn)的運(yùn)動(dòng)路徑是: ;P點(diǎn)出發(fā) 秒首次到達(dá)點(diǎn)B;

      (3)寫出當(dāng)38時(shí),y與s之間的函數(shù)關(guān)系式,并在圖③中補(bǔ)全函數(shù)圖象.

      課后續(xù)助:

      1.某市自來水公司為限制單位用水,每月只給某單位計(jì)劃內(nèi)用水3000噸,計(jì)劃內(nèi)用水每噸收費(fèi)0.5元,超計(jì)劃部分每噸按0.8元收費(fèi).

      (1)寫出該單位水費(fèi)y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式

     、儆盟啃∮诘扔3000噸 ;②用水量大于3000噸 .

      (2)某月該單位用水3200噸,水費(fèi)是 元;若用水2800噸,水費(fèi) 元.

      (3)若某月該單位繳納水費(fèi)1540元,則該單位用水多少噸?

      2.某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

      (1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;

      (2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;

      (3)請你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.

      3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時(shí)風(fēng)暴平均每小時(shí)增加2千米/時(shí),4小時(shí)后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米/時(shí),一段時(shí)間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),其風(fēng)速平均每小時(shí)減小1千米/時(shí),最終停止。 結(jié)合風(fēng)速與時(shí)間的圖像,回答下列問題:

      (1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;

      (2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時(shí)?

      (3)求出當(dāng)x25時(shí),風(fēng)速y(千米/時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式.

      (4)若風(fēng)速達(dá)到或超過20千米/時(shí),稱為強(qiáng)沙塵暴,則強(qiáng)沙塵暴持續(xù)多長時(shí)間?

    初二數(shù)學(xué)教案 15

      教學(xué)目標(biāo):

      知識與技能

      1.掌握直角三角形的判別條件,并能進(jìn)行簡單應(yīng)用;

      2.進(jìn)一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.

      3.會(huì)通過邊長判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.

      情感態(tài)度與價(jià)值觀

      敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識.

      教學(xué)重點(diǎn)

      運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過邊長判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.

      教學(xué)難點(diǎn)

      會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.

      課前準(zhǔn)備

      標(biāo)有單位長度的細(xì)繩、三角板、量角器、題篇

      教學(xué)過程:

      復(fù)習(xí)引入:

      請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?

      已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

      創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.

      這樣做得到的是一個(gè)直角三角形嗎?

      提出課題:能得到直角三角形嗎

      講授新課:

     、比绾蝸砼袛?(用直角三角板檢驗(yàn))

      這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

      就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時(shí))

     、怖^續(xù)嘗試:下面的三組數(shù)分別是一個(gè)三角形的三邊長a,b,c:

      5,12,13;6,8,10;8,15,17.

      (1)這三組數(shù)都滿足a2+b2=c2嗎?

      (2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

     、持苯侨切闻卸ǘɡ恚喝绻切蔚.三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.

      滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).

      ⒋例1一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?

      隨堂練習(xí):

     、毕铝袔捉M數(shù)能否作為直角三角形的三邊長?說說你的理由.

     、9,12,15;⑵15,36,39;

      ⑶12,35,36;⑷12,18,22.

     、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.

      ⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積.

      ⒋習(xí)題1.3

      課堂小結(jié):

     、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.

     、矟M足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).

    【初二數(shù)學(xué)教案】相關(guān)文章:

    數(shù)學(xué)教案12-30

    小班數(shù)學(xué)教案:種花_小班數(shù)學(xué)教案07-06

    趣味的數(shù)學(xué)教案02-25

    人教版數(shù)學(xué)教案04-19

    初中數(shù)學(xué)教案11-26

    分類的數(shù)學(xué)教案11-16

    關(guān)于數(shù)學(xué)教案11-05

    小學(xué)數(shù)學(xué)教案06-14

    小學(xué)數(shù)學(xué)教案【精選】08-04