欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    小學《分數(shù)的基本性質》教學設計

    時間:2022-10-06 18:15:18 教學資源 投訴 投稿

    小學《分數(shù)的基本性質》教學設計(精選5篇)

      作為一名老師,常常要根據(jù)教學需要編寫教學設計,借助教學設計可以更好地組織教學活動。寫教學設計需要注意哪些格式呢?下面是小編為大家收集的小學《分數(shù)的基本性質》教學設計(精選5篇),歡迎閱讀與收藏。

    小學《分數(shù)的基本性質》教學設計(精選5篇)

      小學《分數(shù)的基本性質》教學設計1

      一、教學目標

      1、經(jīng)歷探索分數(shù)基本性質的過程,理解分數(shù)的基本性質。

      2、能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

      3、經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

      二、 教學重、難點

      教學重點是:分數(shù)的基本性質。

      教學難點是:對分數(shù)的基本性質的理解。

      三、教學方法

      采用了動手做一做、觀察、比較、歸納和直觀演示的方法

      四、教學過程

     。ㄒ唬⒐适乱,揭示課題

      1、教師講故事。

      猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑牵锿跤职训谌龎K餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

      討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。

      引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質”就清楚了。(板書課題)

      2、組織討論。

     。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,14=28=312,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

     。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:34=68=912。

      (3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:12=24=2040。

      3、引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

      分數(shù)的分子和分母變化了,

      分數(shù)的大小不變。

      它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

     。 二)、比較歸納,揭示規(guī)律

      1、出示思考題。

      比較每組分數(shù)的分子和分母:

     。1)從左往右看,是按照什么規(guī)律變化的?

     。2)從右往左看,又是按照什么規(guī)律變化的?

      讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

      2、集體討論,歸納性質。

      (1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。

      板書:

     。2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。

     。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。

     。4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

     。ò鍟憾汲艘

      相同的數(shù))

     。5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的.分子和分母都除以相同的數(shù),分數(shù)的大小不變。

     。ò鍟憾汲裕

      (6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規(guī)定“零除外”?

      (板書:零除外)

     。7)齊讀分數(shù)的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質。

      3、出示例2:把12和1024化成分母是12而大小不變的分數(shù)。

      思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?

      4、討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

      5、質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

      ( 三)、溝通說明,揭示聯(lián)系

      通過舉例,溝通分數(shù)的基本性質與商不變性質之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質。

      如:34=3÷4=(3×3)÷(4×3)=9÷12=912

     。 四)、多層練習,鞏固深化

      1、口答。(學生口答后,要求說出是怎樣想的?)

      2、判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質中哪幾個字不相符。)

      教學反思:

      學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。因此數(shù)學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數(shù)學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數(shù)學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性。《分數(shù)的基本性質》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現(xiàn)在:

      1、學生在故事情境中大膽猜想。

      通過創(chuàng)設“猴王分餅”的故事,讓學生猜測一組三個分數(shù)的大小關系,為自主探索研究“分數(shù)的基本性質”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。

      2、學生在自主探索中科學驗證。

      在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質”和驗證性質時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

      3、讓學生在分層練習中鞏固深化。

      在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數(shù)的基本性質的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

      反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

      小學《分數(shù)的基本性質》教學設計2

      一、教學目標:

      1、讓學生經(jīng)歷分數(shù)基本性質的探究過程,理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。

      2、利用分數(shù)的基本性質把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。

      3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。

      二、教學重點:

      理解掌握分數(shù)的基本性質,它是約分,通分的依據(jù)

      三、教學難點:

      理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。

      四、教學準備:

      課件、正方形的紙。

      五、教學設計過程:

     。ㄒ唬┻w移舊知、提出猜想

      1、回憶舊知

      猜信封:老師手上的信封里有一個數(shù)、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3

      你為什么這樣猜呢?引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:

      被除數(shù)÷除數(shù)=

      誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:

      被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。

      2、提出猜想:

      既然分數(shù)與除法的關系這么緊密、除法有商不變性質,那分數(shù)是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據(jù)商不變性質推導出分數(shù)的基本性質,學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)

     。ǘ炞C猜想,建構新知

      A、 看圖分類

      下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。

      B、 討論方法

      師:你是怎么判斷它們相等的?

      師:它們相等,用算式可以怎么表示?

      1/2 = 2/4 = 4/8

      C、研究規(guī)律

      師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?

      利用研究卡進行研究。

      確定的'研究對象

      分子和分母同時乘上或者

      除以一個相同的數(shù)

      得到的分數(shù)

      研究對象與得到的分數(shù)相等嗎?

      相等( )不相等( )

      猜想是否成立?

      成立( )不成立( )

      充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。(板書)

      師:為什么要0除外?

      師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

      練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

      師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)

      師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)

      師:分數(shù)的基本性質與商不變性質有什么聯(lián)系?

      D、質疑完善

      3/4 = 3×( )/ 4×( )

      師:括號中可以填哪些數(shù)?

