欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    初中數(shù)學(xué)教學(xué)設(shè)計

    時間:2024-07-10 11:57:56 教學(xué)資源 投訴 投稿

    初中數(shù)學(xué)教學(xué)設(shè)計15篇[精]

      作為一名優(yōu)秀的教育工作者,往往需要進行教學(xué)設(shè)計編寫工作,借助教學(xué)設(shè)計可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么寫教學(xué)設(shè)計需要注意哪些問題呢?下面是小編收集整理的初中數(shù)學(xué)教學(xué)設(shè)計,希望能夠幫助到大家。

    初中數(shù)學(xué)教學(xué)設(shè)計15篇[精]

    初中數(shù)學(xué)教學(xué)設(shè)計1

      一、教材分析

      反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。

      二、學(xué)情分析

      由于之前學(xué)習(xí)過函數(shù),學(xué)生對函數(shù)概念已經(jīng)有了一定的認(rèn)識能力,另外在前一章我們學(xué)習(xí)過分式的知識,因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。

      三、教學(xué)目標(biāo)

      知識目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達式.

      解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達式. 情感態(tài)度:讓學(xué)生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.

      四、教學(xué)重難點

      重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.

      難點:反比例函數(shù)表達式的.確立.

      五、教學(xué)過程

     。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;

     。2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單

      位:m)隨寬x(單位:m)的變化而變化。

      請同學(xué)們寫出上述函數(shù)的表達式

      14631000(2)y= tx

      k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=

      是自變量,y是函數(shù)。

      此過程的目的在于讓學(xué)生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際. 由于是分式,當(dāng)x=0時,分式無意義,所以x≠0。

      當(dāng)y= 中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。

      舉例:下列屬于反比例函數(shù)的是

     。1)y= (2)xy=10 (3)y=k-1x (4)y= -

      此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)

      已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=

      k x?1

      k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=

      已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。

      例:已知y與x2反比例,并且當(dāng)x=3時y=4

     。1)求出y和x之間的函數(shù)解析式

     。2)求當(dāng)x=1.5時y的值

      解析:因為y與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2

      和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達式最后學(xué)生練習(xí)并布置作業(yè)

      通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認(rèn)識,以達到鞏固的目的。

      六、評價與反思

      本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識基礎(chǔ)上進行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.應(yīng)該對這一方面的內(nèi)容多練習(xí)鞏固。

    初中數(shù)學(xué)教學(xué)設(shè)計2

      一、案例實施背景

      教材為人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級數(shù)學(xué)(下冊)。

      二、案例主題分析與設(shè)計

      本節(jié)課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級數(shù)學(xué)(下冊)第五章第3節(jié)內(nèi)容——5.3.1平行線的性質(zhì),它是直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分。

      《數(shù)學(xué)課程標(biāo)準(zhǔn)》強調(diào):數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學(xué)習(xí)數(shù)學(xué)的重要方式;合作交流的學(xué)習(xí)形式是培養(yǎng)孩子積極參與、自主學(xué)習(xí)的有效途徑。本節(jié)課將以“生活?數(shù)學(xué)”“活動?思考”“表達?應(yīng)用”為主線開展課堂教學(xué),以學(xué)生看得到、感受得到的基本素材創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生活動,并在活動中激發(fā)學(xué)生認(rèn)真思考、積極探索,主動獲取數(shù)學(xué)知識,從而促進學(xué)生研究性學(xué)習(xí)方式的形成,同時通過小組內(nèi)學(xué)生相互協(xié)作研究,培養(yǎng)學(xué)生合作性學(xué)習(xí)精神。

      三、案例教學(xué)目標(biāo)

      1.知識與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問題。

      2 .數(shù)學(xué)思考:在平行線的性質(zhì)的探究過程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。

      3.解決問題:通過探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。

      4.情感態(tài)度與價值觀:在探究活動中,讓學(xué)生獲得親自參與研究的情感體驗,從而增強學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和團結(jié)合作、勇于探索、鍥而不舍的精神。

      四、案例教學(xué)重、難點

      1.重點:對平行線性質(zhì)的掌握與應(yīng)用。

      2.難點:對平行線性質(zhì)1的探究。

      五、案例教學(xué)用具

      1.教具:多媒體平臺及多媒體課件.

      2.學(xué)具:三角尺、量角器、剪刀。

      六、案例教學(xué)過程

      1.創(chuàng)設(shè)情境,設(shè)疑激思

     、挪シ乓唤M幻燈片。

      內(nèi)容:①供火車行駛的鐵軌上;②游泳池中的泳道隔欄;③橫格紙中的線。

     、铺釂枩毓剩喝粘I钪形覀兘(jīng)常會遇到平行線,你能說出直線平行的條件嗎?

     、菍W(xué)生活動:針對問題,學(xué)生思考后回答——①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補兩直線平行。

      ⑷教師肯定學(xué)生的回答并提出新問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系呢?從而引出課題:7.2探索平行線的性質(zhì)(板書)。

      2.數(shù)形結(jié)合,探究性質(zhì)

      ⑴畫圖探究,歸納猜想。

      教師提要求,學(xué)生實踐操作:任意畫出兩條平行線(a∥b),畫一條截線c與這兩條平行線相交,標(biāo)出8個角。(統(tǒng)一采用阿拉伯?dāng)?shù)字標(biāo)角)

      教師提出研究性問題一:

      指出圖中的同位角,并度量這些角,填寫結(jié)果:

      第一組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關(guān)系( )

      第二組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關(guān)系( )

      第三組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關(guān)系( )

      第四組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關(guān)系( )

      教師提出研究性問題二:

      將圖中的同位角任先一組剪下后疊合。學(xué)生活動一:畫圖—剪圖—疊合—猜想學(xué)生活動二:畫圖—剪圖—疊合—猜想讓學(xué)生根據(jù)活動得出的數(shù)據(jù)與操作得出的結(jié)果歸納猜想:兩直線平行,同位角相等。

      教師提出研究性問題三:

      再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?

      學(xué)生活動:探究、按小組討論,最后得出結(jié)論:仍然成立。

     、平處熡谩稁缀萎嫲濉氛n件驗證猜想,讓學(xué)生直觀感受猜想

     、墙處熣故酒叫芯性質(zhì)1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)

      3.引申思考,培養(yǎng)創(chuàng)新

      教師提出研究性問題四:

      請判斷兩條平行線被第三條直線所截,內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系?學(xué)生活動:獨立探究——小組討論——成果展示。

      教師活動:評價學(xué)生的研究成果,并引導(dǎo)學(xué)生說理

      因為a∥b(已知)所以∠1=∠2(兩直線平行,同位角相等)

      又∠1=∠3(對頂角相等)∠1+∠4=180°(鄰補角的定義)

      所以∠2=∠3(等量代換)∠2+∠4=180°(等量代換)

      教師展示:平行線性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)

      平行線性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補。(兩直線平行,同旁內(nèi)角互補)

      4.實際應(yīng)用,優(yōu)勢互補

     、牛〒尨穑┱n本P21 練一練

      1、2及習(xí)題5.3

      1、3.

     、疲ㄓ懻摻獯穑┱n本P22 習(xí)題5.

      32、

      4、5.

      5.課堂總結(jié):

      這節(jié)課你有哪些收獲?

     、艑W(xué)生總結(jié):平行線的性質(zhì)

      1、

      2、3.⑵教師補充總結(jié):

     、儆谩斑\動”的觀點觀察數(shù)學(xué)問題;(如前面將同位角剪下疊合后分析問題)。

      ②用數(shù)形結(jié)合的方法來解決問題;(如我們前面將同位角測量后分析問題)。③用準(zhǔn)確的`語言來表達問題(如平行線的性質(zhì)

      1、

      2、3的表述)。

      ④用邏輯推理的形式來論證問題。(如我們前面對性質(zhì)2和3的說理過程)

      6 .作業(yè)。學(xué)習(xí)與評價: P 2 3 6 ( 選擇);P24

      7、12(拓展與延伸)。

      七、教學(xué)反思

      數(shù)學(xué)課要注重引導(dǎo)學(xué)生探索與獲取知識的過程而不單注重學(xué)生對知識內(nèi)容的認(rèn)識,因為“過程”不僅能引導(dǎo)學(xué)生更好地理解知識,還能夠引導(dǎo)學(xué)生在活動中思考,更好地感受知識的價值,增強應(yīng)用數(shù)學(xué)知識解決問題的意識;感受生活與數(shù)學(xué)的聯(lián)系,獲得“情感、態(tài)度、價值觀”方面的體驗。這節(jié)課的教學(xué)實現(xiàn)了三個方面的轉(zhuǎn)變:

      1.教的轉(zhuǎn)變

      本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者。教師成為了學(xué)生的導(dǎo)師、伙伴、甚至成為了學(xué)生的學(xué)生,在課堂上除了導(dǎo)引學(xué)生活動外,還要認(rèn)真聆聽學(xué)生“教”你他們活動的過程和通過活動所得的知識或方法。

      2.學(xué)的轉(zhuǎn)變

      學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué),跟老師學(xué)轉(zhuǎn)變?yōu)樽灾魅W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地“學(xué)”數(shù)學(xué),而是深入地“做”數(shù)學(xué)。

      3.課堂氛圍的轉(zhuǎn)變

      整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對學(xué)生的思維活動減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以“對話”“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學(xué)生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

      總之,在數(shù)學(xué)教學(xué)的花園里,教師只要為學(xué)生布置好和諧的場景和明晰的路標(biāo),然后就讓他們自由地快活地去跳舞吧!

