欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    二次根式教案

    時(shí)間:2023-04-09 18:08:42 教案 投訴 投稿

    二次根式教案范文8篇

      作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,總歸要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。教案要怎么寫呢?下面是小編幫大家整理的二次根式教案8篇,希望能夠幫助到大家。

    二次根式教案范文8篇

    二次根式教案 篇1

      第十六章 二次根式

      代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式

      5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

      6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

      7.解:(1) . (2)寬:3 ;長(zhǎng):5 .

      8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

      9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

      10.解析:在利用=|a|=化簡(jiǎn)二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來(lái)根號(hào)里面的符號(hào),這也是化簡(jiǎn)時(shí)最容易出錯(cuò)的地方.

      解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

      本節(jié)課通過(guò)“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對(duì)知識(shí)的形成與掌握變得簡(jiǎn)單起來(lái),將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.

      在探究二次根式的性質(zhì)時(shí),通過(guò)“提問(wèn)——追問(wèn)——討論”的形式展開,保證了活動(dòng)有一定的針對(duì)性,但是學(xué)生發(fā)揮主體作用不夠.

      在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.

      練習(xí)(教材第4頁(yè))

      1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

      2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

      習(xí)題16.1(教材第5頁(yè))

      1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.

      2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

      3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長(zhǎng)為2x,則它的鄰邊長(zhǎng)為3x.由長(zhǎng)方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長(zhǎng)方形的.相鄰兩邊的長(zhǎng)分別為和.

      4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

      5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

      6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長(zhǎng)為.

      7.解:(1)∵x2+1>0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.

      8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.

      9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

      10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.

      如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn):+.

      〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡(jiǎn).

      解:由數(shù)軸可得:a+b<0,a-b>0,

      ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

      [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡(jiǎn)二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

      已知a,b,c為三角形的三條邊,則+= .

      〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對(duì)值符號(hào)并化簡(jiǎn).因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

      [解題策略] 此類化簡(jiǎn)問(wèn)題要特別注意符號(hào)問(wèn)題.

      化簡(jiǎn):.

      〔解析〕 題中并沒(méi)有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

      解:當(dāng)x≥3時(shí),=|x-3|=x-3;

      當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.

      [解題策略] 化簡(jiǎn)時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義分情況進(jìn)行討論.

      5

      O

      M

    二次根式教案 篇2

      教學(xué)目標(biāo)

      課標(biāo)要求:學(xué)生要學(xué)會(huì)學(xué)習(xí)、自主學(xué)習(xí),要為學(xué)生終生學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ),根據(jù)教學(xué)大綱和新課標(biāo)的要求,根據(jù)教材內(nèi)容和學(xué)生的特點(diǎn)我確定了本節(jié)課的教學(xué)目標(biāo) 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過(guò)程,發(fā)展學(xué)生的歸納概括能力。 3、通過(guò)對(duì)二次根式的概念和性質(zhì)的探究,提高數(shù)學(xué)探究能力和歸納表達(dá)能力。 4、學(xué)生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣,并提高應(yīng)用的意識(shí)。

      教學(xué)重點(diǎn):二次根式的概念和基本性質(zhì)

      教學(xué)難點(diǎn):二次根式的基本性質(zhì)的靈活運(yùn)用

      教法和學(xué)法

      教學(xué)活動(dòng)的本質(zhì)是一種合作,一種交流。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者,本節(jié)課主要采用自主學(xué)習(xí),合作探究,引領(lǐng)提升的方式展開教學(xué)。依據(jù)學(xué)生的年齡特點(diǎn)和已有的知識(shí)基礎(chǔ),本節(jié)課注重加強(qiáng)知識(shí)間的縱向聯(lián)系,,拓展學(xué)生探索的空間,體現(xiàn)由具體到抽象的認(rèn)識(shí)過(guò)程。為了為后續(xù)學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會(huì)遇到很多實(shí)際問(wèn)題,在解決實(shí)際問(wèn)題的過(guò)程中,要遇到將二次根式化成最簡(jiǎn)二次根式等,本課適當(dāng)加強(qiáng)練習(xí),讓學(xué)生養(yǎng)成聯(lián)系和發(fā)展的觀點(diǎn)學(xué)習(xí)數(shù)學(xué)的習(xí)慣。

