- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
平行四邊形教案合集五篇
作為一名教學(xué)工作者,可能需要進(jìn)行教案編寫工作,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那要怎么寫好教案呢?下面是小編幫大家整理的平行四邊形教案5篇,僅供參考,大家一起來看看吧。
平行四邊形教案 篇1
學(xué)習(xí)目標(biāo)
1、 理解平行四邊形的概念及其特征,知道平行四邊形兩組對(duì)邊分別平行且相等。
2、認(rèn)識(shí)平行四邊形的底和高,會(huì)畫出平行四邊形的高;
3、培養(yǎng)學(xué)生的實(shí)踐能力,觀察能力和分析能力。
學(xué)習(xí)重點(diǎn):
掌握平行四邊形的特征。
學(xué)習(xí)難點(diǎn):
會(huì)畫平行四邊形的高。
學(xué)習(xí)準(zhǔn)備:
課件、長(zhǎng)方形框架、平行四邊形紙、釘板
導(dǎo)學(xué)過程:
一、魔術(shù)表演:
教師拿出一個(gè)用四根木條釘成的長(zhǎng)方形,兩手捏住長(zhǎng)方形的兩個(gè)對(duì)角,向相反方向拉,觀察兩組對(duì)邊有什么變化?拉成了什么圖形?為什么會(huì)發(fā)生這樣的變化?
二、揭示課題和目標(biāo)。
三、體驗(yàn)平行四邊形的特性
1、揭示平行四邊形的不穩(wěn)定性;
2、你能舉出日常生活中應(yīng)用平行四邊形容易變形這一性質(zhì)的例子嗎?
3、圖片展示。
四、探究平行四邊形的特征
。ㄒ唬┯^察圖形,合理猜想
請(qǐng)學(xué)生拿出手里的平行四邊形紙,讓學(xué)生大膽猜平行四邊形的特征。學(xué)生發(fā)言。
(二)動(dòng)手操作,驗(yàn)證猜想
1、操作實(shí)踐。教師提示用三角板或者直尺驗(yàn)證。學(xué)生小組驗(yàn)證。
2、匯報(bào)交流驗(yàn)證的過程。
預(yù)設(shè):1、測(cè)量后發(fā)現(xiàn)對(duì)邊相等
2、延長(zhǎng)對(duì)邊不相交,所以對(duì)邊平行
3、用畫垂線的方法,從一邊向另一邊畫垂線,垂線段都相等,所以對(duì)邊平行。
3、歸納特征。
師:現(xiàn)在請(qǐng)你用一句話概括平行四邊形的特征。生用自己的語言描述。
教師幫助歸納并板書:兩組對(duì)邊分別平行且相等
4、應(yīng)用做教材67頁(yè)1題。
五、動(dòng)手操作,認(rèn)識(shí)“底和高”:
1、觀察畫出的垂直線段,告訴學(xué)生:
像這樣從平行四邊形一條邊上的一點(diǎn)向?qū)呉粭l垂線,這點(diǎn)和垂足之間的線段叫做平行四邊形的高,垂足所在的'邊叫平行四邊形的底。
2、請(qǐng)學(xué)生猜猜,平行四邊形有多少條高?
3、揭示平行四邊形高的畫法
4、練習(xí):畫出四個(gè)平行四邊形的高。
五、智慧屋(練習(xí)題)
六、全課總結(jié):通過本節(jié)課的學(xué)習(xí),你知道了平行四邊形的哪些東西呢?
平行四邊形教案 篇2
【學(xué)習(xí)目標(biāo)】
1.能運(yùn)用勾股定理解決生活中與直角三角形有關(guān)的問題;
2.能從實(shí)際問題中建立數(shù)學(xué)模型,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,同時(shí)滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。
3.進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值
【學(xué)習(xí)重、難點(diǎn)】
重點(diǎn):勾股定理的應(yīng)用
難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題
【新知預(yù)習(xí)】
1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長(zhǎng).
【導(dǎo)學(xué)過程】
一、情境創(chuàng)設(shè)
欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計(jì)算各條拉索的長(zhǎng)?
二、探索活動(dòng)
活動(dòng)一 如圖,起重機(jī)吊運(yùn)物體,已知BC=6m,AC=10m,求AB的長(zhǎng).
