欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    二次根式教案

    時間:2023-04-05 08:37:50 教案 投訴 投稿

    【精品】二次根式教案三篇

      在教學(xué)工作者開展教學(xué)活動前,時常需要編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識?靵韰⒖冀贪甘窃趺磳懙陌桑∫韵率切【幷淼亩胃浇贪3篇,歡迎閱讀與收藏。

    【精品】二次根式教案三篇

    二次根式教案 篇1

      一、復(fù)習引入

      學(xué)生活動:請同學(xué)們完成下列各題:

      1.計算

     。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

      二、探索新知

      如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

      整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.

      例1.計算:

      (1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

      解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

     。1)(+6)(3-)(2)(+)(-)

      分析:剛才已經(jīng)分析,二次根式的.多項式乘以多項式運算在乘法公式運算中仍然成立.

      解:(1)(+6)(3-)

      =3-()2+18-6=13-3(2)(+)(-)=()2-()2

      =10-7=3

      三、鞏固練習

      課本P20練習1、2.

      四、應(yīng)用拓展

      例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

      化簡+,并求值.

      分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?

    二次根式教案 篇2

      教學(xué)設(shè)計思想

      新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。

      教學(xué)目標

      知識與技能

      1.知道什么是二次根式,并會用二次根式的意義解題;

      2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

      過程與方法

      通過二次根式的.概念和性質(zhì)的學(xué)習,培養(yǎng)邏輯思維能力;

      情感態(tài)度價值觀

      1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;

      2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

      教學(xué)重點和難點

      重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

      難點:確定二次根式中字母的取值范圍。

      教學(xué)方法

      啟發(fā)式、講練結(jié)合

      教學(xué)媒體

      多媒體

      課時安排

      1課時

    二次根式教案 篇3

      教學(xué)目的

      1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

      2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

      教學(xué)重點

      最簡二次根式的定義。

      教學(xué)難點

      一個二次根式化成最簡二次根式的方法。

      教學(xué)過程

      一、復(fù)習引入

      1.把下列各根式化簡,并說出化簡的根據(jù):

      2.引導(dǎo)學(xué)生觀察考慮:

      化簡前后的根式,被開方數(shù)有什么不同?

      化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

      3.啟發(fā)學(xué)生回答:

      二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

      二、講解新課

      1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

      滿足下列兩個條件的二次根式叫做最簡二次根式:

      (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

      (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

      最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

      2.練習:

      下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

      3.例題:

      例1 把下列各式化成最簡二次根式:

      例2 把下列各式化成最簡二次根式:

      4.總結(jié)

      把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

      當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的'因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

      當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

      此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

      三、鞏固練習

      1.把下列各式化成最簡二次根式:

      2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

      四、小結(jié)

      本節(jié)課學(xué)習了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

      五、布置作業(yè)

      下列各式化成最簡二次根式:

    【二次根式教案】相關(guān)文章:

    二次根式教案02-15

    《二次根式的運算》的教案08-25

    二次根式的加減教案01-19

    二次根式數(shù)學(xué)教案11-26

    二次根式教案7篇01-24

    精選二次根式教案三篇08-18

    二次根式教案4篇02-05

    二次根式教案15篇02-16

    二次根式教案(15篇)02-27

    【熱門】二次根式教案3篇10-13

    Copyright©2013-2024duanmeiwen.com版權(quán)所有