欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    二次根式教案

    時間:2024-11-04 18:05:23 教案 投訴 投稿

    二次根式教案范文匯總七篇

      作為一位不辭辛勞的人民教師,時常需要用到教案,借助教案可以有效提升自己的教學能力。怎樣寫教案才更能起到其作用呢?以下是小編幫大家整理的二次根式教案7篇,希望對大家有所幫助。

    二次根式教案范文匯總七篇

    二次根式教案 篇1

      教學目的

      1.使學生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

      2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

      教學重點

      最簡二次根式的定義。

      教學難點

      一個二次根式化成最簡二次根式的方法。

      教學過程

      一、復(fù)習引入

      1.把下列各根式化簡,并說出化簡的根據(jù):

      2.引導(dǎo)學生觀察考慮:

      化簡前后的'根式,被開方數(shù)有什么不同?

      化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

      3.啟發(fā)學生回答:

      二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

      二、講解新課

      1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:

      滿足下列兩個條件的二次根式叫做最簡二次根式:

      (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

      (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

      最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

      2.練習:

      下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

      3.例題:

      例1 把下列各式化成最簡二次根式:

      例2 把下列各式化成最簡二次根式:

      4.總結(jié)

      把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

      當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

      當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

      此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

      三、鞏固練習

      1.把下列各式化成最簡二次根式:

      2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

    二次根式教案 篇2

      目 標

      1. 熟練地運用二次根式的性質(zhì)化簡二次根式;

      2. 會運用二次根式解決簡單的實際問題;

      3. 進一步體驗二次根式及其運算的實際意義和應(yīng)用價值。

      教學設(shè)想

      本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復(fù)雜。

      教 學 程序 與 策 略

      一、預(yù)習檢測

      1.解決節(jié)前問題:

      如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

      歸納:

      在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

      二、合作交流:

      1、:如圖,扶梯AB的`坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

      讓學生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?

      注意解題格式

      教 學 程 序 與 策 略

      三、鞏固練習:

      完成課本P17、1,組長檢查反饋;

      四、拓展提高:

      1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

      師生共同分析解題思路,請學生寫出解題過程。

      五、課堂小結(jié):

      1.談一談:本節(jié)課你有什么收獲?

      2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題

      六、堂堂清

      1: 作業(yè)本(2)

      2:課本P17頁:第4、5題選做。

    二次根式教案 篇3

      第十六章 二次根式

      代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

      5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

      6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

      7.解:(1) . (2)寬:3 ;長:5 .

      8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

      9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

      10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

      解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

      本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

      在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

      在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

      練習(教材第4頁)

      1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

      2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

      習題16.1(教材第5頁)

      1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

      2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

      3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

      4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

      5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

      6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

      7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

      8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

      9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

      10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

      如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

      〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

      解:由數(shù)軸可得:a+b<0,a-b>0,

      ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

      [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

      已知a,b,c為三角形的三條邊,則+= .

      〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

      [解題策略] 此類化簡問題要特別注意符號問題.

      化簡:.

      〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

      解:當x≥3時,=|x-3|=x-3;

      當x<3時,=|x-3|=-(x-3)=3-x.

      [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

      5

      O

      M

    二次根式教案 篇4

      活動1、提出問題

      一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?

      問題:10+20是什么運算?

      活動2、探究活動

      下列3個小題怎樣計算?

      問題:1)-還能繼續(xù)往下合并嗎?

      2)看來二次根式有的能合并,有的.不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

      二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。

      活動3

      練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

      創(chuàng)設(shè)問題情景,引起學生思考。

      學生回答:這個運動場要準備(10+20)平方米的草皮。

      教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。

      我們可以利用已學知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

      教師引導(dǎo)驗證:

     、僭O(shè)=,類比合并同類項或面積法;

     、趯W生思考,得出先化簡,再合并的解題思路

     、巯然啠俸喜

      學生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

      教師巡視、指導(dǎo),學生完成、交流,師生評價。

      提醒學生注意先化簡成最簡二次根式后再判斷。

    二次根式教案 篇5

      一、內(nèi)容和內(nèi)容解析

      1.內(nèi)容

      二次根式的概念.

      2.內(nèi)容解析

      本節(jié)課是在學生學習了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應(yīng)用,也為后面學習二次根式的性質(zhì)和四則運算打基礎(chǔ).

      教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學生對二次根式的定義的理解.

      本節(jié)課的教學重點是:了解二次根式的概念;

      二、目標和目標解析

      1.教學目標

     。1)體會研究二次根式是實際的需要.

     。2)了解二次根式的概念.

      2. 教學目標解析

     。1)學生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

      (2)學生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

      三、教學問題診斷分析

      對于二次根式的定義,應(yīng)側(cè)重讓學生理解 “ 的雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的算術(shù)平方根 ≥0也是非負數(shù).教學時注意引導(dǎo)學生回憶在實數(shù)一章所學習的有關(guān)平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.

      本節(jié)課的教學難點為:理解二次根式的雙重非負性.

      四、教學過程設(shè)計

      1.創(chuàng)設(shè)情境,提出問題

      問題1你能用帶有根號的的式子填空嗎?

     。1)面積為3 的正方形的'邊長為_______,面積為S 的正方形的邊長為_______.

      (2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

     。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

      師生活動:學生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當引導(dǎo)和評價.