活動(dòng)二 在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請(qǐng)問這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各為多少?
活動(dòng)三 一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖所示的某工廠,問這輛卡車能否通過該工廠的廠門?
三、例題講解:
1.《中華人民共和國(guó)道路交通安全法》規(guī)定:小汽車在城市道路上行駛速度不得超過70km/h,如圖一輛小汽車在一條城市中的直道上行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀的正前方30m處,過了2s后,測(cè)得小汽車與車速檢測(cè)儀間的距離為50m,這輛小汽車超速了嗎?
2.一種盛飲料的圓柱形杯(如圖),測(cè)得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問吸管需要多長(zhǎng)?
【反饋練習(xí)】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____;
(2)一個(gè)直角三角形的模具,量得其中兩邊的長(zhǎng)分別為5cm,3cm,則第三邊的長(zhǎng)是______;
(3)甲乙兩人同時(shí)從同一地出發(fā),甲往東走4km,乙往南走6km,這時(shí)甲乙兩人相距____km.
2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.無法確定
3.如圖,筆直的公路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C、D兩村到收購(gòu)站E的距離相等,則收購(gòu)站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?
【課后作業(yè)】P67 習(xí)題2.7 1、4題
八年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)教案:由中點(diǎn)想到什么
第十八講 由中點(diǎn)想到什么
線段的中點(diǎn)是幾何圖形中一個(gè)特殊的點(diǎn),它關(guān)聯(lián)著三角形中線、直角三角形斜邊中線、中心對(duì)稱圖形、三角形中位線、梯形中位線等豐富的知識(shí),恰當(dāng)?shù)乩弥悬c(diǎn),處理中點(diǎn)是解與中點(diǎn)有關(guān)問題的關(guān)鍵,由中點(diǎn)想到什么?常見的聯(lián)想路徑是:
1.中線倍長(zhǎng);
2.作直角三角形斜邊中線;
3.構(gòu)造中位線;
4.構(gòu)造中心對(duì)稱全等三角形等.
熟悉以下基本圖形,基本結(jié)論:
例題求解
【例1】 如圖,在△ABC中,∠B=2∠C,AD⊥BC于D,M為BC的中點(diǎn), AB=10cm,則MD的長(zhǎng)為 .
(“希望杯”邀請(qǐng)賽試題)
思路點(diǎn)撥 取AB中點(diǎn)N,為直角三角形斜邊中線定理、三角形中位線定理的運(yùn)用創(chuàng)造條件.
注 證明線段倍分關(guān)系是幾何問題中一種常見題型,利用中點(diǎn)是一個(gè)有效途徑,基本方法有:
(1)利用直角三角斜邊中線定理;
(2)運(yùn)用中位線定理;
(3)倍長(zhǎng)(或折半)法.
【例2】 如圖,在四邊形ABCD中,一組對(duì)邊AB=CD,另一組對(duì)邊AD≠BC,分別取AD、BC的中點(diǎn)M、N,連結(jié)MN.則AB與MN的關(guān)系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中數(shù)學(xué)創(chuàng)新與知識(shí)應(yīng)用競(jìng)賽試題) 思路點(diǎn)撥 中點(diǎn)M、N不能直接運(yùn)用,需增設(shè)中點(diǎn),常見的方法是作對(duì)角線的中點(diǎn). 