    初中數(shù)學(xué)教學(xué)設(shè)計3

      教育改革的關(guān)鍵在于教師觀念的轉(zhuǎn)變,現(xiàn)代教育理論告訴我們:教師的職責(zé)現(xiàn)在已經(jīng)越來越少地傳授知識,而是越來越多地鼓勵、思考……將越來越成為一位顧問、一位交流意見的參加者、一位幫助發(fā)現(xiàn)而不是拿出現(xiàn)成真理的人,必須拿出更多的時間和精力去從事那些有效果的和有創(chuàng)造性的活動:互相影響、討論、激勵、了解、鼓舞。這說明了一個道理:教師的地位發(fā)生了根本性的變化,不再僅僅是知識的傳授者,還要確定“以人為本”的觀念,把課堂教學(xué)看作自己也是學(xué)生人生中的一段激蕩的生命經(jīng)歷,鼓勵、激發(fā)學(xué)生去不斷探索,把學(xué)生的“發(fā)現(xiàn)”與“創(chuàng)造”視為最有價值的勞動成果,教師與學(xué)生平等地對話,與他們共同感悟思潮的跌宕涌動。我想從三個方面談?wù)勛约涸诮虒W(xué)時的一些認(rèn)識:

      一、聯(lián)系生活、感知數(shù)學(xué)

      “數(shù)學(xué)課程不僅要考慮數(shù)學(xué)自身的特點,而且應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強調(diào)從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型進行解釋與應(yīng)用的過程。”這就要求我們遵循學(xué)生的思維規(guī)律,在實際問題和數(shù)學(xué)模型之間架起一座橋梁,讓學(xué)生在不知不覺中走進數(shù)學(xué)、感知數(shù)學(xué)。數(shù)學(xué)來源于生活并服務(wù)于生活,主體(學(xué)生)在思考問題時,既符合自身的認(rèn)知規(guī)律,又有直覺洞察、直觀猜想、合理歸納與活動思維過程,有利于提高自己對數(shù)學(xué)的認(rèn)識。

      二、身臨其境,探索規(guī)律

      “數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)識發(fā)展水平和已有的知識經(jīng)驗上,教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會。

      在教學(xué)時教師應(yīng)根據(jù)知識的內(nèi)在結(jié)構(gòu)和學(xué)生的學(xué)習(xí)規(guī)律,提供現(xiàn)象和問題,創(chuàng)設(shè)思維情境,引導(dǎo)學(xué)生主動參與,進行觀察、思考、探索。這樣有利于激發(fā)學(xué)生解決問題的熱情,提升學(xué)生的學(xué)習(xí)水平。比如在探究一元二次方程的根與系數(shù)的關(guān)系時,我們可以按下列步驟來創(chuàng)設(shè)情境。

      1.求三個一元二次方程的兩根之和與兩根之積。一般來說學(xué)生都是先把方程的根求出來,然后計算,學(xué)生可能體會不到什么,此時課堂氣氛比較平穩(wěn)。

      2.求一元二次方程的兩根之和與兩根之積,這時很多學(xué)生會感到很繁,怕動手計算,課堂出現(xiàn)沉悶現(xiàn)象。此時教師立即口答出答案,學(xué)生就會感覺到很驚奇,為之一振,進而產(chǎn)生疑問:“老師怎么會看出答案?這里會不會有規(guī)律?”課堂出現(xiàn)竊竊私語,激活了學(xué)生的思維,活躍了課堂氣氛。

      3.提出問題:你能根據(jù)你開始的計算和老師的結(jié)論觀察出一元二次方程的根與系數(shù)之間的關(guān)系嗎?學(xué)生們躍躍欲試,開始投入到觀察、思考、探索中去。

      4.提出問題:你敢肯定你所猜測到的結(jié)論是正確的嗎?再一次激發(fā)學(xué)生的斗志,使他們敢于說理、敢于證明,給予他們充分展示自己才華的機會。

      三、由點到面,觸類旁通

      復(fù)習(xí)不是簡單的知識重復(fù),而是一個再認(rèn)識、再提高的過程,復(fù)習(xí)中的最大矛盾是時間短、內(nèi)容多、要求高。復(fù)習(xí)既要做到突出重點、抓住典型,又能在高度概括中深刻揭示知識的內(nèi)在聯(lián)系,讓學(xué)生在掌握規(guī)律中理解、記憶、熟練、提高。比如在復(fù)習(xí)一元二次方程根的'判別式和根與系數(shù)的關(guān)系時,可以把一元二次方程根的判別式、根與系數(shù)的關(guān)系和二次函數(shù)的有關(guān)知識相聯(lián)系,根的判別式可以作為判別二次函數(shù)的圖像與x軸的交點個數(shù)的依據(jù):當(dāng)△>0時,拋物線與x軸有兩個不同的交點;當(dāng)△<0時,拋物線與x軸沒有交點;當(dāng)△=0時,拋物線與x軸只有一個交點即頂點。如果拋物線與x軸有兩個不同的交點,用根與系數(shù)的關(guān)系可以求拋物線與x軸的兩個交點之間的距離,可以判別拋物線與x軸交點的位置(交點是在坐標(biāo)原點的左邊還是在坐標(biāo)原點的右邊)等等。這樣在復(fù)習(xí)過程中把知識拓一拓、伸一伸,能激起學(xué)生思維的火花、學(xué)習(xí)的積極性,培養(yǎng)學(xué)生運用知識提高分析問題和解決問題的能力。

      總之,課堂教學(xué)面對的是獨立、有個性、有思維的學(xué)生,課堂教學(xué)設(shè)計應(yīng)適應(yīng)學(xué)生的發(fā)展,應(yīng)隨“學(xué)情”的變化而變化。課堂教學(xué)設(shè)計的成效如何,完全取決于教師對教材的理解、對學(xué)生情況的了解。只有教師具備“以學(xué)生為本”的教學(xué)理念,才能一切從學(xué)生實際出發(fā)、一切為學(xué)生考慮,才能真正做到教學(xué)服務(wù)于學(xué)生,實現(xiàn)“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。

    初中數(shù)學(xué)教學(xué)設(shè)計4

      一、教學(xué)設(shè)計:

      1 學(xué)習(xí)方式:

      對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關(guān)系研究的第一步。它是兩個三角形間最簡單,最常見的關(guān)系。它不僅是學(xué)習(xí)后面知識的基礎(chǔ),并且是證明線段相等、角相等以及兩線互相垂直、平行的重要依據(jù)。因此必須熟練地掌握全等三角形的判定方法,并且靈活的應(yīng)用。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用設(shè)問形式創(chuàng)設(shè)問題情景,設(shè)計一系列實踐活動,引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,使學(xué)生經(jīng)歷從現(xiàn)實世界抽象出幾何模型和運用所學(xué)內(nèi)容,解決實際問題的過程,真正把學(xué)生放到主體位置。

      2 學(xué)習(xí)任務(wù)分析:

      充分利用教科書提供的素材和活動,鼓勵學(xué)生經(jīng)歷觀察、操作、推理、想象等活動,發(fā)展學(xué)生的空間觀念,體會分析問題、解決問題的方法,積累數(shù)學(xué)活動經(jīng)驗。培養(yǎng)學(xué)生有條理的思考,表達和交流的能力,并且在以直觀操作的基礎(chǔ)上,將直觀與簡單推理相結(jié)合,注意學(xué)生推理意識的建立和對推理過程的理解,能運用自己的方式有條理的表達推理過程,為以后的證明打下基礎(chǔ)。

      3 學(xué)生的認(rèn)知起點分析:

      學(xué)生通過前面的學(xué)習(xí)已了解了圖形的全等的概念及特征,掌握了全等圖形的對應(yīng)邊、對應(yīng)角的關(guān)系,這為探究三角形全等的.條件做好了知識上的準(zhǔn)備。另外,學(xué)生也具備了利用已知條件作三角形的基本作圖能力,這使學(xué)生能主動參與本節(jié)課的操作、探究成為可能。

      4 教學(xué)目標(biāo):

      (1) 學(xué)生在教師引導(dǎo)下,積極主動地經(jīng)歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程。

     。2) 掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩(wěn)定性,能用三角形的全等解決一些實際問題。

      (3) 培養(yǎng)學(xué)生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學(xué)活動經(jīng)驗。

      5 教學(xué)的重點與難點:

      重點:三角形全等條件的探索過程是本節(jié)課的重點。從設(shè)置情景提出問題,到動手操作,交流,直至歸納得出結(jié)論,整個過程學(xué)生不僅得到了兩個三角形全等的條件,更重要得是經(jīng)歷了知識的形成過程,體會了一種分析問題的方法,積累了數(shù)學(xué)活動經(jīng)驗,這將有利于學(xué)生更好的理解數(shù)學(xué),應(yīng)用數(shù)學(xué)。難點:三角形全等條件的探索過程,特別是創(chuàng)設(shè)出問題后,學(xué)生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學(xué)生有一定的難度。

      根據(jù)初一學(xué)生年齡、生理及心理特征,還不具備獨立系統(tǒng)地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發(fā)揮教師的主導(dǎo)作用,適時點撥、引導(dǎo),盡可能調(diào)動所有學(xué)生的積極性、主動性參與到合作探討中來,使學(xué)生在與他人的合作交流中獲取新知,并使個性思維得以發(fā)展。

      6 教學(xué)過程

      教學(xué)步驟

      教師活動

      學(xué)生活動

      教學(xué)媒體(資源)和教學(xué)方式

      復(fù)習(xí)過渡

      引入新知

      創(chuàng)設(shè)情景

      提出問題

      建立模型

      探索發(fā)現(xiàn)

      歸納總結(jié)

      得出新知鞏固運用

      及其推廣

      反思小結(jié)

      提煉規(guī)律

      電腦顯示,帶領(lǐng)學(xué)生復(fù)習(xí)全等三角定義及其性質(zhì)。

      電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊

      分別對應(yīng)相等,三個角分別對應(yīng)相等,那麼,反之這六個元素分別對應(yīng),這樣的兩個三角形一定全等.但是,是否一定需要六個條件呢?條件能否盡可能少嗎?

      對學(xué)生分類中出現(xiàn)的問題,予以糾正,對學(xué)生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學(xué)生需要,發(fā)展學(xué)生個性思維。

    初中數(shù)學(xué)教學(xué)設(shè)計5

      一、教學(xué)目標(biāo):

      1、知道一次函數(shù)與正比例函數(shù)的定義.

      2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì);

      3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系.

      4、掌握直線的平移法則簡單應(yīng)用.

      5、能應(yīng)用本章的基礎(chǔ)知識熟練地解決數(shù)學(xué)問題。

      二、教學(xué)重、難點:

      重點:初步構(gòu)建比較系統(tǒng)的函數(shù)知識體系。

      難點:對直線的平移法則的理解,體會數(shù)形結(jié)合思想。

      三、教學(xué)過程:

      1、一次函數(shù)與正比例函數(shù)的定義:

      一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)

      正比例函數(shù):對于 y=kx+b,當(dāng)b=0, k≠0時,有y=kx,此時稱y是x的正比例函數(shù),k為正比例系數(shù)。

      2. 一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:

     。1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

     。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx

      平行的一條直線。

      基礎(chǔ)訓(xùn)練:

      1. 寫出一個圖象經(jīng)過點(1,- 3)的函數(shù)解析式為: 。

      2.直線y = - 2X - 2 不經(jīng)過第 象限,y隨x的增大而。

      3.如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:。

      4.已知正比例函數(shù) y =(3k-1)x,,若y隨

      x的增大而增大,則k是: 。

      5、過點(0,2)且與直線y=3x平行的直線是: 。

      6、若正比例函數(shù)y =(1-2m)x 的圖像過點A(x1,y1)和點B(x2,y2)當(dāng)x1<x2時,y1>y2,則m的取值范圍是: 。

      7、若y-2與x-2成正比例,當(dāng)x=-2時,y=4,則x= 時,y = -4。

      8、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。

      9、已知圓O的半徑為1,過點A(2,0)的`直線切圓O于點B,交y軸于點C。(1)求線段AB的長。(2)求直線AC的解析式。

      四、教學(xué)反思:

      教師認(rèn)真?zhèn)湔n,查閱資料,搜集有針對性的訓(xùn)練題,學(xué)生只要課堂上能按照教師的思路去做就很高效了。課堂訓(xùn)練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學(xué)生沒有保持住持久的緊張狀態(tài)。

      課前先把所有的復(fù)習(xí)任務(wù)都交給學(xué)生完成,教師指導(dǎo)學(xué)生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個知識點相關(guān)的有針對性的問題,也可以自己編題,同時要把每一個問

      題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學(xué)生展示自己的舞臺,在這個舞臺上學(xué)生是主角,在這個舞臺上學(xué)生可以成果共享,在這個舞臺上學(xué)生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。

      從另一個角度體會到了減輕學(xué)生負擔(dān)的深刻含義,不單指減少學(xué)生課后學(xué)習(xí)的時間,更重要的是提高學(xué)生學(xué)習(xí)的質(zhì)量、效率,我的這節(jié)課失敗之處就是過分的注重了前者,而忽略了實效性。那么在今后的復(fù)習(xí)課教學(xué)中我要多思多想、多問多聽(問問老師、聽聽學(xué)生的想法),力求在真正減輕學(xué)生負擔(dān)的基礎(chǔ)上打造高效課堂。

    初中數(shù)學(xué)教學(xué)設(shè)計6

      一、內(nèi)容與內(nèi)容解析

      (一)內(nèi)容

      一元一次不等式組的概念及解法

     。ǘ﹥(nèi)容解析

      上節(jié)課學(xué)習(xí)了一元一次不等式,知道了一元一次不等式的有關(guān)概念及解法,本節(jié)課主要是學(xué)習(xí)一元一次不等式組及其解法,這是學(xué)習(xí)利用一元一次不等式組解決實際問題的關(guān)鍵.教材通過一個實例入手,引出要解決的問題,必須同時滿足兩個不等式,讓學(xué)生經(jīng)歷通過具體問題抽象出不等式組的過程,進而通過一元一次不等式來類推學(xué)習(xí)一元一次不等式組、一元一次不等式組解集、解一元一次不等式組這些概念.學(xué)習(xí)不等式組時,我們可以類比方程組、方程組的解來理解不等式組、不等式組的解集的概念.求不等式組的解集時,利用數(shù)軸很直觀,這是一種數(shù)與形結(jié)合的思想方法,不僅現(xiàn)在有用,今后我們還會有更深的體驗. 基于以上的分析,本節(jié)課的教學(xué)重點:一元一次不等式組的解法.

      二、目標(biāo)及目標(biāo)解析(一)目標(biāo)

      (1)理解一元一次不等式組、一元一次不等式組的解集等概念.

     。2)會解一元一次不等式組,并會用數(shù)軸確定解集.(二)目標(biāo)解析

      達到目標(biāo)(1)的標(biāo)志是:

      學(xué)生能說出一元一次不等式組的特征.

      達到目標(biāo)(2)的標(biāo)志是:

      學(xué)生能解一元一次不等式組,能在數(shù)軸上確定不等式組的解集,并獲得解一元一次不等式組的步驟.

      三、教學(xué)問題診斷分析

      通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握一元一次不等式的概念及解法,但是對于學(xué)生用數(shù)軸來表示不等式組的解集時還不夠熟練,理解還不夠深刻. 本節(jié)課的教學(xué)難點:在數(shù)軸上找公共部分,確定不等式組的解集.

      四、教學(xué)過程設(shè)計

     。ㄒ唬┨岢鰡栴} 形成概念

      問題:用每分鐘可抽30噸水的抽水機來抽污水管道里的積存污水,估計積存的污水超過1200噸而不足1500噸,那么將污水抽完所用的時間的范圍是什么?

      設(shè)問(1):依據(jù)題意,你能得出幾個不等關(guān)系?

      設(shè)問(2):設(shè)抽完污水所用的時間還是范圍?

      小組討論,交流意見,再獨立設(shè)未知數(shù),列出所用的不等關(guān)系.

      教師追問(1):類比方程組的概念,說出什么是一元一次不等式組?怎樣表示? 學(xué)生自學(xué)概念,說出表示方法、

      教師追問(2):類比方程組的解怎樣確定不等式組中x的取值范圍? 學(xué)生經(jīng)過小組討論,老師點撥:不等式組中各個不等式解集的公共部分就是不等式組x的取值范圍.

      教師追問(3):怎樣解不等式,并用數(shù)軸表示解集? 學(xué)生獨立完成.

      教師追問(4):通過數(shù)軸,怎樣得出不等式組的解集? 學(xué)生獨立完成,老師點評

      教師追問(5):什么是一元一次不等式組的解集?什么是解一元一次不等式組? 學(xué)生自學(xué)概念.

      設(shè)計意圖:培養(yǎng)學(xué)生獨立思考、合作交流意識,提高學(xué)生的觀察、分析、猜測、概括和自學(xué)能力.并且滲透類比思想,得出一元一次不等式組以及其解集的概念,利用數(shù)軸的直觀理解不等式解集的意義.