      教學(xué)過(guò)程

      活動(dòng)一:根據(jù)學(xué)生已有知識(shí)探究二次根式的概念 1.探究二次根式概念 由四個(gè)實(shí)際問(wèn)題(三個(gè)幾何問(wèn)題,一個(gè)物理問(wèn)題)入手,設(shè)置問(wèn)題情境,讓學(xué)生感受到研究二次根式來(lái)源于生活又服務(wù)于生活。 思考:用帶有根號(hào)的式子填空,看看寫出的結(jié)果有什么特點(diǎn)? (1)要做一個(gè)兩條直角邊的長(zhǎng)分別為7cm和4cm的三角尺,斜邊的長(zhǎng)應(yīng)為 cm

      (2)面積為S的正方形的邊長(zhǎng)為

      (3)要修建一個(gè)面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

      (4)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開始落下時(shí)的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學(xué)生發(fā)現(xiàn)所填結(jié)果都表示一個(gè)數(shù)的算術(shù)平方根,教師引導(dǎo)學(xué)生用一個(gè)式子表示這些有共同特點(diǎn)的式子。學(xué)生表示為,此時(shí)教師啟發(fā)學(xué)生回憶已學(xué)平方根的性質(zhì)讓學(xué)生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評(píng)析 例1:哪些為二次根式? 練習(xí):x取何值時(shí)下列各式有意義,通過(guò)4小題的訓(xùn)練,讓學(xué)生體會(huì)二次根式概念的`初步應(yīng)用。加深對(duì)二次根式定義的理解,并注重新舊知識(shí)間的聯(lián)系,用轉(zhuǎn)化的思想解決問(wèn)題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問(wèn)題。

      活動(dòng)二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學(xué)生分類討論探究出:(a)是一個(gè)非負(fù)數(shù),此時(shí)歸納出二次根式的第一個(gè)性質(zhì):雙重非負(fù)性。培養(yǎng)學(xué)生的分類討論和概括能力。例2:,則變式:,

      活動(dòng)三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來(lái)研究二次根式的第二個(gè)性質(zhì),首先讓學(xué)生通過(guò)探究活動(dòng)感受這條結(jié)論,然后再?gòu)乃阈g(shù)平方根的意義出發(fā),結(jié)合具體例子對(duì)這條結(jié)論進(jìn)行分析,引導(dǎo)學(xué)生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運(yùn)算與平方運(yùn)算的關(guān)系,培養(yǎng)學(xué)生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學(xué)生口述教師板書,后面的兩題由學(xué)生板演引導(dǎo)學(xué)生分析(2)(4)實(shí)質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡(jiǎn)二次根式(簡(jiǎn)單的分母有理化)做好鋪墊。 例4:在實(shí)數(shù)范圍內(nèi)分解因式

      活動(dòng)四:探究二次根式的性質(zhì)3 3.探究 在活動(dòng)三的基礎(chǔ)上出示課本第4頁(yè)的探究: 引導(dǎo)學(xué)生比較活動(dòng)三與活動(dòng)四探究中兩組題目的不同之處,活動(dòng)三中的題目是對(duì)非負(fù)數(shù)先進(jìn)行開平方運(yùn)算,再進(jìn)行平方運(yùn)算;而活動(dòng)四中的題目正好相反,是先進(jìn)行平方運(yùn)算,再進(jìn)行開平方運(yùn)算。再次由特殊到一般的讓學(xué)生歸納出二次根式的又一個(gè)性質(zhì)。培養(yǎng)學(xué)生觀察、對(duì)比的能力和意識(shí)。 此時(shí)引導(dǎo)學(xué)生談一談對(duì)()2和的聯(lián)系和區(qū)別 相同點(diǎn):①都有平方和開平方運(yùn)算 ②運(yùn)算結(jié)果都是非負(fù)數(shù) ③僅當(dāng)a時(shí),()2= 不同點(diǎn):①?gòu)男问胶瓦\(yùn)算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運(yùn)算結(jié)果看:()2=a(a),(a為任意數(shù)