【例3】如圖,在△ABC中,AB=AC,延長(zhǎng)AB到D,使BD=AB,E為AB中點(diǎn),連結(jié)CE、CD,求證:C D=2EC. (浙江省寧波市中考題) 思路點(diǎn)撥 聯(lián)想到與中位線相關(guān)的豐富知識(shí),將線段倍分關(guān)系的證明轉(zhuǎn)化為線段相等關(guān)系的證明,解題的關(guān)鍵是恰當(dāng)添輔助線. 【例4】 已知:如圖l,BD、CE分別是△ABC的外角平分線,過點(diǎn)A作AF⊥BD,AG ⊥ CE,垂足分別為F、G,連結(jié)FG,延長(zhǎng)AF、AG,與直線BC相交,易證FG= (AB+BC+AC). 若(1)BD、CF分別是△ABC的內(nèi)角平分線(如圖2); (2)BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線(如圖3),則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并對(duì)其中的一種情況給予證明. (20xx年黑龍江省中考題) 思路點(diǎn)撥 圖1中FG與△ABC三邊的數(shù)量關(guān)系的求法(關(guān)鍵是作輔助線),對(duì)尋求后兩個(gè)圖形中線段FG與△ABC三邊的數(shù)量關(guān)系起著重要作用,而由平分線、垂線發(fā)現(xiàn)中點(diǎn),這是解題的基礎(chǔ). 注 三角形與梯形的中位線.在位置上涉及到平行,在數(shù)量上是上下底和的一半,它起著傳遞角的位置關(guān)系和線段長(zhǎng)度的功能,在證明線段倍分關(guān)系、兩直線位置關(guān)系、線段長(zhǎng)度的計(jì)算等方面有著廣泛的應(yīng)用. 【例5】 如圖,任意五邊形ABCDE,M、N、P、Q分別為AB、CD、BC、DE的中點(diǎn),K、L分別為MN、PQ的中點(diǎn),求證:KL∥AE且KL= AE. (20xx年天津賽區(qū)試題) 思路點(diǎn)撥 通過連線,將多邊形分割成三角形、四邊形,為多個(gè)中點(diǎn)的 利用創(chuàng)造條件,這是解本例的突破口. 注 需要什么,構(gòu)造什么,構(gòu)造基本圖形、構(gòu)造線段的和差(倍分)關(guān)系、構(gòu)造角的關(guān)系等,這是作輔助線的有效思考方法之一. 學(xué)歷訓(xùn)練 1.BD、CE是△ABC的中線,G、H分別是BE、CD的中點(diǎn),BC=8,則GH= . (20xx年廣西中考題) 2.如圖,△ABC中、BC=a,若D1、E1;分別是AB、AC的中點(diǎn),則 ;若 D2、E2分別是D1B、E1C的中點(diǎn),則 :若 D3、E3分別是D2B、E2C的中點(diǎn).則 ……若Dn、En分別是Dn-1B、En-1C的中點(diǎn),則DnEn= (n≥1且 n為整數(shù)). (200l年山東省濟(jì)南市中考題) 3.如圖,△ABC邊長(zhǎng)分別為AD=14,BC=l6,AC=26,P為∠A的平分線AD上一點(diǎn),且BP⊥AD,M為BC的中點(diǎn),則PM的值是 . 4.如圖, 梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,AC=5cm,BD=12cm,則該梯形的.中位線的長(zhǎng)等于 cm. (20xx年天津市中考題) 5.如圖,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,則EF+GH=( ) A.40 B.48 C 50 D.56 6.如圖,在梯形ABCD中,AD∥BC,E、F分別是對(duì)角線BD、AC的中點(diǎn),若AD=6cm,BC=18?,則EF的長(zhǎng)為( ) A.8cm D.7cm C. 6cm D.5cm 7.如圖,矩形紙片ABCD沿DF折疊后,點(diǎn)C落在AB上的E點(diǎn),DE、DF三等分∠ADC,AB的長(zhǎng)為6,則梯形ABCD的中位線長(zhǎng)為( ) A.不能確定 B.2 C. D. +1 (20xx年浙江省寧波市中考題) 8.