      預設:可以填無數(shù)個數(shù)

      師:如果只用一個數(shù)來表示,填什么數(shù)好?

      預設:字母

      師:這個字母有什么特殊要求嗎?(0除外)

      得到一個初級的數(shù)學模型。3/4= 3×X/ 4×X(X≠0)

      讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?

     。ㄈ 練習升華

      1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

      2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。

      3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。

      4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?

      5、 和 哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?

     。ㄋ模┛偨Y延伸

      師:這節(jié)課學了什么?

      師:如果一個分數(shù)為A/B,你能用一個式子來表示分數(shù)的基本性質嗎?

      A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)

      六、作業(yè)p87—1、2

      板書設計

      分數(shù)基本性質

      分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

      A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

      6÷8

      3÷4

      12÷16

      小學《分數(shù)的基本性質》教學設計3

      教學目標:

      結合趣味故事經(jīng)歷認識分數(shù)的基本性質的過程。

      初步理解分數(shù)的基本性質,會應用分數(shù)的基本性質進行分數(shù)的改寫。

      經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣

      教學重點:理解掌握分數(shù)的基本性質。

      教學難點:歸納分數(shù)的性質。

      學生準備:長方形紙片。

      一、創(chuàng)設故事情境,激發(fā)學生學習興趣并揭示課題。

      編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創(chuàng)設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經(jīng)驗和分數(shù)知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數(shù)的基本性質提供實踐經(jīng)驗。在看完故事后向學生提問你了解到了哪些數(shù)學信息,想到了什么問題?

      讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數(shù)大小是相等的。而這兩個分數(shù)的分子和分母都不相等,可分數(shù)卻相等,這其中有什么規(guī)律呢,從而來揭示課題。

      二、小組合作,探究新知:

      1、動手操作、形象感知

      出示課件,讓學生觀察討論圖中分數(shù)的涂色部分是多少?

      A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?

      B、追問:你能通過繼續(xù)對折,每次找一個和1/4相等的其他分數(shù)嗎?

      C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數(shù)表示涂色的部分,得到的分數(shù)與1/4是否相等。交流時讓不同對折方法的學生充分展示。

      2、觀察比較、探究規(guī)律

     。1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。

     。2既然這三個分數(shù)相等,那么我們可以用什么符號把它們連接起來?

      (3)這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的'?你們能找出它們的變化規(guī)律嗎?請同學們四人為一組,討論這兩個問題

      (4)通過從左到右的觀察、比較、分析,你發(fā)現(xiàn)了什么?

      使學生認識到這四個正方形同樣大,雖然平均分的份數(shù)不一樣,但陰影部分的面積相等,四個分數(shù)也相等。課件出示連等式子。

      【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】

      3引導觀察:請大家觀察每個等式中的兩個分數(shù),它們的分子、分母是怎樣變化的?

      觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:

      先從左往右看:1/4是怎樣變?yōu)榕c它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規(guī)律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規(guī)律?

      4、歸納規(guī)律

      提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?

      學生交流歸納,最后全班反饋“分數(shù)的分子和分母同時乘或除以相同的數(shù)﹙0除外﹚,分數(shù)的大小不變,這是分數(shù)的基本性質”

      6、小結

      同學們在這節(jié)課的學習中表現(xiàn)得很出色,說一說你有什么收獲或體會?

      【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產(chǎn)生后續(xù)學習和探究的欲望,將學生的學習興趣延伸到了下節(jié)課】

      四、鞏固強化,拓展應用

      多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。

      五、游戲找朋友。

      六、布置作業(yè):

      在上這課之前,認真?zhèn)湔n,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創(chuàng)設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發(fā)言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規(guī)律,最后也都一一的解答并歸納分數(shù)的性質。對于從左到右的變化,分子分母都變大了,但分數(shù)大小不變。從右到左,分子分母都變小,分數(shù)大小不變。從而得出規(guī)律。對于這分數(shù)的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數(shù)”“零除外”重點讓學生熟記分數(shù)的性質。多層的鞏固練習。加深學生的理解。并且能運用分數(shù)的性質完成作業(yè)。最后,讓學生輕松愉快地應用著這節(jié)課所學的知識進行找朋友的游戲。

      小學《分數(shù)的基本性質》教學設計4

      教學目標

      1、讓學生通過經(jīng)歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質,知道它與整數(shù)除法中商不變性質之間的聯(lián)系。

      2、根據(jù)分數(shù)的基本性質,學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。

      3、培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學驗證的思想,培養(yǎng)敢于質疑、學會分析的能力。

      教學重點使學生理解分數(shù)的基本性質。

      教學難點讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。

      教學過程

      一、故事情景引入

      同學們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統(tǒng)風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?

      好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。

      同學們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。

      討論完了請舉手。

      生甲:“我覺得不公平,小紅分得多!

      生乙:“我覺得小明分得多!

      生丙:“我覺得公平,他們三個分得一樣多!

      師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了。”

      二、新授

      師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”

      請你們把這三張圓片疊起來,比一比大小,看看怎么樣?