    二次根式教案 篇3

      一、內(nèi)容和內(nèi)容解析

      1.內(nèi)容

      二次根式的概念.

      2.內(nèi)容解析

      本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的概念. 它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).

      教材先設(shè)置了三個(gè)實(shí)際問(wèn)題,這些問(wèn)題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過(guò)例1討論了二次根式中被開方數(shù)字母的取值范圍的問(wèn)題,加深學(xué)生對(duì)二次根式的定義的理解.

      本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

      二、目標(biāo)和目標(biāo)解析

      1.教學(xué)目標(biāo)

     。1)體會(huì)研究二次根式是實(shí)際的需要.

      (2)了解二次根式的概念.

      2. 教學(xué)目標(biāo)解析

     。1)學(xué)生能用二次根式表示實(shí)際問(wèn)題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性.

     。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開方數(shù)字母的取值范圍.

      三、教學(xué)問(wèn)題診斷分析

      對(duì)于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.

      本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性.

      四、教學(xué)過(guò)程設(shè)計(jì)

      1.創(chuàng)設(shè)情境,提出問(wèn)題

      問(wèn)題1你能用帶有根號(hào)的的式子填空嗎?

     。1)面積為3 的正方形的邊長(zhǎng)為_______,面積為S 的正方形的邊長(zhǎng)為_______.

     。2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2 倍,面積為130?,則它的寬為______.

      (3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

      師生活動(dòng):學(xué)生獨(dú)立完成上述問(wèn)題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià).

      【設(shè)計(jì)意圖】讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性.

      問(wèn)題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

      師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.

      【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.

      2.抽象概括,形成概念

      問(wèn)題3 你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

      師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號(hào).

      【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過(guò)程,培養(yǎng)學(xué)生的`概括能力.

      追問(wèn):在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

      師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.

      【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.

      3.辨析概念,應(yīng)用鞏固

      例1 當(dāng) 時(shí)怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義?

      師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開方數(shù)為非負(fù)數(shù)的理解.

      例2 當(dāng) 是怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義? 呢?

      師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問(wèn).

      【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對(duì)二次根式被開方數(shù)為非負(fù)數(shù)的理解.

      問(wèn)題4 你能比較 與0的大小嗎?

      師生活動(dòng):通過(guò)分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,

      【設(shè)計(jì)意圖】通過(guò)這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生分類討論和歸納概括的能力.

      4.綜合運(yùn)用,鞏固提高

      練習(xí)1 完成教科書第3頁(yè)的練習(xí).

      練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時(shí),下列各式有意義.

     。1) ;(2) ;(3) ;(4) .

      【設(shè)計(jì)意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

      【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

      5.總結(jié)反思

      教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題.

     。1)本節(jié)課你學(xué)到了哪一類新的式子?

     。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

     。3)二次根式與算術(shù)平方根有什么關(guān)系?

      師生活動(dòng):教師引導(dǎo),學(xué)生小結(jié).

      【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法.

      6.布置作業(yè):

      教科書習(xí)題16.1第1,3,5, 7,10題.

      五、目標(biāo)檢測(cè)設(shè)計(jì)

      1. 下列各式中,一定是二次根式的是( )

      A. B. C. D.

      【設(shè)計(jì)意圖】考查對(duì)二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).

      2. 當(dāng) 時(shí),二次根式 無(wú)意義.