已知四邊形ABCD和對(duì)角線AC、BD,順次連結(jié)各邊中點(diǎn)得四邊形MNPQ,給出以下6個(gè)命題: 、偃羲盟倪呅蜯NPQ為矩形,則原四邊形ABCD為菱形; 、谌羲盟倪呅蜯NPQ為菱形,則原四邊形ABCD為矩形; 、廴羲盟倪呅蜯NPQ為矩形,則AC⊥BD; 、苋羲盟倪呅蜯NPQ為菱形,則AC=BD; 、萑羲盟倪呅蜯NPQ為矩形,則∠BAD=90°; ⑥若所得四邊形MNPQ為菱形,則AB=AD. 以上命題中,正確的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江蘇省蘇州市中考題) 9.如圖,已知△ABC中,AD是 高,CE是中線,DC=BE,DG⊥CE,G為垂足.求證:(1)G 是CE的 中點(diǎn);(2)∠B=2∠BCE. (20xx年上海市中考題) 10.如圖,已知在正方形ABCD中,E為DC上一點(diǎn),連結(jié)BE,作CF⊥BE于P,交AD于F點(diǎn),若恰好使得AP=AB,求證:E是DC的中點(diǎn). 11.如圖,在梯形ABCD中,AB∥CD,以AC、AD為邊作平行四邊形ACED,DC的延長(zhǎng)線交BE于F. (1)求證:EF=FB; (2)S△BCE能否為S梯形ABCD的 ?若不能,說明理由;若能,求出AB與CD的關(guān)系. 12.如圖,已知AG⊥BD,AF⊥CE,BD、CF分別是∠ABC和∠ACB的角平分線,若BF=2,ED=3,GC=4,則△ABC的周長(zhǎng)為 . (20xx年四川省競(jìng)賽題) 13.四邊形ADCD的對(duì)角線AC、BD相交于點(diǎn)F,M、N分別為AB、CD中點(diǎn),MN分別交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,則AC= . (重慶市競(jìng)賽題) 1 4.四邊形ABCD中,AD>BC,C、F分別是AB、CD的中點(diǎn),AD、BC的延長(zhǎng)線分別與EF的延長(zhǎng)線交于H、G,則∠AHE ∠BGE(填“>”或“=”或“<”號(hào)) 15.如圖,在△ABC中,DC=4,BC邊上的中線AD=2,AB+AC=3+ ,則S△ABC等于( ) A. B. C. D. 16.如圖,正方形ABCD中,AB=8,Q是CD的中點(diǎn),設(shè)∠DAQ=α,在CD上取一點(diǎn)P,使∠BAP=2α,則CP的長(zhǎng)是( ) A.1 D.2 C.3 D. 17.如圖,已知A為DE的中點(diǎn),設(shè)△DBC、△ABC、△EBC的面積分別為S1,S2,S3,則S1、S2、S3之間的關(guān)系式是( ) A. B. C. D. 18.如圖,已知在△ABC中,D為AB的中點(diǎn),分別延長(zhǎng)CA、CB到E、F,使DE=DF,過E、F分別作CA、 CB的垂線,相交于點(diǎn)P.求證:∠PAE=∠PBF. (20xx年全國(guó)初中數(shù)學(xué)聯(lián)賽試題) 19.如圖,梯形ABCD中,AD∥BC,AC⊥BD于O,試判斷AB+CD與AD+BC的大小,并證明你的結(jié)論. (山東省競(jìng)賽題) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連結(jié)DE,設(shè)M為D正的中點(diǎn). (1)求證:MB=MC; (2)設(shè)∠BAD=∠CAE,固定△ABD, 讓Rt△ACE繞頂點(diǎn)A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問:MB;MC是否還能成立?并證明其結(jié)論. (江蘇省競(jìng)賽題) 21.如圖甲,平行四邊形ABCD外有一條直線MN,過A、B、C、D4個(gè)頂點(diǎn)分別作MN的垂線AA1、BB1、CCl、DDl,垂足分別為Al、B1、Cl、D1. (1)求證AA1+ CCl = BB1 +DDl; (2)如圖乙,直線MN向上移動(dòng),使點(diǎn)A與點(diǎn)B、C、D位于直線MN兩側(cè),這時(shí)過A、B、C、D向直線MN引垂線,垂足分別為Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之間存在什么關(guān)系? 教學(xué)目標(biāo) 知識(shí)技能目標(biāo) 1.運(yùn)用類比的方法,通過學(xué)生的合作探究,得出平行四邊形的判定方法. 2.