欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    二次根式教案

    時間:2022-08-18 18:07:23 教案 投訴 投稿

    精選二次根式教案三篇

      作為一名辛苦耕耘的教育工作者,很有必要精心設(shè)計一份教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么問題來了,教案應(yīng)該怎么寫?下面是小編幫大家整理的二次根式教案3篇,歡迎閱讀與收藏。

    精選二次根式教案三篇

    二次根式教案 篇1

      教學(xué)目標(biāo)

      1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

      2.熟練地進(jìn)行二次根式的加、減、乘、除混合運算.

      教學(xué)重點和難點

      重點:含二次根式的式子的混合運算.

      難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

      教學(xué)過程設(shè)計

      一、復(fù)習(xí)

      1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

      指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

      2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

      指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

      計算結(jié)果要把分母有理化.

      3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

      4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

      二、例題

      例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

      分析:

      (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

      (3)題是兩個二次根式的和, x的`取值必須使兩個二次根式都有意義;

      (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

      x-2且x0.

      解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

      例3

      分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

      解 因為1-a>0,3-a0,所以

      a<1,|a-2|=2-a.

      (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

      這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

      問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

      分析:先把第二個式子化簡,再把兩個式子進(jìn)行通分,然后進(jìn)行計算.

      注意:

      所以在化簡過程中,

      例6

      分析:如果把兩個式子通分,或把每一個式子的分母有理化再進(jìn)行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

      a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

      三、課堂練習(xí)

      1.選擇題:

      A.a(chǎn)2B.a(chǎn)2

      C.a(chǎn)2D.a(chǎn)<2

      A .x+2 B.-x-2

      C.-x+2D.x-2

      A.2x B.2a

      C.-2x D.-2a

      2.填空題:

      4.計算:

      四、小結(jié)

      1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

      2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

      3.運用二次根式的四個基本性質(zhì)進(jìn)行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

      4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

      五、作業(yè)

      1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

      2.把下列各式化成最簡二次根式:

    二次根式教案 篇2

      【教學(xué)目標(biāo)】

      1.運用法則

      進(jìn)行二次根式的乘除運算;

      2.會用公式

      化簡二次根式。

      【教學(xué)重點】

      運用

      進(jìn)行化簡或計算

      【教學(xué)難點】

      經(jīng)歷二次根式的乘除法則的探究過程

      【教學(xué)過程】

      一、情境創(chuàng)設(shè):

      1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

      2.計算:

      二、探索活動:

      1.學(xué)生計算;

      2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?

      3.概括:

      得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

      將上面的公式逆向運用可得:

      積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

      三、例題講解:

      1.計算:

      2.化簡:

      小結(jié):如何化簡二次根式?

      1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

      2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

      四、課堂練習(xí):

      (一).P62 練習(xí)1、2

      其中2中(5)

      注意:

      不是積的形式,要因數(shù)分解為36×16=242.

      (二).P67 3 計算 (2)(4)

      補充練習(xí):

      1.(x>0,y>0)

      2.拓展與提高:

      化簡:1).(a>0,b>0)

      2).(y

      2.若,求m的.取值范圍。

      ☆3.已知:,求的值。

      五、本課小結(jié)與作業(yè):

      小結(jié):二次根式的乘法法則

      作業(yè):

      1).課課練P9-10

      2).補充習(xí)題

    二次根式教案 篇3

      一、教學(xué)目標(biāo)

      1.理解分母有理化與除法的關(guān)系.

      2.掌握二次根式的分母有理化.

      3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.

      4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

      二、教學(xué)設(shè)計

      小結(jié)、歸納、提高

      三、重點、難點解決辦法

      1.教學(xué)重點:分母有理化.

      2.教學(xué)難點:分母有理化的技巧.

      四、課時安排

      1課時

      五、教具學(xué)具準(zhǔn)備

      投影儀、膠片、多媒體

      六、師生互動活動設(shè)計

      復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

      七、教學(xué)過程

      【復(fù)習(xí)提問】

      二次根式混合運算的步驟、運算順序、互為有理化因式.

      例1 說出下列算式的運算步驟和順序:

     。1) (先乘除,后加減).

     。2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).

     。3)辨別有理化因式:

      有理化因式: 與 , 與 , 與 …

      不是有理化因式: 與 , 與 …

      化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

      例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

      引入新課題.

      【引入新課】

      化簡式子 ,乘以什么樣的式子,分母中的`根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

      例2 把下列各式的分母有理化:

      (1) ; (2) ; (3)

      解:略.

      注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

    【二次根式教案】相關(guān)文章:

    二次根式教案02-15

    《二次根式的運算》的教案08-25

    二次根式的加減教案01-19

    二次根式教案(15篇)02-27

    二次根式教案15篇02-16

    二次根式數(shù)學(xué)教案11-26

    二次根式教案4篇02-05

    二次根式教案7篇01-24

    二次根式教案匯編6篇04-08