      【設(shè)計(jì)意圖】考查二次根式無(wú)意義的條件,即被開方數(shù)小于0,要注意審題.

      3.當(dāng) 時(shí),二次根式 有最小值,其最小值是 .

      【設(shè)計(jì)意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.

      4.對(duì)于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

      【設(shè)計(jì)意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮.

    二次根式教案 篇4

      一、內(nèi)容和內(nèi)容解析

      1.內(nèi)容

      二次根式的性質(zhì)。

      2.內(nèi)容解析

      本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

      對(duì)于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

      二、目標(biāo)和目標(biāo)解析

      1.教學(xué)目標(biāo)

     。1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;

     。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

     。3)了解代數(shù)式的概念.

      2.目標(biāo)解析

     。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

      (2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

     。3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

      三、教學(xué)問(wèn)題診斷分析

      二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問(wèn)題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

      本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

      四、教學(xué)過(guò)程設(shè)計(jì)

      1.探究性質(zhì)1

      問(wèn)題1 你能解釋下列式子的含義嗎?

      師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.

      【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

      問(wèn)題2 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).

      師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).

      【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

      問(wèn)題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

      師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的.性質(zhì): ( ≥0).

      【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

      例2 計(jì)算

     。1) ;(2) .

      師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

      【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

      2.探究性質(zhì)2

      問(wèn)題4 你能解釋下列式子的含義嗎?

      師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.

      【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

      問(wèn)題5 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).

      師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).

      【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

      問(wèn)題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

      師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

      【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

      例3 計(jì)算

      (1) ;(2) .

      師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

      【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

      3.歸納代數(shù)式的概念

      問(wèn)題7 回顧我們學(xué)過(guò)的式子,如, ( ≥0),這些式子有哪些共同特征?

      師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

      【設(shè)計(jì)意圖】學(xué)生通過(guò)觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

      4.綜合運(yùn)用

      (1)算一算:

      【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

     。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

      【設(shè)計(jì)意圖】通過(guò)此問(wèn)題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

     。3)談一談你對(duì) 與 的認(rèn)識(shí).

      【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.

      5.總結(jié)反思

     。1)你知道了二次根式的哪些性質(zhì)?

     。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?

     。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過(guò)程?

     。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說(shuō)說(shuō)你對(duì)代數(shù)式的認(rèn)識(shí).

      6.布置作業(yè):教科書習(xí)題16.1第2,4題.

      五、目標(biāo)檢測(cè)設(shè)計(jì)

      1. ; ; .

      【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.

      2.下列運(yùn)算正確的是( )

      A. B. C. D.

      【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.

      3.若 ,則 的取值范圍是 .

      【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

      4.計(jì)算: .

      【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

    二次根式教案 篇5

      教學(xué)目的:

      1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡(jiǎn)和計(jì)算二次根式;

      2、會(huì)求二次根式的代數(shù)的值;

      3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

      教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式

      教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

      教學(xué)過(guò)程:

      一、二次根式的混合運(yùn)算

      例1 計(jì)算:

      分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的.分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

      (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計(jì)算。

      練習(xí)1:P206 / 8--① P207 / 1①②

      例2 計(jì)算

      問(wèn):計(jì)算思路是什么?

      答:先把第一人的括號(hào)內(nèi)的式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。

      二、求代數(shù)式的值。 注意兩點(diǎn):

      (1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);

      (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡(jiǎn),再求值。

      例3 已知,求的值。

      分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母?墒褂(jì)算簡(jiǎn)便。

      例4 已知,求的值。

      觀察代數(shù)式的特點(diǎn),請(qǐng)說(shuō)出求這個(gè)代數(shù)式的值的思路。

      答:所求的代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡(jiǎn)后,再求值。

      三、小結(jié)

      1、對(duì)于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡(jiǎn)二次根式。

      2、在代數(shù)式求值問(wèn)題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡(jiǎn),然后再求值。

      3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡(jiǎn)捷。

      四、作業(yè)

      P206 / 7 P206 / 8---②③

    二次根式教案 篇6

      活動(dòng)1、提出問(wèn)題

      一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

      問(wèn)題:10+20是什么運(yùn)算?