理解平行四 邊形的這兩種判定方法,并學(xué)會(huì)簡(jiǎn)單運(yùn)用. 過程與方法目標(biāo) 1.經(jīng)歷平行四邊行判別條的探索過程,在有關(guān)活動(dòng)中發(fā)展學(xué)生的合情推理意識(shí). 2 .在運(yùn)用平行四邊形的判定方法解決問題的過程中,進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力和推理論證的表達(dá)能力. 情感態(tài)度價(jià)值觀目標(biāo) 通過平行四邊形判別條的探索,培養(yǎng)學(xué)生面對(duì)挑戰(zhàn),勇于克服困難的意志,鼓勵(lì)學(xué)生大膽嘗試,從中獲得成功的'體驗(yàn),激發(fā)學(xué)生的學(xué)習(xí)熱情. 教學(xué)重點(diǎn): 平行四邊形判定方法的探究、運(yùn)用. 教學(xué)難點(diǎn): 對(duì)平行四邊形判定方法的探究以及平行四邊形的性質(zhì)和判定的綜合運(yùn)用. 教學(xué)過程 第一環(huán)節(jié) 復(fù)習(xí)引入: 。 3分鐘, 教師提出問題1,2,由學(xué)生獨(dú)立思考,并口答得出定義正反兩方面的作用,出平行四邊形的其他幾條性質(zhì).) 問題1(多媒體展 示問題) 1.平行四邊形的定義是什么?它有什么作用? 2.平 行四邊形還有哪些性質(zhì)? 問題2 有一塊平行四邊形的玻璃塊,假如不小心碰碎了一部分,聰明的技師拿著細(xì)繩很快將原的平行四邊形畫了出,你知道他用的是什么方法嗎? 第二環(huán)節(jié) 探索活動(dòng)(12分鐘,學(xué)生動(dòng)手探究,小組合作) 活動(dòng)1: 工具:兩根長(zhǎng)度相等的筆, 兩條平行線(可利用橫格線). 動(dòng)手:請(qǐng)利用兩根長(zhǎng)度相等的筆和兩條平行線,擺出以筆頂端為頂點(diǎn)的平行四邊形嗎? 思考1.1:你能說明你所擺出的四邊形是平行四邊形嗎? 思考1.2:以上活動(dòng)事實(shí),能用字語言表達(dá)嗎? 目的: 得出平行四邊形 的一個(gè)性質(zhì):一組對(duì)邊平行且相等的四邊形是平行四邊形. 活動(dòng)2 工具:兩根不同長(zhǎng)度的細(xì)紙條. 動(dòng)手:能否用這兩根細(xì)紙條在平面上 擺出平行四邊形? 思考2.1:你能說明你們擺出的四邊形是平行四邊形嗎? 思考2.2:以上活動(dòng)事實(shí),能用字語言表達(dá)嗎? 目的: 得出平行四邊形的性質(zhì):對(duì)角線互相平分的四邊形是平行四邊形 第三環(huán)節(jié) 鞏固練習(xí)(20分鐘,學(xué)生思考討論再各自畫圖,畫好后互相交流畫法,教師巡回檢查.對(duì)個(gè)別學(xué)生稍加點(diǎn)撥) 隨堂練習(xí): 1.已知:在平行四邊形ABCD 中,點(diǎn)E、F在對(duì)角線AC上,并且OE=OF. (1)OA與OC,OB與OD相等嗎? (2)四邊形BFDE是平行四邊形嗎? (3)若點(diǎn)E,F(xiàn)在OA,OC的中點(diǎn)上,你能解決上述問題嗎? 2.再回到前問題:同學(xué)們想想看,有沒有辦法把原的平行四邊形重新畫出? 。ㄗ寣W(xué)生思考討論,再各自畫圖,畫好后互相 交流畫法,教師巡回檢查.對(duì)個(gè)別 學(xué)生稍加點(diǎn)撥,最后請(qǐng)學(xué)生回答畫圖方法) 學(xué)生想到的畫法有: (1)分別過A,C作BC,BA的平行線,兩平行線相交于D; (2)分別以A,C為圓心,以BC, BA的長(zhǎng)為半徑畫弧,兩弧相交于D,連接AD,CD; (3)這一種方法學(xué)生不易想到,即為平行四邊形對(duì)角線的特性,引導(dǎo)學(xué)生得出連線AC,取AC的中點(diǎn)O,再連接BO,并延長(zhǎng)BO到D,使BO=DO,連接AD,CD. 第四環(huán)節(jié) 小結(jié):(4分鐘,學(xué)生回答問題) 師生共同小結(jié),主要圍繞下列幾個(gè)問題: 。1)判定一個(gè)四邊形是平行四邊形的方法有哪幾種?這些方法是從什么角度去考慮的? 。2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對(duì)你有什么啟發(fā)? 