      【設(shè)計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

      問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

      師生活動:教師引導(dǎo)學生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術(shù)平方根.

      【設(shè)計意圖】為概括二次根式的概念作鋪墊.

      2.抽象概括,形成概念

      問題3 你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?

      師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

      【設(shè)計意圖】讓學生體會由特殊到一般的過程,培養(yǎng)學生的概括能力.

      追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

      師生活動:教師引導(dǎo)學生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.

      【設(shè)計意圖】進一步加深學生對二次根式被開方數(shù)必須是非負數(shù)的理解.

      3.辨析概念,應(yīng)用鞏固

      例1 當 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?

      師生活動:引導(dǎo)學生從概念出發(fā)進行思考,鞏固學生對二次根式的被開方數(shù)為非負數(shù)的理解.

      例2 當 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?

      師生活動:先讓學生獨立思考,再追問.

      【設(shè)計意圖】在辨析中,加深學生對二次根式被開方數(shù)為非負數(shù)的理解.

      問題4 你能比較 與0的大小嗎?

      師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學生得出 ≥0的結(jié)論,強化學生對二次根式本身為非負數(shù)的理解,

      【設(shè)計意圖】通過這一活動的設(shè)計,提高學生對所學知識的遷移能力和應(yīng)用意識;培養(yǎng)學生分類討論和歸納概括的能力.

      4.綜合運用,鞏固提高

      練習1 完成教科書第3頁的練習.

      練習2 當x 是什么實數(shù)時,下列各式有意義.

     。1) ;(2) ;(3) ;(4) .

      【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

      【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓(xùn)練學生的思維.

      5.總結(jié)反思

      教師和學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答以下問題.

      (1)本節(jié)課你學到了哪一類新的式子?

     。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

     。3)二次根式與算術(shù)平方根有什么關(guān)系?

      師生活動:教師引導(dǎo),學生小結(jié).

      【設(shè)計意圖】:學生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學習重點,掌握解題方法.

      6.布置作業(yè):

      教科書習題16.1第1,3,5, 7,10題.

      五、目標檢測設(shè)計

      1. 下列各式中,一定是二次根式的是( )

      A. B. C. D.

      【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

      2. 當 時,二次根式 無意義.

      【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

      3.當 時,二次根式 有最小值,其最小值是 .

      【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

      4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應(yīng)考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

      【設(shè)計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

    二次根式教案 篇6

      教學目標

      1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

      2.熟練地進行二次根式的加、減、乘、除混合運算.

      教學重點和難點

      重點:含二次根式的式子的混合運算.

      難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

      教學過程設(shè)計

      一、復(fù)習

      1.請同學回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

      指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

      2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

      指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

      計算結(jié)果要把分母有理化.

      3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的`關(guān)系式:

      4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

      二、例題

      例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

      分析:

      (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

      (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

      (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

      x-2且x0.

      解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

      例3

      分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

      解 因為1-a>0,3-a0,所以

      a<1,|a-2|=2-a.

      (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

      這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

      問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

      分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

      注意:

      所以在化簡過程中,

      例6

      分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

      a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

      三、課堂練習

      1.選擇題:

      A.a(chǎn)2B.a(chǎn)2

      C.a(chǎn)2D.a(chǎn)<2

      A .x+2 B.-x-2

      C.-x+2D.x-2

      A.2x B.2a

      C.-2x D.-2a

      2.填空題:

      4.計算:

      四、小結(jié)

      1.本節(jié)課復(fù)習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學們要深刻理解并牢固掌握.

      2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

      3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

      4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

      五、作業(yè)

      1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

      2.把下列各式化成最簡二次根式:

    二次根式教案 篇7

      一、教學目標

      1.理解分母有理化與除法的關(guān)系.

      2.掌握二次根式的分母有理化.

      3.通過二次根式的分母有理化,培養(yǎng)學生的運算能力.

      4.通過學習分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學思想

      二、教學設(shè)計

      小結(jié)、歸納、提高

      三、重點、難點解決辦法

      1.教學重點:分母有理化.

      2.教學難點:分母有理化的技巧.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、膠片、多媒體

      六、師生互動活動設(shè)計

      復(fù)習小結(jié),歸納整理,應(yīng)用提高,以學生活動為主

      七、教學過程

      【復(fù)習提問】

      二次根式混合運算的步驟、運算順序、互為有理化因式.

      例1 說出下列算式的運算步驟和順序:

     。1) (先乘除,后加減).

     。2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).

     。3)辨別有理化因式:

      有理化因式: 與 , 與 , 與 …

      不是有理化因式: 與 , 與 …

      化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

      例如:等式子的化簡,如果分母是兩個二次根式的'和,應(yīng)該怎樣化簡?

      引入新課題.

      【引入新課】

      化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

      例2 把下列各式的分母有理化:

     。1) ; (2) ; (3)

      解:略.

      注:通過例題的講解,使學生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

    【二次根式教案】相關(guān)文章:

    二次根式教案02-15

    二次根式的加減教案01-19

    二次根式教案優(yōu)秀08-24

    二次根式教案(15篇)02-27

    二次根式教案15篇02-16

    二次根式教案合集5篇04-05

    二次根式教案范文8篇04-09

    二次根式教案匯編6篇04-08

    二次根式教案匯總五篇04-03

    【精品】二次根式教案三篇04-05