      (二)解法探討 步驟歸納 例1 解下列不等式組

      學(xué)生嘗試獨立解不等式組,老師強調(diào)規(guī)范格式

      設(shè)問1:當(dāng)兩個不等式的解集沒有公共部分,表示什么意思? 設(shè)問2:解一元一次不等式組的一般步驟是什么?

      學(xué)生總結(jié)歸納,老師適當(dāng)補充,得出解一元一次不等式組的一般步驟是:

     。1)求每個不等式的解集;

     。2)利用數(shù)軸找出各個不等式的'解集的公共部分;

      (3)寫出不等式組的解集.

      設(shè)計意圖:初步感受解一元一次不等式組的方法和步驟.

     。ㄈ⿷(yīng)用提高 深化認(rèn)知

      例2 x取那些整數(shù)值時,不等式5x+2>3(x-1)與

      都成立?

      設(shè)問1:不等式都成立表示什么意思? 小組討論

      設(shè)問2:要求x取哪些整數(shù)值,要先解決什么問題? 學(xué)生先合作交流,再獨立解不等式組 設(shè)問3.怎樣取值?

      學(xué)生在不等式組的解集范圍內(nèi),取整數(shù)值.老師強調(diào)即求不等式組的特殊解. 設(shè)計意圖:通過例2可以讓學(xué)生構(gòu)建不等式組,并解出不等式組,同時根據(jù)解集求出不等式組的特殊解,這是對學(xué)生解不等式組的一次提高訓(xùn)練.

      (四)歸納總結(jié) 反思提高

      教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題

     。1)什么是一元一次不等式組?什么是一元一次不等式組的解集?

      (2)解一元一次不等式組的一般步驟?

     。3)一元一次不等式組解集的一般規(guī)律是什么?

      設(shè)計意圖:通過問題歸納總結(jié)本節(jié)課所學(xué)的主要內(nèi)容.

     。ㄎ澹┎贾米鳂I(yè) 課外反饋 教科書習(xí)題9.3第1,2,3題

      設(shè)計意圖:通過課后作業(yè),教師及時了解學(xué)生對本節(jié)課知識的掌握情況,以便對教學(xué)進度和方法進行適當(dāng)?shù)恼{(diào)整.

    初中數(shù)學(xué)教學(xué)設(shè)計7

      教學(xué)目標(biāo)

      1.了解的概念和的畫法,掌握的三要素;

      2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大小;

      3.使學(xué)生初步了解數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生相互聯(lián)系的觀點。

      教學(xué)建議

      一、重點、難點分析

      本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與上點的對應(yīng)關(guān)系。的概念包含兩個內(nèi)容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用解決問題的方法,為今后充分利用這個工具打下基礎(chǔ)。

      二、知識結(jié)構(gòu)

      有了,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下表:

      定義

      三要素

      應(yīng)用

      數(shù)形結(jié)合

      規(guī)定了原點、正方向、單位長度的直線叫

      原 點

      正方向

      單位長度

      幫助理解有理數(shù)的概念,每個有理數(shù)都可用上的點表示,但上的點并非都是有理數(shù)

      比較有理數(shù)大小,上右邊的數(shù)總比左邊的數(shù)要大

      在理解并掌握概念的基礎(chǔ)之上,要會畫出,能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù),要知道所有的有理數(shù)都可以用上的點表示,會利用比較有理數(shù)的大小。

      三、教法建議

      小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念。是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關(guān),但為了教學(xué)上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。

      關(guān)于有理數(shù)與上的點的對應(yīng)關(guān)系,應(yīng)該明確的`是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應(yīng)的關(guān)系。根據(jù)幾個有理數(shù)在上所對應(yīng)的點的相互位置關(guān)系,應(yīng)該能夠判斷它們之間的大小關(guān)系。通過點與有理數(shù)的對應(yīng)關(guān)系及其應(yīng)用,逐步滲透數(shù)形結(jié)合的思想。

      四、的相關(guān)知識點

      1.的概念

     。1)規(guī)定了原點、正方向和單位長度的直線叫做。

      這里包含兩個內(nèi)容:一是的三要素:原點、正方向、單位長度缺一不可。二是這三個要素都是規(guī)定的。

     。2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。

      以是理解有理數(shù)概念與運算的重要工具。有了,數(shù)和形得到初步結(jié)合,數(shù)與表示數(shù)的圖形(如)相結(jié)合的思想是學(xué)習(xí)數(shù)學(xué)的重要思想。另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小。因此,應(yīng)重視對的學(xué)習(xí)。

      2.的畫法

     。1)畫直線(一般畫成水平的)、定原點,標(biāo)出原點“O”。

     。2)取原點向右方向為正方向,并標(biāo)出箭頭。

      (3)選適當(dāng)?shù)拈L度作為單位長度,并標(biāo)出…,-3,-2,-1,1,2,3…各點。具體如下圖。

      (4)標(biāo)注數(shù)字時,負數(shù)的次序不能寫錯,如下圖。

      3.用比較有理數(shù)的大小

     。1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。

     。2)由正、負數(shù)在上的位置可知:正數(shù)都有大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。

     。3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“ ”的寫法,正確應(yīng)寫成“ ”。

      五、定義的理解

      1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示。

      2.所有的有理數(shù),都可以用上的點表示。例如:在上畫出表示下列各數(shù)的點(如圖2).

      A點表示-4; B點表示-1.5;

      O點表示0; C點表示3.5;

      D點表示6.

      從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負數(shù)在上的位置,可以知道:

      正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。

      因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用 ,表示 是正數(shù);反之,知道 是正數(shù)也可以表示為 。

      同理, ,表示 是負數(shù);反之 是負數(shù)也可以表示為 。

      3.正常見幾種錯誤

      1)沒有方向

      2)沒有原點

      3)單位長度不統(tǒng)一

      教學(xué)設(shè)計示例

    初中數(shù)學(xué)教學(xué)設(shè)計8

      一、教學(xué)目標(biāo):

      1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

      2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

      3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

      二、教學(xué)重點

      利用二次函數(shù)的圖象求一元二次方程的近似根。

      教學(xué)難點:

      理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

      三、教學(xué)方法:

      啟發(fā)引導(dǎo)合作交流

      四:教具、學(xué)具:

      課件

      五、教學(xué)媒體:

      計算機、實物投影。

      六、教學(xué)過程:

      [活動1]檢查預(yù)習(xí)引出課題

      預(yù)習(xí)作業(yè):

      1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

      2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

      師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。

      教師重點關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

      設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。

      [活動2]創(chuàng)設(shè)情境探究新知

      問題

      1.課本p16問題.

      2.結(jié)合圖形指出,為什么有兩個時間球的高度是15m或0m?為什么只在一個時間球的高度是20m?

     。ńY(jié)合預(yù)習(xí)題1,完成課本p16觀察中的題目。)

      師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。

      二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

      二次函數(shù)y=ax2+bx+c的

      圖象和x軸交點

      兩個交點

      一個交點

      沒有交點

      教師重點關(guān)注:

      1.學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;

      2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;

      3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。

      設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。

      [活動3]例題學(xué)習(xí)鞏固提高

      問題:例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).

      師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。

      教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。

      設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。

      [活動4]練習(xí)反饋鞏固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根兩個相異的實數(shù)根兩個相等的實數(shù)根沒有實數(shù)根根的判別式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0

      問題:(1)p97.習(xí)題1、2(1)。

      師生行為:教師提出問題,學(xué)生獨立思考后寫出答案,師生共同評價;問題(2)學(xué)生獨立思考后同桌交流,實物投影出學(xué)生解題過程,教師強調(diào)正確解題思路。

      教師關(guān)注:學(xué)生能否準(zhǔn)確應(yīng)用本節(jié)課的知識解決問題;學(xué)生解題時候暴露的共性問題作針對性的點評,積累解題經(jīng)驗。

      設(shè)計意圖:這兩個題目就是對本節(jié)課知識的鞏固應(yīng)用,讓新知識內(nèi)化升華,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。

      [活動5]自主小結(jié),深化提高:

      1.通過這節(jié)課的學(xué)習(xí),你獲得了哪些數(shù)學(xué)知識和方法?

      2.這節(jié)課你參與了哪些數(shù)學(xué)活動?談?wù)勀惬@得知識的方法和經(jīng)驗。

      師生活動:學(xué)生思考后回答,教師對學(xué)生的錯誤予以糾正,不足的予以補充,精彩的適當(dāng)表揚。

      設(shè)計意圖:

      1.題促使學(xué)生反思在知識和技能方面的收獲;

      2.題讓學(xué)生反思自己的學(xué)習(xí)活動、認(rèn)知過程,總結(jié)解決問題的策略,積累學(xué)習(xí)知識的方法,力求不同的學(xué)生有不同的發(fā)展。

      [活動6]分層作業(yè),發(fā)展個性:

      1.(必做題)閱讀教材并完成p97習(xí)題21。2:3、4.