。3)類比、觀察、拼圖、實(shí)驗(yàn)等都是學(xué)習(xí)數(shù)學(xué)、發(fā)現(xiàn)結(jié)論的常用方法. 第五環(huán)節(jié) 布置 作業(yè): B、C組(中等生和后三分之一生)本104頁(yè)習(xí)題4.3第1題、第2題 A組(優(yōu)等生):① 對(duì)于隨堂練習(xí)題,若將G,H分別在OB ,OD上移動(dòng)至與B,D重合,E,F(xiàn)分別在OA,OC上移動(dòng),使AE=CF(如圖),則結(jié)論還成立嗎? ② 對(duì)于隨堂練習(xí)題,若E,F(xiàn)繼續(xù)移動(dòng)至OA,OC的延長(zhǎng)線上,仍使AE=CF(如圖),則結(jié)論還成立嗎? 教學(xué)內(nèi)容:人教版第九冊(cè) 64 – 67頁(yè) 說教材: 教材先給出方格上的平行四邊形和長(zhǎng)方形,從數(shù)圖形中的方格引出平行四邊形的面積。利用數(shù)方格的方法來計(jì)算面積仍然是一種計(jì)算面積的方法。遇到圖形中邊與邊之間有不成直角的情況時(shí),該怎樣計(jì)算面積,學(xué)生還沒有學(xué)過。,教材通過數(shù)的方法,轉(zhuǎn)化的方法,可以把新知識(shí)轉(zhuǎn)化為舊知識(shí),從而使新問題得到解決。 教學(xué)重點(diǎn):平行四邊形面積的推導(dǎo)過程。 本課采用的教法:自學(xué)法 、 轉(zhuǎn)化方法、小組合作法、實(shí)驗(yàn)法。 學(xué)法:1、自主學(xué)習(xí)法 2、小組合作探究學(xué)習(xí)法。 教學(xué)程序: 一、創(chuàng)設(shè)問題情景, 為新課作鋪墊。 請(qǐng)同學(xué)們幫李師傅的一個(gè)忙, 求出下面的面積,你是怎樣想的?3厘米 5厘米 二、突出學(xué)生主體地位,發(fā)展學(xué)生的創(chuàng)新思維。 首先采用自學(xué)課本64頁(yè)。師提出問題,通過自學(xué),同學(xué)們發(fā)現(xiàn)了什么,想到了什么?你猜到了什么? 有的.同學(xué)說:長(zhǎng)方形面積與平行四邊形面積相等(數(shù)出來的)。 有的說:我用割補(bǔ)的方法把平形四邊形拼成一個(gè)長(zhǎng)方形,長(zhǎng)方形的面積與平行四邊形面積相等。還 有的說:我發(fā)現(xiàn)平行四邊形的底相當(dāng)與長(zhǎng)方形的長(zhǎng),平行四邊形的高相當(dāng)長(zhǎng)方形的寬。 有的說:我猜想平行四邊形的面積等于底乘高。通過同學(xué)們發(fā)現(xiàn)與猜想 三、小組合作,培養(yǎng)學(xué)生的合作精神。 小組合作交流,動(dòng)手操作并說出你的思考過程這樣使學(xué)生能人人參與,個(gè)個(gè)思考。匯報(bào)交流結(jié)果(小組派出代表到前邊演示操作過程邊述說)學(xué)生甲:我沿著平行四邊形的高剪下一個(gè)三角形補(bǔ)到平行四邊形的右邊,拼成一個(gè)長(zhǎng)方形。長(zhǎng)方形的長(zhǎng)相當(dāng)與平形四邊形的底,寬相當(dāng)與平行四邊形的高。長(zhǎng)方形面積與平行四邊形的面積相等。我想平行四邊形面積=底乘高 學(xué)生乙(與前邊的內(nèi)容大概相同復(fù)述一遍,就是平行四邊形的高作在中間) 學(xué)生丁我還有一種方法,我將平行四邊形沿著對(duì)角劃一條線,分成兩個(gè)面積相等三角形,雖然拼成還是一個(gè)原平行四邊形。但學(xué)生爭(zhēng)著說出與別人不同的方法,把自己的想法盡量展現(xiàn)在同學(xué)面前,其中不乏有閃光的思維亮點(diǎn)。 四例題獨(dú)立完成,體現(xiàn)學(xué)生自己解決問題的能力。 例題自己解決, 學(xué)生切實(shí)體驗(yàn)到數(shù)學(xué)的應(yīng)用價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)信心。 板書設(shè)計(jì): 長(zhǎng)方形面積==長(zhǎng)乘寬 平行四邊形面積=底乘高 s= a h 一、內(nèi)容和內(nèi)容解析 1.