      活動(dòng)2、探究活動(dòng)

      下列3個(gè)小題怎樣計(jì)算?

      問(wèn)題:1)-還能繼續(xù)往下合并嗎?

      2)看來(lái)二次根式有的能合并,有的.不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?

      二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

      活動(dòng)3

      練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

      創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。

      學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。

      教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。

      我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

      教師引導(dǎo)驗(yàn)證:

     、僭O(shè)=,類比合并同類項(xiàng)或面積法;

     、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

      ③先化簡(jiǎn),再合并

      學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開方數(shù)相同的能合并。

      教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

      提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

    二次根式教案 篇7

      教學(xué)目標(biāo)

      1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;

      2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):含二次根式的式子的混合運(yùn)算.

      難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.

      教學(xué)過(guò)程設(shè)計(jì)

      一、復(fù)習(xí)

      1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來(lái),并說(shuō)明各 式成立的條件.

      指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.

      2.二次根式 的乘法及除法的法則是什么?用式子表示出來(lái).

      指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,

      計(jì)算結(jié)果要把分母有理化.

      3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:

      4.在含有二次根式的式子的化簡(jiǎn)及求值等問(wèn)題中,常運(yùn)用三個(gè)可逆的式子:

      二、例題

      例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

      分析:

      (1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

      (3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;

      (4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.

      x-2且x0.

      解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以

      例3

      分析:第一個(gè)二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

      解 因?yàn)?-a>0,3-a0,所以

      a<1,|a-2|=2-a.

      (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

      這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

      問(wèn):上面的代數(shù)式中的兩個(gè)二次根式的被開方數(shù)的'式子如何化為完全平方式?

      分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.

      注意:

      所以在化簡(jiǎn)過(guò)程中,

      例6

      分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.

      a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

      三、課堂練習(xí)

      1.選擇題:

      A.a(chǎn)2B.a(chǎn)2

      C.a(chǎn)2D.a(chǎn)<2

      A .x+2 B.-x-2

      C.-x+2D.x-2

      A.2x B.2a

      C.-2x D.-2a

      2.填空題:

      4.計(jì)算:

      四、小結(jié)

      1.本節(jié)課復(fù)習(xí)的五個(gè)基本問(wèn)題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.

      2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過(guò)程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

      3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.

      4.通過(guò)例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問(wèn)題.

      五、作業(yè)

      1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

      2.把下列各式化成最簡(jiǎn)二次根式:

    二次根式教案 篇8

      教學(xué)設(shè)計(jì)思想

      新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的`重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。

      教學(xué)目標(biāo)

      知識(shí)與技能

      1.知道什么是二次根式,并會(huì)用二次根式的意義解題;

      2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

      過(guò)程與方法

      通過(guò)二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;

      情感態(tài)度價(jià)值觀

      1.經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程,發(fā)展應(yīng)用的意識(shí);

      2.通過(guò)二次根式性質(zhì)的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;

      難點(diǎn):確定二次根式中字母的取值范圍。

      教學(xué)方法

      啟發(fā)式、講練結(jié)合

      教學(xué)媒體

      多媒體

      課時(shí)安排

      1課時(shí)

    【二次根式教案】相關(guān)文章:

    二次根式教案02-15

    二次根式的加減教案01-19

    《二次根式的運(yùn)算》的教案08-25

    二次根式教案7篇01-24

    二次根式數(shù)學(xué)教案11-26

    二次根式教案4篇02-05

    二次根式教案(15篇)02-27

    二次根式教案15篇02-16

    精選二次根式教案三篇08-18

    關(guān)于二次根式教案四篇10-13

    Copyright©2013-2024duanmeiwen.com版權(quán)所有