      2.(備選題)p97習(xí)題21。2:5、6

      設(shè)計意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。

      七、教學(xué)反思:

      1.注重知識的發(fā)生過程與思想方法的應(yīng)用

      《用函數(shù)的觀點看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。

      探究拋物線交x軸的點的個數(shù)與一元二次方程的根的.個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形,從圖象與x軸交點的個數(shù)與方程的根之間進行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方

      法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。

      2.關(guān)注學(xué)生學(xué)習(xí)的過程

      在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。

      3.強化行為反思

      “反思是數(shù)學(xué)的重要活動,是數(shù)學(xué)活動的核心和動力”,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計,課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的同時,領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,“數(shù)學(xué)日記”就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會。通過日記的方式,學(xué)生可以對他所學(xué)的數(shù)學(xué)內(nèi)容進行總結(jié),寫出自己的收獲與困惑!皵(shù)學(xué)日記”該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯題日記。

      4.優(yōu)化作業(yè)設(shè)計

      作業(yè)的設(shè)計分必做題和選做題,必做題鞏固本課基礎(chǔ)知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實踐能力。

    初中數(shù)學(xué)教學(xué)設(shè)計9

      課題:12.3等腰三角形(第一課時)

      教學(xué)內(nèi)容:新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時

      任課教師:東灣中學(xué)李曉偉

      設(shè)計理念:

      教學(xué)的實質(zhì)是以教材中提供的素材或?qū)嶋H生活中的一些問題為載體,通過一系列探究互動過程,滲透分類討論、數(shù)形結(jié)合和方程的思想方法,達到學(xué)生知識的構(gòu)建、能力的培養(yǎng)、情感的陶冶、意識的創(chuàng)新。

      ㈠教材的地位和作用分析

      等腰三角形是新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時的內(nèi)容。本節(jié)課是在前面學(xué)習(xí)了三角形的有關(guān)概念及性質(zhì)、軸對稱變換、全等三角形、垂直平分線和尺規(guī)作圖的基礎(chǔ)上,研究等腰三角形的定義及其重要性質(zhì),它既是前面所學(xué)知識的延伸,也是后面直角三角形、等邊三角形的知識的重要儲備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節(jié)課具有承上啟下的重要作用。

      另外,本堂課通過“活動探究”、“觀察—猜想—證明”等途徑,進一步培養(yǎng)學(xué)生的動手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識上,還是在對學(xué)生能力的培養(yǎng)及情感教育等方面都有著十分重要的作用。

      ㈡教學(xué)內(nèi)容的分析

      本堂課是等腰三角形的第一堂課,在認(rèn)識等腰三角形的基礎(chǔ)上著重介紹“等腰三角形的性質(zhì)”。在教學(xué)設(shè)計的過程中,通過展示我國今年舉辦的精彩絕倫的盛會—上海世博會圖片中的等腰三角形,結(jié)合云南豐富的文化資源,讓學(xué)生感知生活中處處有數(shù)學(xué),感受圖形的和諧美、對稱美;通過學(xué)生感興趣的數(shù)學(xué)情景引入等腰三角形定義,提高學(xué)生的學(xué)習(xí)樂趣;讓學(xué)生通過動手剪等腰三角形、對折等腰三角形等活動,探究發(fā)現(xiàn)等腰三角形的性質(zhì),經(jīng)歷知識的“再發(fā)現(xiàn)”過程。在探究活動的過程中發(fā)展創(chuàng)新思維能力,改變學(xué)生的學(xué)習(xí)方式。在發(fā)現(xiàn)等腰三角形的性質(zhì)的基礎(chǔ)上,再經(jīng)過推理證明等腰三角形的性質(zhì),使得推理證明成為學(xué)生觀察、實驗、探究得出結(jié)論的自然延伸,有機地將等腰三角形的認(rèn)識與等腰三角形的性質(zhì)的證明結(jié)合起來,從中發(fā)展學(xué)生推理能力。

      在例題的選取上,注重聯(lián)系實際,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生主動用數(shù)學(xué)知識解決實際問題,同時滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學(xué)思想方法,讓學(xué)生形成自我的數(shù)學(xué)思維和能力,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識。

      二、目標(biāo)及其解析

      ㈠教學(xué)目標(biāo):

      知識技能:

      1.了解等腰三角形的概念,認(rèn)識等腰三角形是軸對稱圖形;2.經(jīng)歷探究等腰三角形性質(zhì)的過程,理解等腰三角形的性質(zhì)的證明;

      3.掌握等腰三角形的性質(zhì),能運用等腰三角形的性質(zhì)解決生活中簡單的實際問題。

      數(shù)學(xué)思考:

      1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,發(fā)展學(xué)生幾何直觀;

      2.經(jīng)歷證明等腰三角形的性質(zhì)的過程,體會證明的必要性,發(fā)展合情推理能力和初步的演繹推理能力.

      解決問題:

      1.能運用等腰三角形的性質(zhì)解決生活中的實際問題,發(fā)展數(shù)學(xué)的應(yīng)用能力,獲得解決問題的經(jīng)驗;

      2.在小組活動和探究過程中,學(xué)會與人合作,體會與他人合作的重要性.

      情感態(tài)度:

      1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,體驗數(shù)學(xué)活動充滿著探究性和創(chuàng)造性,感受證明的必要性、證明過程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性,并有克服困難和運用知識解決問題的成功體驗,建立學(xué)好數(shù)學(xué)的自信心;

      2.經(jīng)歷運用等腰三角形解決實際問題的過程,認(rèn)識數(shù)學(xué)是解決實際問題和進行交流的重要工具,了解數(shù)學(xué)對促進社會進步和發(fā)展人類理性精神的作用;

      3.在獨立思考的基礎(chǔ)上,通過小組合作,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點,并尊重與理解他人的見解,在交流中獲益.

      ㈡教學(xué)重點:

      等腰三角形的性質(zhì)及應(yīng)用。

      ㈢教學(xué)難點:

      等腰三角形性質(zhì)的證明。

      ㈣解析

      本堂課是等腰三角形的第一堂課,所以對于本堂課的知識目標(biāo)的定位,主要考慮如下:1.了解等腰三角形的概念,認(rèn)識等腰三角形是軸對稱圖形,在本堂課中要達到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對稱圖形,它有一條對稱軸,即:頂角角平分線(底邊上的'高或底邊上的中線)所在直線;

      2.經(jīng)歷探究等腰三角形性質(zhì)的過程,掌握等腰三角形的性質(zhì)的證明,在課堂中讓學(xué)生參與等腰三角形性質(zhì)的探索,鼓勵學(xué)生用規(guī)范的數(shù)學(xué)言語表述證明過程,發(fā)展學(xué)生的數(shù)學(xué)語言能力和演繹推理能力,引導(dǎo)學(xué)生完成對等腰三角形的性質(zhì)的證明;

      3.會利用等腰三角形的性質(zhì)解決簡單的實際問題,本堂課要達到以下要求:掌握等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)解決簡單的實際問題。

      三、問題診斷分析

      1.在這堂課中,學(xué)生可能遇到的第一個困難是等腰三角形性質(zhì)的發(fā)現(xiàn),特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì),解決這一問題教師主要借助等腰三角形對稱性的研究,并引導(dǎo)學(xué)生理解“重合”這個詞的涵義。

      2.這堂課學(xué)生可能遇到的第二個問題是證明等腰三角形的性質(zhì),這一問題主要有三個原因:第一學(xué)生剛接觸幾何證明不久,對數(shù)學(xué)語言表達方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學(xué)習(xí)中幫助學(xué)生增強數(shù)學(xué)語言運用的能力,能有條理地、清晰地闡述自己的觀點。在這堂課中我通過等腰三角形性質(zhì)的證明,鼓勵學(xué)生運用規(guī)范的數(shù)學(xué)語言來表述,使學(xué)生數(shù)學(xué)語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學(xué)生在證明中的一個難點。要解決這一問題,我借助等腰三角形是軸對稱圖形,通過研究等腰三角形的對稱軸,讓學(xué)生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質(zhì),要突破這一難點,我采用先證明等腰三角形兩底角相等這一性質(zhì),為學(xué)生搭一個臺階,更好地解決這個難點。

      3.這堂課中學(xué)生可能遇到的第三個問題是對等腰三角形的性質(zhì)的應(yīng)用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì)的應(yīng)用;所以我在設(shè)計

      課堂練習(xí)時,注重數(shù)學(xué)知識與生活實際的聯(lián)系,提高學(xué)生數(shù)學(xué)學(xué)習(xí)的興趣,讓學(xué)生主動運用數(shù)學(xué)知識解決實際問題,并通過練習(xí)滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學(xué)思想方法,讓學(xué)生形成自我的數(shù)學(xué)思維和能力,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識。

      四、教法、學(xué)法:

      教法:

      常言道:“教必有法,教無定法”。所以我針對八年級學(xué)生的心理特點和認(rèn)知能力水平,大膽應(yīng)用生活中的素材,并作了精心的安排,充分體現(xiàn)數(shù)學(xué)是源于實踐又運用于生活。因此,本堂課的教學(xué)中,我以學(xué)生為主體,讓學(xué)生積極思維,勇于探索,主動地獲取知識。同時,采用了現(xiàn)代化教學(xué)技術(shù),激發(fā)學(xué)生的學(xué)習(xí)興趣,使整個課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學(xué)生親自嘗試,接受問題的挑戰(zhàn),充分展示自己的觀點和見解,給學(xué)生創(chuàng)設(shè)一個寬松愉快的學(xué)習(xí)氛圍,讓學(xué)生體驗成功的快樂,為終身學(xué)習(xí)和發(fā)展打打下堅實的基礎(chǔ)。

      本堂課的設(shè)計是以課程標(biāo)準(zhǔn)和教材為依據(jù),采用發(fā)現(xiàn)式教學(xué)。遵循因材施教的原則,堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生大膽猜想,小心求證的科學(xué)研究的思想。

      學(xué)法:

      學(xué)生都渴望與他人交流,合作探究可使學(xué)生感受到合作的重要和團隊的精神力量,增強集體意識,所以本課采用小組合作的學(xué)習(xí)方式,讓學(xué)生遵循“情景問題?實踐探究?證明結(jié)論?解決實際問題”的主線進行學(xué)習(xí)。讓學(xué)生從活動中去觀察、探索、歸納知識,沿著知識發(fā)生,發(fā)展的脈絡(luò),學(xué)生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗,產(chǎn)生對結(jié)論的感知,實現(xiàn)對知識意義的主動構(gòu)建。這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會自主學(xué)習(xí),學(xué)會探索問題的方法。

      五、教學(xué)支持條件分析

      在本堂課中,準(zhǔn)備利用長方形紙片、剪刀、圓規(guī)和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對折、多媒體動畫演示等方法發(fā)現(xiàn)等腰三角形的性質(zhì),并且借助多媒體信息技術(shù)與實際動手操作加強對所學(xué)知識的理解和運用。

      六、教學(xué)基本流程

      七、教學(xué)過程設(shè)計

    初中數(shù)學(xué)教學(xué)設(shè)計10

      一、 教學(xué)目標(biāo)

      1、 知識與技能目標(biāo)

      掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

      2、 能力與過程目標(biāo)

      經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。

      3、 情感與態(tài)度目標(biāo)

      通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

      二、 教學(xué)重點、難點

      重點:運用有理數(shù)乘法法則正確進行計算。

      難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

      三、 教學(xué)過程

      1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

      教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

      學(xué)生:26米。

      教師:能寫出算式嗎?學(xué)生:……

      教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的.問題

      2、 小組探索、歸納法則

      (1)教師出示以下問題,學(xué)生以組為單位探索。

      以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

     、 2 ×3

      2看作向東運動2米,×3看作向原方向運動3次。

      結(jié)果:向 運動 米

      2 ×3=

     、 -2 ×3

      -2看作向西運動2米,×3看作向原方向運動3次。

      結(jié)果:向 運動 米

      -2 ×3=

     、 2 ×(-3)

      2看作向東運動2米,×(-3)看作向反方向運動3次。

      結(jié)果:向 運動 米

      2 ×(-3)=

      ④ (-2) ×(-3)

      -2看作向西運動2米,×(-3)看作向反方向運動3次。

      結(jié)果:向 運動 米

     。-2) ×(-3)=

     。2)學(xué)生歸納法則

     、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?

     。+)×(+)=( ) 同號得

     。-)×(+)=( ) 異號得

     。+)×(-)=( ) 異號得

      (-)×(-)=( ) 同號得

      ②積的絕對值等于 。

     、廴魏螖(shù)與零相乘,積仍為 。

      (3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

      3、 運用法則計算,鞏固法則。

     。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。

     。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

      (3)學(xué)生做練習(xí),教師評析。

     。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。

    初中數(shù)學(xué)教學(xué)設(shè)計11

      我在這次國培中學(xué)習(xí)了“初中數(shù)學(xué)概念課堂教學(xué)設(shè)計”。雖只有短短的時間,卻讓我受益匪淺。

      數(shù)學(xué)概念是數(shù)學(xué)命題、數(shù)學(xué)推理的基礎(chǔ),數(shù)學(xué)學(xué)習(xí)的真正開始是從對數(shù)學(xué)概念的學(xué)習(xí)開始的,作為一名初中數(shù)學(xué)老師,我也常常在思考,如何進行概念教學(xué)?如何充分利用有限的45分鐘,讓學(xué)生真正理解概念?通過這次國培,給我們今后的數(shù)學(xué)概念教學(xué)提供了一種可以借鑒的教學(xué)模式:即“創(chuàng)設(shè)問題情景,歸納共同特征——建立數(shù)學(xué)模型,抽象出概念——在交流中深化概念,辨析概念的內(nèi)涵與外延——鞏固、應(yīng)用與拓展。”概念教學(xué)注意以下幾點:

      1、注重了數(shù)學(xué)與生活之間的`聯(lián)系。

      《數(shù)學(xué)課程標(biāo)準(zhǔn)》要求:“讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋與應(yīng)用的過程!睌(shù)學(xué)的每一個概念都是一個數(shù)學(xué)模型,老師們從學(xué)生實際出發(fā),創(chuàng)設(shè)了許多有利于學(xué)生學(xué)習(xí)的現(xiàn)實背景與材料,極大的鼓起了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

      2、概念的得出注重了探究過程、分析過程,體現(xiàn)了活動主題。

      通過一組實例,分析共性,找共同特征。

      3、鋪墊導(dǎo)入恰當(dāng),讓預(yù)設(shè)與生成合情合理。

      課堂教學(xué)的優(yōu)秀與否,既要看預(yù)設(shè),又要看生成。做到了新知不新,新概念是在舊概念的基礎(chǔ)上滋生和發(fā)展出來的,她們這樣的引入,符合學(xué)生的最近發(fā)展區(qū)需要,教師適時搭建了一個新舊知識的橋梁,然后引導(dǎo)學(xué)生分析、觀察,學(xué)生就會印象深刻。

      4、注重了數(shù)學(xué)陷阱的設(shè)置。

      把學(xué)生對概念理解中的易錯點、易混淆點列出來,讓學(xué)生判斷、研究可以讓學(xué)生對概念理解更深刻。

      5、注重了學(xué)科間的滲透。

      在數(shù)學(xué)教學(xué)中,如何使學(xué)生形成數(shù)學(xué)概念,正確的理解和掌握概念是極為重要的,這是學(xué)好數(shù)學(xué)的基礎(chǔ)之一。要讓學(xué)生真正理解概念,要把握好以下三點:一要注重聯(lián)系生活原型,對概念作通俗解釋,體驗探究數(shù)學(xué)問題的樂趣;二要注重揭示概念的本質(zhì),準(zhǔn)確理解概念的內(nèi)涵與外延;三要注重概念的實際應(yīng)用,實現(xiàn)知識的升華。

    初中數(shù)學(xué)教學(xué)設(shè)計12

      一、背景

      新課標(biāo)要求,應(yīng)讓學(xué)生在實際背景中理解基本的數(shù)量關(guān)系和變化規(guī)律,注重使學(xué)生經(jīng)歷從實際問題中建立數(shù)學(xué)模型、估計、求解、驗證解的正確性與合理性的過程。在實際工作中讓學(xué)生學(xué)會從具體問題情景中抽象出數(shù)學(xué)問題,使用各種數(shù)學(xué)語言表達問題、建立數(shù)學(xué)關(guān)系式、獲得合理的解答、理解并掌握相應(yīng)的數(shù)學(xué)知識與技能,這些多數(shù)教師都注意到了,但要做好,還有一定難度。

      二、教學(xué)片段

      在剛過去的這個學(xué)期,我上了一節(jié)“一元一次不等式組的應(yīng)用”。

      出示例題:小寶和爸爸、媽媽三人在操場上玩蹺蹺板,爸爸體重為72千克,坐在蹺蹺板的一端,體重只有媽媽一半的小寶和媽媽一同坐在另一端。這時,爸爸的`一端仍然著地,后來小寶借來一副質(zhì)量為6千克的啞鈴,加在他和媽媽坐的一端,結(jié)果,爸爸被高高地蹺起。猜猜看,小寶的體重約多少千克?