內(nèi)容 平行四邊形對(duì)角線的性質(zhì). 2.內(nèi)容解析 這節(jié)課承接了上一節(jié)平行四邊形的性質(zhì):對(duì)邊相等,對(duì)角相等,本節(jié)繼續(xù)研究對(duì)角線互相平分的性質(zhì),課本先設(shè)置一個(gè)探究欄目,讓學(xué)生發(fā)現(xiàn)結(jié)論,形成猜想,然后利用三角形全等證明這個(gè)結(jié)論,對(duì)角線互相平分是平行四邊形的重要性質(zhì),在九年級(jí)上冊(cè)“旋轉(zhuǎn)”一章,通過旋轉(zhuǎn)平行四邊形,得到平行四邊形是中心對(duì)稱圖形和對(duì)角線互相平分,學(xué)生會(huì)有進(jìn)一步體會(huì).平行四邊形是最基本的幾何圖形,它在生活中有著十分廣泛的應(yīng)用.這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包括其性質(zhì)在生產(chǎn)、生活各領(lǐng)域的實(shí)際應(yīng)用.是中心對(duì)稱圖形的具體化,是以后學(xué)習(xí)平行四邊形判定的重要依據(jù). 教科書例2是的平行四邊形對(duì)角線的性質(zhì)的直接運(yùn)用,而且涉及勾股定理以及平行四邊形面積的計(jì)算. 基于以上分析,本節(jié)課的教學(xué)重點(diǎn)是:平行四邊形對(duì)角線性質(zhì)的探究與應(yīng)用. 二、目標(biāo)和目標(biāo)解析 1.目標(biāo) (1)探究并掌握平行四邊形對(duì)角線互相平分的性質(zhì). (2)能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計(jì)算問題,和簡(jiǎn)單的證明題. 2.目標(biāo)解析 達(dá)成目標(biāo)(1)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形對(duì)角線互相平分這一結(jié)論并形成猜想,會(huì)利用三角形全等證明猜想. 達(dá)成目標(biāo)(2)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形的邊、角、對(duì)角線等基本要素間的關(guān)系,會(huì)運(yùn)用等量代換等進(jìn)行線段長(zhǎng)、圖形面積等的計(jì)算,掌握簡(jiǎn)單的邏輯論證. 三、教學(xué)問題診斷分析 本節(jié)課在已學(xué)習(xí)了三角形全等證明,平行四邊形定義,平行四邊形邊、角的性質(zhì)的基礎(chǔ)上,在積累了一定的經(jīng)驗(yàn)的情況下學(xué)習(xí)本節(jié)課內(nèi)容.例2是既是鞏固平行四邊形對(duì)角線互相平分的性質(zhì),又復(fù)習(xí)了勾股定理以及平行四邊形面積的計(jì)算.這些問題常常需要運(yùn)用勾股定理求平行四邊形的高或底.這些問題比較綜合,需要靈活運(yùn)用所學(xué)的.有關(guān)知識(shí)加以解決. 基于以上分析,本節(jié)課的教學(xué)難點(diǎn)是:綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算. 四、教學(xué)過程設(shè)計(jì) 引言:前面我們研究了平行四邊形的邊、角這兩個(gè)基本要素的性質(zhì),下面我們研究平行四邊形對(duì)角線的性質(zhì). 1. 引入要素 探究性質(zhì) 問題1 我們研究平行四邊形邊、角這兩個(gè)要素的性質(zhì)時(shí),經(jīng)歷了怎樣的過程? 師生活動(dòng):學(xué)生回顧我們研究平行四邊形邊、角這兩個(gè)要素的性質(zhì)時(shí)經(jīng)歷的過程,并請(qǐng)學(xué)生代表回答. 設(shè)計(jì)意圖:回顧研究研究平行四邊形邊、角這兩個(gè)要素的性質(zhì)時(shí)經(jīng)歷的過程,總結(jié)研究平行四邊形的性質(zhì)的一般活動(dòng)過程(即觀察、度量、猜想、證明等),積累研究圖形的活動(dòng)經(jīng)驗(yàn),為本節(jié)課研究對(duì)角線要素作準(zhǔn)備. 