欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    因式分解教案

    時(shí)間:2023-01-04 14:03:47 教案 投訴 投稿

    人教版因式分解教案

      作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,時(shí)常需要編寫(xiě)教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么大家知道正規(guī)的教案是怎么寫(xiě)的嗎?以下是小編幫大家整理的人教版因式分解教案,歡迎大家分享。

    人教版因式分解教案

    人教版因式分解教案1

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      了解因式分解的意義,以及它與整式乘法的關(guān)系.

      2.過(guò)程與方法

      經(jīng)歷從分解因數(shù)到分解因式的類(lèi)比過(guò)程,掌握因式分解的概念,感受因式分解在解決問(wèn)題中的作用.

      3.情感、態(tài)度與價(jià)值觀

      在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):了解因式分解的意義,感受其作用.

      2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

      3.關(guān)鍵:通過(guò)分解因數(shù)引入到分解因式,并進(jìn)行類(lèi)比,加深理解.

      教學(xué)方法

      采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

      教學(xué)過(guò)程

      一、創(chuàng)設(shè)情境,激趣導(dǎo)入

      【問(wèn)題牽引】

      請(qǐng)同學(xué)們探究下面的2個(gè)問(wèn)題:

      問(wèn)題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>

      問(wèn)題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

      二、豐富聯(lián)想,展示思維

      探索:你會(huì)做下面的填空嗎?

      1.ma+mb+mc=( )( );

      2.x2-4=( )( );

      3.x2-2xy+y2=( )2.

      【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

      三、小組活動(dòng),共同探究

      【問(wèn)題牽引】

     。1)下列各式從左到右的變形是否為因式分解:

      ①(x+1)(x-1)=x2-1;

     、赼2-1+b2=(a+1)(a-1)+b2;

     、7x-7=7(x-1).

     。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

      ①9x2(______)+y2=(3x+y)(_______);

      ②x2-4xy+(_______)=(x-_______)2.

      四、隨堂練習(xí),鞏固深化

      課本練習(xí).

      【探研時(shí)空】計(jì)算:993-99能被100整除嗎?

      五、課堂總結(jié),發(fā)展?jié)撃?/strong>

      由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

      1.什么叫因式分解?

      2.因式分解與整式運(yùn)算有何區(qū)別?

      六、布置作業(yè),專(zhuān)題突破

      選用補(bǔ)充作業(yè).

      板書(shū)設(shè)計(jì)

      15.4.1 因式分解

      1、因式分解 例:

      練習(xí):

      15.4.2 提公因式法

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

      2.過(guò)程與方法

      使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)學(xué)生分析、類(lèi)比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

      2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

      3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

      教學(xué)方法

      采用“啟發(fā)式”教學(xué)方法.

      教學(xué)過(guò)程

      一、回顧交流,導(dǎo)入新知

      【復(fù)習(xí)交流】

      下列從左到右的變形是否是因式分解,為什么?

     。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

     。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

     。5)x2-2xy+y2=(x-y)2.

      問(wèn)題:

      1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

      2.多項(xiàng)式4x2-x和xy2-yz-y呢?

      請(qǐng)將上述多項(xiàng)式分別寫(xiě)成兩個(gè)因式的乘積的形式,并說(shuō)明理由.

      【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

      概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

      二、小組合作,探究方法

      【教師提問(wèn)】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

      【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的.公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

      三、范例學(xué)習(xí),應(yīng)用所學(xué)

      【例1】把-4x2yz-12xy2z+4xyz分解因式.

      解:-4x2yz-12xy2z+4xyz

      =-(4x2yz+12xy2z-4xyz)

      =-4xyz(x+3y-1)

      【例2】分解因式,3a2(x-y)3-4b2(y-x)2

      【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

      解法1:3a2(x-y)3-4b2(y-x)2

      =-3a2(y-x)3-4b2(y-x)2

      =-[(y-x)23a2(y-x)+4b2(y-x)2]

      =-(y-x)2 [3a2(y-x)+4b2]

      =-(y-x)2(3a2y-3a2x+4b2)

      解法2:3a2(x-y)3-4b2(y-x)2

      =(x-y)23a2(x-y)-4b2(x-y)2

      =(x-y)2 [3a2(x-y)-4b2]

      =(x-y)2(3a2x-3a2y-4b2)

      【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

      【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

      解:0.84×12+12×0.6-0.44×12

      =12×(0.84+0.6-0.44)

      =12×1=12.

      【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

      四、隨堂練習(xí),鞏固深化

      課本P167練習(xí)第1、2、3題.

      【探研時(shí)空】

      利用提公因式法計(jì)算:

      0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

      五、課堂總結(jié),發(fā)展?jié)撃?/strong>

      1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

      2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.

      六、布置作業(yè),專(zhuān)題突破

      課本P170習(xí)題15.4第1、4(1)、6題.

      板書(shū)設(shè)計(jì)

      15.4.2 提公因式法

      1、提公因式法 例:

      練習(xí):

      15.4.3 公式法(一)

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

      2.過(guò)程與方法

      經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):利用平方差公式分解因式.

      2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.

      3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).

      教學(xué)方法

      采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維.

      教學(xué)過(guò)程

      一、觀察探討,體驗(yàn)新知

      【問(wèn)題牽引】

      請(qǐng)同學(xué)們計(jì)算下列各式.