      我問學(xué)生:“你們玩過蹺蹺板嗎?先看看題,一會請同學(xué)復(fù)述一下!睂W(xué)生復(fù)述后,基本已經(jīng)熟悉了題目。我接著讓學(xué)生思考:他們?nèi)俗藥状诬E蹺板?第一次坐時情況怎樣?第二次呢?學(xué)生議論了一會兒,自主發(fā)言,很快發(fā)現(xiàn)本題中存在的兩種文字形式的不等關(guān)系:

      爸爸體重>小寶體重+媽媽體重

      爸爸體重<小寶體重+媽媽體重+一副啞鈴重量

      我引導(dǎo):你還能怎么判斷小寶體重?學(xué)生安靜了幾分鐘后,開始議論。一學(xué)生舉手了:“可以列不等式組!蔽医o出提示:“小寶的體重應(yīng)該同時滿足上述的兩個條件。怎么把這個意思表達成數(shù)學(xué)式子呢?”這時學(xué)生們七嘴八舌地討論起來,都搶著回答,

      我注意到一位平時不愛說話的學(xué)生緊鎖眉頭,便讓他發(fā)言:“可以設(shè)小寶的體重為x千克,能列出兩個不等式。可是接下來我就不知道了!蔽衣犃诵闹幸粍樱庾R到這應(yīng)是思想滲透的好機會,便解釋說:“我們在初中會遇到許多問題都可以用類似的方法來研究解決,比方說前面列方程組”不等我說完,學(xué)生都齊聲答:“列不等式組!比12小組積極投入到解題活動中了。5分鐘后,我請學(xué)生板演,自己下去巡查、指導(dǎo),發(fā)現(xiàn)學(xué)生的解題思路都很清楚,只是部分學(xué)生對答案的表達不夠準(zhǔn)確。于是提議學(xué)生說說列不等式組解應(yīng)用題分幾步,應(yīng)注意什么。此時學(xué)生也基本上形成了對不等式方法的完整認(rèn)識。我便出示拓展應(yīng)用課件:

      一次考試共25道選擇題,做對一道得4分,做錯一道減2分,不做得0分。若小明想確保考試成績在60分以上,那么他至少要做對多少題?

      設(shè)置這道題,既有調(diào)查本節(jié)課效果的意圖,也想鞏固拓展一下學(xué)生的思維。沒料到相當(dāng)多學(xué)生對“至少”一詞理解不準(zhǔn)確,導(dǎo)致失誤。這正好讓我們的“本課小結(jié)”填補了一個空白——弄清題目中描述數(shù)量關(guān)系的關(guān)鍵詞才是解題的關(guān)鍵。

      三、反思

      本節(jié)課講完后,我感到一絲欣慰,看到孩子們躍躍欲試的學(xué)習(xí)勁頭,突然領(lǐng)悟到:教師的教學(xué)行為至關(guān)重要,成功的教學(xué),能開啟學(xué)生心靈的窗戶,能幫學(xué)生樹立學(xué)習(xí)的自信心。

      本節(jié)課我有幾個深刻的感受:

      1、在課前準(zhǔn)備的時候,我就覺得不等式組的應(yīng)用是個難點。所以在課堂教學(xué)中設(shè)置了幾個臺階,這也正好符合了循序漸進的教學(xué)原則。

      2、例題貼近學(xué)生實際,我在教學(xué)中有采用了更親近的教學(xué)語言,有利于激發(fā)學(xué)生的探究欲望。

      3、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),隨時采取靈活適宜的教學(xué)方法,師生互動,生生互動,課堂教學(xué)才更加有效。

      4、學(xué)生在學(xué)習(xí)后,確實感受到“不等式的方法”就像方程的方法一樣是從字母表示數(shù)開始研究解決的。這種方法可以幫助我們用數(shù)學(xué)的方式解決實際問題。

    初中數(shù)學(xué)教學(xué)設(shè)計13

      課型:新授課

      學(xué)習(xí)目標(biāo):

      1.能根據(jù)具體問題中的數(shù)量關(guān)系列出一元二次方程并利用它解決具體問題.

      2.學(xué)會運用數(shù)學(xué)知識分析解決實際問題,體會數(shù)學(xué)的價值。

      重點:列一元二次方程解應(yīng)用題

      難點:學(xué)會分析問題中的等量關(guān)系

      一、知識回顧

      列方程解應(yīng)用題的一般步驟是①②③④⑤⑥

      二、自學(xué)教材、合作探究

      1、自學(xué)教材45頁,學(xué)習(xí)分析“探究一”中的數(shù)量關(guān)系

      設(shè)每輪傳染中平均一個人傳染了x個人。開始有一人患了流感,第一輪的傳染源就是這個人,他傳染了x個人,那么,用代數(shù)式表示,第一輪后共有( )人患了流感;第二輪傳染中,這些人中的每個人又傳染了x個人,用代數(shù)式表示,第二輪后共有( )人患了流感。則可列方程為:

      2、解這個方程,得

      3、想一想:三輪傳染后有多少人患流感?四輪呢?

      三、檢查自學(xué)效果

      1.(xxxx年畢節(jié)地區(qū))有一人患了流感,經(jīng)過兩輪傳染后共有100人患了流感,那么每輪傳染中,平均一個人傳染的人數(shù)為( )

      A.8人B.9人C.10人D.11人

      2.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈送一件;全組共互贈了182件.如果全組有x名學(xué)生,則根據(jù)題意列出的方程是( )

      A. B. C. D.

      四、指導(dǎo)學(xué)生應(yīng)用

      某種電腦病毒傳播非?欤绻慌_電腦被感染,經(jīng)過兩輪感染后就會有81臺電腦被感染.請你用學(xué)過的知識分析,每輪感染中平均一臺電腦會感染幾臺電腦?若病毒得不到有效控制,3輪感染后,被感染的`電腦會不會超過700臺?(xxxx廣東中考9分)

      解:設(shè)每輪感染中平均每一臺電腦會感染臺電腦,1分

      4分

      解之得6分

      8分

      答:每輪平均每一臺電腦會感染臺電腦,3輪感染后,被感染的電腦超過700臺。

      五、鞏固訓(xùn)練:

      1.一個多邊形的對角線有9條,則這個多邊形的邊數(shù)是( ).

      A.6 B.7 C.8 D.9

      2.元旦期間,一個小組有若干人,新年互送賀卡一張,已知全組共送賀卡132張,則這個小組共有( )人

      A.11 B.12 C.13 D.14

      3.九年級(3)班文學(xué)小組在舉行的圖書共享儀式上互贈圖書,每個同學(xué)都把自己的圖書向本組其他成員贈送一本,全組共互贈了240本圖書,如果設(shè)全組共有x名同學(xué),依題意,可列出的方程是( )

      A.x(x+1)=240 B.x(x-1)=240

      C.2x(x+1)=240 D.x(x+1)=240

      4.參加中秋晚會的每兩個人都握了一次手,所有人共握手10次,則有( )人參加聚會。

      5.學(xué)校組織了一次籃球單循環(huán)比賽,共進行了15場比賽,那么有個球隊參加了這次比賽。

      6.甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?

      反思:2題和4題列方程時為何不一樣呢?

      六、歸納小結(jié):

      1.本節(jié)課我們學(xué)習(xí)了列一元一次方程解應(yīng)用題,要注意解題步驟,特別地,要檢驗解的結(jié)果是否正確與符合題意,并注意題型的積累。

      2.(方法歸納)解應(yīng)用題地步驟是:審、設(shè)、列、解、檢、答,關(guān)鍵是尋找等量關(guān)系,可以采用列式法,線段圖示法,列表法等來幫助尋找,并注重檢驗。

      七、效果測評:

      1.解下列方程。(1)+10x+21=0(2)-x=1

      2.兩個相鄰的偶數(shù)的積是240,求這兩個偶數(shù)。

      3.參加一次足球聯(lián)賽的每兩個隊之間都進行兩場比賽,共要比賽90場,共有多少個隊參加比賽?

    初中數(shù)學(xué)教學(xué)設(shè)計14

      教材分析

      1.這節(jié)的重點為:去括號。因此,本節(jié)所學(xué)的知識實際上就是對前面所學(xué)知識的一個鞏固和深化,要突破這個重點,只有在掌握方法的前提下,通過一定的練習(xí)來掌握。

      2.去括號是整式加減的一個重要內(nèi)容,也是下一章一元一次方程的直接基礎(chǔ),也是今后繼續(xù)學(xué)習(xí)整式的乘除、因式分解、方程,以及分式、函數(shù)等的重要基礎(chǔ)。

      學(xué)情分析

      1.去括號法則是教材上的教學(xué)內(nèi)容,學(xué)生學(xué)習(xí)時會經(jīng)常出現(xiàn)錯用法則的現(xiàn)象。實驗表明:完全可以用乘法分配律取代去括號法則.這是由于:(1)“去括號法則”,增加了記憶負擔(dān)和出錯的機會,容易出錯;(2)去括號的法則增加了解題長度,降低了學(xué)習(xí)效率;(3)用乘法分配律去括號的學(xué)習(xí)是同化而非順應(yīng),易于理解與掌握;(4)用乘法分配律去括號是回歸本質(zhì),返璞歸真,且既可減少學(xué)習(xí)時間,又能提高運算的正確率。

      教學(xué)目標(biāo)

      1.熟練掌握去括號時符號的變化規(guī)律;

      2.能正確運用去括號進行合并同類項;

      3.理解去括號的依據(jù)是乘法分配律。

      教學(xué)重點和難點

      重點

      去括號時符號的變化規(guī)律。

      難點

      括號外的因數(shù)是負數(shù)時符號的變化規(guī)律。

      教學(xué)過程

      一、創(chuàng)設(shè)情景問題

      青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的形式速度可以達到120千米/時。

      請問:(3)在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要t小時,則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?