      生:“三張圓片一樣大!

      1、師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了!

      首先,請在第一張圓片上表示出它的1/3;

      再在第二張圓片上表示出它的2/6;

      然后在第三張圓片上表示出它的3/9。

      好了,大家動手分一分。(教師巡視指導)

      2、師:“分完了的請舉手?

      老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)

      下面請哪位同學說一說,你是怎么分的?”

      生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一!

      生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二!

      師:“那九分之三又是怎么得到的呢?大家一起說!

      生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三、”

     。▽W生說的同時,教師操作,分完后把圓片貼在黑板上。)

      3、師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”

      小結:原來三個圓的陰影部分是同樣大的.。

      師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)

      生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多!

      師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”

      生甲:“通過圖上看起來,這三個分數(shù)應該是一樣大的。”

      生乙:“這三個分數(shù)是相等的。”

      師:“剛才的試驗證明,它們的大小是相等的!保ò鍟蛏系忍枺

      4、研究分數(shù)的基本規(guī)律。

      師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”

      生甲:“三個分數(shù)的分子分母都變了,大小沒變!

      師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。

      第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”

      生乙:“它的分子分母都同時擴大了兩倍!

      師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。

      再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)

      教師小結:“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”

      學生發(fā)言

      小結:像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數(shù)的基本性質。

      5、深入理解分數(shù)的基本性質。

      師:“什么叫做分數(shù)的基本性質呢?就你的理解,用自己的語言說一說!保▽W生討論后發(fā)言)

      師:剛才同學們都用自己的語言說了分數(shù)的基本性質,我們的書上也總結了分數(shù)的基本性質,現(xiàn)在請打開書看到108頁?纯磿鲜窃趺凑f的,是你說得好,還是書上說得好,為什么?

      齊讀分數(shù)的基本性質,并用波浪線表出關鍵的詞。

      生甲:我覺得“零除外”這個詞很重要。

      生乙:我覺得“同時”“相同”這兩個詞很重要。

      師:想一想為什么要加上“零除外”?不加行不行?

      讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。

      教師小結:“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)

      三、應用

      1、學了分數(shù)的基本性質到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質,我們就能變魔術一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術。

      2、學生練習課本例題2,兩名學生在黑板上做。

      3、學生自己小結方法。

      4、按規(guī)律寫出一組相等的分數(shù)。

      小學《分數(shù)的基本性質》教學設計5

      教學要求

     、偈箤W生理解分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

     、谂囵B(yǎng)學生觀察、分析和抽象概括能力。

     、蹪B透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。

      教學重點理解分數(shù)的基本性質。

      教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

      教學過程

      一、創(chuàng)設情境

      1、120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

      2、說一說:

     。1)商不變的性質是什么?

     。2)分數(shù)與除法的關系是什么?

      3、填空。

      1÷2=(1×2)÷(2×2)==。

      二、揭示課題

      讓學生大膽猜測:在除法里有商不變的性質,在分數(shù)里會不會也有類似的性質存在呢?這個性質是什么呢?

      隨著學生的回答,教師板書課題:分數(shù)的基本性質。

      三、探索研究

      1、動手操作,驗證性質。

      (1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的'1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。

     。2)觀察比較后引導學生得出:==

      (3)從左往右看:==

      由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?

      把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。

      把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。

      引導學生初步小結得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

     。4)從右往左看:==

      引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

      板書:====

      讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

     。5)引導學生概括出分數(shù)的基本性質,并與前面的猜想相回應。

      (6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

      2、分數(shù)的基本性質與商不變的性質的比較。

      在除法里有商不變的性質,在分數(shù)里有分數(shù)的基本性質。

      想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質,你能說明分數(shù)的基本性質嗎?

      3、學習把分數(shù)化成指定分母而大小不變的分數(shù)。

     。1)出示例2,幫助學生理解題意。

     。2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?

     。3)讓學生在書上填空,請一名學生口答。教師板書:

      4、練習。教材第108頁的做一做。

      四、課堂實踐。

      練習二十三的1、3題。

      五、課堂小結

      1、這節(jié)課我們學習了什么內容?

      2、什么是分數(shù)的基本性質?

      六、課堂作業(yè)

      練習二十三的第2題。

      七、思考練習

      練習二十三的第10題。

      后記:

    【小學《分數(shù)的基本性質》教學設計】相關文章:

    分數(shù)的基本性質教學設計10-12

    《分數(shù)的基本性質》教學設計05-24

    “分數(shù)的基本性質”教學設計06-18

    《分數(shù)基本性質》教學設計01-19

    分數(shù)的基本性質教學設計04-05

    分數(shù)的基本性質教學設計優(yōu)秀11-01

    《分數(shù)的基本性質》教學設計15篇05-24

    “分數(shù)的基本性質”教學設計 15篇06-18

    “分數(shù)的基本性質”教學設計 (15篇)06-18

    《分數(shù)的基本性質》優(yōu)秀教學設計范文03-07