     。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

      【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

     。1)(a+5)(a-5)=a2-52=a2-25;

      (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

      【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

      1.分解因式:a2-25; 2.分解因式16m2-9n.

      【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

     。1)a2-25=a2-52=(a+5)(a-5).

     。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

      【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

      平方差公式:a2-b2=(a+b)(a-b).

      評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

      二、范例學(xué)習(xí),應(yīng)用所學(xué)

      【例1】把下列各式分解因式:(投影顯示或板書(shū))

     。1)x2-9y2; (2)16x4-y4;

     。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

      (5)m2(16x-y)+n2(y-16x).

      【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

      【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

      【學(xué)生活動(dòng)】分四人小組,合作探究.

      解:(1)x2-9y2=(x+3y)(x-3y);

      (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

      (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

      (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

     。5)m2(16x-y)+n2(y-16x)

      =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

      三、隨堂練習(xí),鞏固深化

      課本P168練習(xí)第1、2題.

      【探研時(shí)空】

      1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).

      2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.

      四、課堂總結(jié),發(fā)展?jié)撃?/strong>

      運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通?紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.

      五、布置作業(yè),專(zhuān)題突破

      課本P171習(xí)題15.4第2、4(2)、11題.

      板書(shū)設(shè)計(jì)

      15.4.3 公式法(一)

      1、平方差公式: 例:

      a2-b2=(a+b)(a-b) 練習(xí):

      15.4.3 公式法(二)

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

      2.過(guò)程與方法

      經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

      2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

      3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

      教學(xué)方法

      采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

      教學(xué)過(guò)程

      一、回顧交流,導(dǎo)入新知

      【問(wèn)題牽引】

      1.分解因式:

     。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

     。3) x2-0.01y2.

    人教版因式分解教案2

      學(xué)習(xí)目標(biāo)

      1、了解因式分解的意義以及它與正式乘法的關(guān)系。

      2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

      學(xué)習(xí)重點(diǎn):能用提公因式法分解因式。

      學(xué)習(xí)難點(diǎn):確定因式的公因式。

      學(xué)習(xí)關(guān)鍵,在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來(lái)提公因式。

      學(xué)習(xí)過(guò)程

      一.知識(shí)回顧

      1、計(jì)算

      (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

      (3)、m(a+b)(4)、2ab(x-2y+1)

      二、自主學(xué)習(xí)

      1、閱讀課文P72-73的內(nèi)容,并回答問(wèn)題:

      (1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的__________的形式叫做____________,也叫做把這個(gè)多項(xiàng)式__________。

      (2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

      ma+mb+mc=m(a+b+c)

      我們來(lái)分析一下多項(xiàng)式ma+mb+mc的`特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的_________。如果把這個(gè)_________提到括號(hào)外面,這樣

      ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

      2、練一練。P73練習(xí)第1題。

      三、合作探究

      1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

      2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

      3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

      (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

      (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

      4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

      (1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

      例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

      (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

      四、展示提升

      1、填空(1)a2b-ab2=ab(________)

      (2)-4a2b+8ab-4b分解因式為_(kāi)_________________

      (3)分解因式4x2+12x3+4x=__________________

      (4)__________________=-2a(a-2b+3c)

      2、P73練習(xí)第2題和第3題

      五、達(dá)標(biāo)測(cè)試。

      1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

      (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

      (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

      (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

      2.課本P77習(xí)題8.5第1題

      學(xué)習(xí)反思

      一、知識(shí)點(diǎn)

      二、易錯(cuò)題

      三、你的困惑

    人教版因式分解教案3

      【教學(xué)目標(biāo)】

      1、了解因式分解的概念和意義;

      2、認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

      【教學(xué)重點(diǎn)、難點(diǎn)】

      重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

      【教學(xué)過(guò)程】

      ㈠、情境導(dǎo)入

      看誰(shuí)算得快:(搶答)

      (1)若a=101,b=99,則a2-b2=___________;

      (2)若a=99,b=-1,則a2-2ab+b2=____________;

      (3)若x=-3,則20x2+60x=____________。

     、、探究新知

      1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

      (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

      (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

      2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

      3、類(lèi)比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

      板書(shū)課題:§6.1 因式分解

      因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

     、、前進(jìn)一步

      1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

      2、因式分解與整式乘法的關(guān)系:

      因式分解

      結(jié)合:a2-b2 (a+b)(a-b)

      整式乘法

      說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的'形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

      結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

     、、鞏固新知

      1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

      (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

      (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

      (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

      2、你能寫(xiě)出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

      ㈤、應(yīng)用解釋

      例 檢驗(yàn)下列因式分解是否正確:

      (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

      分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

      練習(xí) 計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)

      (1)872+87×13

      (2)1012-992

     、、思維拓展

      1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

      2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

      ㈦、課堂回顧

      今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。

     、、布置作業(yè)

      作業(yè)本(1) ,一課一練

     。ň牛┙虒W(xué)反思:

    【因式分解教案】相關(guān)文章:

    因式分解教案04-02

    因式分解復(fù)習(xí)教案08-25

    精選因式分解教案3篇03-13

    因式分解優(yōu)秀教案(精選14篇)02-20

    實(shí)用的因式分解教案四篇08-02

    【熱門(mén)】因式分解教案3篇03-03

    因式分解教案模板7篇03-08

    【精華】因式分解教案三篇01-26

    因式分解教案模板8篇01-31