      解:這段鐵路的全長為100t+120(t-0.5)(千米)

      凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。

      提出問題,如何化簡上面的'兩個式子?引出本節(jié)課的學(xué)習(xí)內(nèi)容。

      二、探索新知

      1.回顧:

      1你記得乘法分配率嗎?怎么用字母來表示呢?

      a(b+c)=ab+ac

      2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

      2.探究

      計算(試著把括號去掉)

     。1)13+(7-5)(2)13-(7-5)

      類比數(shù)的運算,去掉下面式子的括號

     。3)a+(b-c)(4)a-(b-c)

      3.解決問題

      100t+120(t-0.5)=100t-120(t-0.5)=

      思考:

      去掉括號前,括號內(nèi)有幾項、是什么符號?去括號后呢?

      去括號的依據(jù)是什么?

      三、知識點歸納

      去括號法則:

      如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;

      如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反.

      注意事項

     。1)去括號規(guī)律要準(zhǔn)確理解,去括號應(yīng)對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;

     。2)括號內(nèi)原有幾項去掉括號后仍有幾項.

      四、例題精講

      例4化簡下列各式:

     。1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

      五、鞏固練習(xí)

      課本P68練習(xí)第一題.

      六、課堂小結(jié)

      1.今天你收獲了什么?

      2.你覺得去括號時,應(yīng)特別注意什么?

      七、布置作業(yè)

      課本P71習(xí)題2.2第2題

    初中數(shù)學(xué)教學(xué)設(shè)計15

      為了提高學(xué)生的學(xué)習(xí)興趣,增大學(xué)生的學(xué)習(xí)參與面,減小差距。努力作好教學(xué)工作,在這一學(xué)期中,下文將準(zhǔn)備了初中二年級下冊數(shù)學(xué)教學(xué)設(shè)計如下:

      一、教學(xué)目標(biāo):

      通過本期的學(xué)習(xí),要使學(xué)生在情感與態(tài)度上,認(rèn)識到數(shù)學(xué)來源于實踐,又反作用于實踐,認(rèn)識現(xiàn)實生活中圖形間的數(shù)量關(guān)系,能夠設(shè)計精美的圖案,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生實事求是、嚴(yán)肅認(rèn)真的學(xué)習(xí)態(tài)度,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生對數(shù)學(xué)的熱愛,對生活的熱愛,在民主、和諧、合作、探究、有序、分享發(fā)現(xiàn)快樂,感受學(xué)習(xí)的快樂。對于過程與方法,通過學(xué)生積極參與對知識的探究,經(jīng)歷發(fā)現(xiàn)知識,發(fā)現(xiàn)知識間的內(nèi)在聯(lián)系,讓學(xué)生經(jīng)歷發(fā)現(xiàn)知識道路上坎坎坷坷,達到深刻理解掌握知識的目的,達到漫江碧透,魚翔淺底的境界,在經(jīng)歷這些活動中,提高學(xué)生的動手實踐能力,提高學(xué)生的邏輯推理能力與邏輯思維能力,自主探究,解決問題的能力,提高運算能力,使所有學(xué)生在數(shù)學(xué)上都有不同的發(fā)展,盡可能接近其發(fā)展的最大值,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,發(fā)展學(xué)生的非智力因素,使學(xué)生潛移默化的接受辯證唯物主義的熏陶,提高學(xué)生素質(zhì)。

      二、教材分析

      本學(xué)期教學(xué)內(nèi)容共計五章,知識的前后聯(lián)系,教材的教學(xué)目標(biāo),重、難點分析如下:

      第十六章 分式 本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運算,整數(shù)指數(shù)冪的概念及運算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。

      第十七章 反比例函數(shù) 函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,本單元學(xué)生在學(xué)習(xí)了一次函數(shù)后,進一步研究反比例函數(shù)。學(xué)生在本章中經(jīng)歷:反比例函數(shù)概念的抽象概括過程,體會建立數(shù)學(xué)模型的思想,進一步發(fā)展學(xué)生的'抽象思維能力;經(jīng)歷反比例函數(shù)的圖象及其性質(zhì)的探索過程,在交流中發(fā)展能力這是本章的重點之一;經(jīng)歷本章的重點之二:利用反比例函數(shù)及圖象解決實際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力;經(jīng)歷函數(shù)圖象信息的識別應(yīng)用過程,發(fā)展學(xué)生形象思維;能根據(jù)所給信息確定反比例函數(shù)表達式,會作反比例函數(shù)圖象,并利用它們解決簡單的實際問題。本章的難點在于對學(xué)生抽象思維的培養(yǎng),以及提高數(shù)形結(jié)合的意識和能力。

      第十八章 勾股定理 直角三角形是一種特殊的三角形,它有許多重要的性質(zhì),如兩個銳角互余,30度角所對的直角邊等于斜邊的一半,本章所研究的勾股定理,也是直角三角形的性質(zhì),而且是一條非常重要的性質(zhì),本章分為兩節(jié),第一節(jié)介紹勾股定理及其應(yīng)用,第二節(jié)介紹勾股定理的逆定理。

      第十九章 四邊形 四邊形是人們?nèi)粘I钪袘?yīng)用較廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是空間與圖形領(lǐng)域研究的主要對象之一。本章是在學(xué)生前面學(xué)段已經(jīng)學(xué)過的四邊形知識、本學(xué)段學(xué)過的多邊形、平行線、三角形的有關(guān)知識的基礎(chǔ)上來學(xué)習(xí)的,也可以說是在已有知識的基礎(chǔ)上做進一步系統(tǒng)的整理和研究,本章內(nèi)容的學(xué)習(xí)也反復(fù)運用了平行線和三角形的知識。從這個角度來看,本章的內(nèi)容也是前面平行線和三角形等內(nèi)容的應(yīng)用和深化。

      第二十章 數(shù)據(jù)的分析 本章主要研究平均數(shù)、中位數(shù)、眾數(shù)以及極差、方差等統(tǒng)計量的統(tǒng)計意義,學(xué)習(xí)如何利用這些統(tǒng)計量分析數(shù)據(jù)的集中趨勢和離散情況,并通過研究如何用樣本的平均數(shù)和方差估計總體的平均數(shù)和方差,進一步體會用樣本估計總體的思想。

      三、提高學(xué)科教育質(zhì)量的主要措施:

      1、認(rèn)真做好教學(xué)七認(rèn)真工作。把教學(xué)七認(rèn)真作為提高成績的主要方法,認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn),擴充教材內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),認(rèn)真制作測試試卷,也讓學(xué)生學(xué)會認(rèn)真學(xué)習(xí)。

      2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。

      3、引導(dǎo)學(xué)生積極參與知識的構(gòu)建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學(xué)習(xí)課堂,讓學(xué)生體會學(xué)習(xí)的快樂,享受學(xué)習(xí)。引導(dǎo)學(xué)生寫復(fù)習(xí)提綱,使知識來源于學(xué)生的構(gòu)造。

      4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì),提高學(xué)生舉一反三的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的狀態(tài)。

      5、運用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

      6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補智力上的不足。

      7、指導(dǎo)成立課外興趣小組的民間組織,開展豐富多彩的課外活動,開展對奧數(shù)題的研究,課外調(diào)查,操作實踐,帶動班級學(xué)生學(xué)習(xí)數(shù)學(xué),同時發(fā)展這一部分學(xué)生的特長。

      8、開展分層教學(xué),布置作業(yè)設(shè)置A、B、C三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問要照顧好、中、差三類學(xué)生,使他們都等到發(fā)展。

      9、進行個別輔導(dǎo),優(yōu)生提升能力,扎實打牢基礎(chǔ)知識,對差生,一些關(guān)鍵知識,輔導(dǎo)差生過關(guān),為差生以后的發(fā)展鋪平道路。

      10、站在系統(tǒng)的高度,使知識構(gòu)筑在一個系統(tǒng),上升到哲學(xué)的高度,八方聯(lián)系,渾然一體,使學(xué)生學(xué)得輕松,記得牢固。

    【初中數(shù)學(xué)教學(xué)設(shè)計】相關(guān)文章:

    初中數(shù)學(xué)教學(xué)設(shè)計02-01

    數(shù)學(xué)初中教學(xué)設(shè)計06-24

    初中數(shù)學(xué)教學(xué)設(shè)計04-29

    初中數(shù)學(xué)教學(xué)設(shè)計(通用)07-09

    初中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計02-14

    [薦]初中數(shù)學(xué)教學(xué)設(shè)計05-12

    初中數(shù)學(xué)教學(xué)設(shè)計15篇02-17

    初中數(shù)學(xué)教學(xué)設(shè)計(15篇)03-24

    初中數(shù)學(xué)《勾股定理》教學(xué)設(shè)計10-17

    初中數(shù)學(xué)教學(xué)設(shè)計 15篇05-17