問題2如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點(diǎn)O,OA與OC,OB與OD有什么關(guān)系?你能證明發(fā)現(xiàn)的結(jié)論嗎? 師生活動(dòng):?jiǎn)l(fā)學(xué)生去發(fā)現(xiàn)并猜想:平行四邊形的對(duì)角線互相平分. 你能證明上述猜想嗎? 教師操作投影儀,提出下面問題: 圖中有哪些三角形全等?哪些線段是相等的?請(qǐng)同學(xué)們用多種方法加以驗(yàn)證. 學(xué)生合作學(xué)習(xí),交流自己的思路,并討論不同的驗(yàn)證思路. 教師點(diǎn)撥:圖中有四對(duì)三角形全等,分別是:△AOB≌△COD,△AOD≌△COB, △ABD≌△BCD,△ADC≌△CBA.有如下線段相等:OA=OC,OB=OD,AD=BC,AB=DC證明中應(yīng)用到“AAS”,“ASA”證明. 師生歸納整理: 定理:平行四邊形的對(duì)角線互相平分. 我們證明了平行四邊形具有以下性質(zhì): (1)平行四邊形的對(duì)邊相等; (2)平行四邊形的對(duì)角相等; (3)平行四邊形的對(duì)角線互相平分. 設(shè)計(jì)意圖:應(yīng)用三角形全等的知識(shí),猜想并驗(yàn)證所要學(xué)習(xí)的內(nèi)容. 2.例題解析 應(yīng)用所學(xué) 問題3如圖,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的長(zhǎng)以及ABCD的面積. 師生活動(dòng):教師分析解題思路, 可以利用平行四邊形對(duì)邊相等求出BC=AD=8,CD=AB=10,在求AC長(zhǎng)度時(shí),因?yàn)椤螦CB=90°,可以在Rt△ACB中應(yīng)用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面積是48,學(xué)生板演解題過程. 變式追問:在上題中,直線EF過點(diǎn)O,且與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF.圖中還在哪些相等的量? 設(shè)計(jì)意圖:對(duì)于幾何計(jì)算或證明,分析思路和方法是根本,本題既鞏固平行四邊形對(duì)角線互相平分的性質(zhì),又復(fù)習(xí)勾股定理和平行四邊形面積計(jì)算的知識(shí),通過本例,讓學(xué)生學(xué)會(huì)如何分析,滲透“綜合分析法”. 讓學(xué)生理解平行四邊形對(duì)角線互相平分的性質(zhì)的應(yīng)用價(jià)值. 3.課堂練習(xí),鞏固深化 (1)ABCD的周長(zhǎng)為60cm,對(duì)角線交于O,△AOB的周長(zhǎng)比△BOC的周長(zhǎng)大8cm,則AB、BC的長(zhǎng)分別是_________. (2)如圖,在ABCD中,BC=10,AC=8,BD=14,△AOD的周長(zhǎng)是多少?△ABC與△DBC的周長(zhǎng)哪個(gè)長(zhǎng)?長(zhǎng)多少? 設(shè)計(jì)意圖:通過練習(xí),深化理解平行四邊形的性質(zhì),提高選擇運(yùn)用平行四邊形定義、性質(zhì)解決問題的能力. 4.反思與小結(jié) (1)我們學(xué)習(xí)了平行四邊形的哪些性質(zhì)? (2)結(jié)合本節(jié)的學(xué)習(xí),談?wù)勓芯科叫兴倪呅涡再|(zhì)的思想方法. (3)根據(jù)研究幾何圖形的基本套路,你認(rèn)為我們還將研究平行四邊形的什么問題? 5.布置作業(yè) 教科書P49頁(yè)習(xí)題18.1 第3題; 教科書第51頁(yè)第14題. 【平行四邊形教案】相關(guān)文章: 《平行四邊形的面積》教案01-02 認(rèn)識(shí)平行四邊形教案03-05 平行四邊形面積教案02-09 平行四邊形的面積教案07-24 平行四邊形的面積教案03-17 平行四邊形教案優(yōu)秀03-27 平行四邊形的認(rèn)識(shí)教案07-30 平行四邊形面積的計(jì)算教案03-03平行四邊形教案 篇3
平行四邊形教案 篇4
平行四邊形教案 篇5