欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    因式分解教案

    時間:2022-08-13 05:08:28 教案 投訴 投稿

    因式分解教案模板8篇

      作為一位不辭辛勞的人民教師,就難以避免地要準(zhǔn)備教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。來參考自己需要的教案吧!以下是小編精心整理的因式分解教案8篇,歡迎閱讀,希望大家能夠喜歡。

    因式分解教案模板8篇

    因式分解教案 篇1

      教學(xué)目標(biāo)

      1、進(jìn)一步鞏固因式分解的概念;

      2、鞏固因式分解常用的三種方法

      3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解

      4、應(yīng)用因式分解來解決一些實際問題

      5、體驗應(yīng)用知識解決問題的樂趣

      教學(xué)重點

      靈活運用因式分解解決問題

      教學(xué)難點:

      靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

      教學(xué)過程

      一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

      利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

      二、知識回顧

      1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

      判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

      (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

      (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

      (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

      (7).2πR+2πr=2π(R+r)因式分解

      2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

      分解因式要注意以下幾點:(1).分解的對象必須是多項式.

      (2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

      3、因式分解的方法

      提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

      公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

      4、強(qiáng)化訓(xùn)練

      教學(xué)引入

      師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進(jìn)行折疊處理。

      動畫演示:

      場景一:正方形折疊演示

      師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

      [學(xué)生活動:各自測量。]

      鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點。

      講授新課

      找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

      動畫演示:

      場景二:正方形的性質(zhì)

      師:這些性質(zhì)里那些是矩形的性質(zhì)?

      [學(xué)生活動:尋找矩形性質(zhì)。]

      動畫演示:

      場景三:矩形的性質(zhì)

      師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

      [學(xué)生活動;尋找菱形性質(zhì)。]

      動畫演示:

      場景四:菱形的性質(zhì)

      師:這說明正方形具有矩形和菱形的'全部性質(zhì)。

      及時提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

      師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?

      [學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]

      師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

      學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

      “有一組鄰邊相等的矩形叫做正方形!

      “有一個角是直角的菱形叫做正方形。”

      “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

      [學(xué)生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

      師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

      試一試把下列各式因式分解:

      (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

      (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

      三、例題講解

      例1、分解因式

      (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

      (3)(4)y2+y+

      例2、分解因式

      1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

      4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

      例3、分解因式

      1、72-2(13x-7)22、8a2b2-2a4b-8b3

      三、知識應(yīng)用

      1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

      3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

      4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

      四、拓展應(yīng)用

      1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

      2、20042+20xx被20xx整除嗎?

      3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

      五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?

    因式分解教案 篇2

      學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運算性質(zhì)的過程,能用代數(shù)式和文字正確地表述,并會熟練地進(jìn)行計算。通過由特殊到一般的猜想與說理、驗證,發(fā)展推理能力和有條理的表達(dá)能力.

      學(xué)習(xí)重點:同底數(shù)冪乘法運算性質(zhì)的推導(dǎo)和應(yīng)用.

      學(xué)習(xí)過程:

      一、創(chuàng)設(shè)情境引入新課

      復(fù)習(xí)乘方an的意義:an表示個相乘,即an=.

      乘方的結(jié)果叫a叫做,n是

      問題:一種電子計算機(jī)每秒可進(jìn)行1012次運算,它工作103秒可進(jìn)行多少次運算?

      列式為,你能利用乘方的意義進(jìn)行計算嗎?

      二、探究新知:

      探一探:

      1根據(jù)乘方的.意義填空

      (1)23×24=(2×2×2)×(2×2×2×2)=2();

      (2)55×54=_________=5();

      (3)(-3)3×(-3)2=_________________=(-3)();

      (4)a6a7=________________=a().

      (5)5m5n

      猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?

      說一說:你能用語言敘述同底數(shù)冪的乘法法則嗎?

      同理可得:amanap=(m、n、p都是正整數(shù))

      三、范例學(xué)習(xí):

      【例1】計算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

      1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

      2.計算:

      (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

      【例2】:把下列各式化成(x+y)n或(x-y)n的形式.

      (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

      (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

      四、學(xué)以致用:

      1.計算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

     、-4444=⑸22n22n+1=⑹y5y2y4y=

      2.判斷題:判斷下列計算是否正確?并說明理由

      ⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

     、萢a7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

      3.計算:

      (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

      (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

      (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

      4.解答題:

      (1)已知xm+nxm-n=x9,求m的值.

      (2)據(jù)不完全統(tǒng)計,每個人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個水分子,那么,每個人每年要用去多少個水分子?

    因式分解教案 篇3

      一、教材分析

      1、教材的地位與作用

      “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

      因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

      2、教學(xué)目標(biāo)

      (1)會推導(dǎo)乘法公式

      (2)在應(yīng)用乘法公式進(jìn)行計算的基礎(chǔ)上,感受乘法公式的作用和價值。

     。3)會用提公因式法、公式法進(jìn)行因式分解。

      (4)了解因式分解的一般步驟。

     。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

      3、重點、難點和關(guān)鍵

      重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進(jìn)行因式分解。

      難點:正確運用乘法公式;正確分解因式。

      關(guān)鍵:正確理解乘法公式和因式分解的意義。

      二、本單元教學(xué)的.方法和策略:

      1.注重知識形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識,在領(lǐng)悟過程中建構(gòu)體系,從而更好地實現(xiàn)知識體系的更新和知識的正向遷移.

      2.知識內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識結(jié)構(gòu)相聯(lián)系,同時兼顧學(xué)生的思維水平和心理特征.

      3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負(fù)擔(dān).

      4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會數(shù)學(xué)的應(yīng)用價值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

      三、課時安排:

      2.1平方差公式 1課時

      2.2完全平方公式 2課時

      2.3用提公因式法進(jìn)行因式分解 1課時

      2.4用公式法進(jìn)行因式分解 2課時

    因式分解教案 篇4

      學(xué)習(xí)目標(biāo)

      1、了解因式分解的意義以及它與正式乘法的關(guān)系。

      2、能確定多項式各項的公因式,會用提公因式法分解因式。

      學(xué)習(xí)重點:能用提公因式法分解因式。

      學(xué)習(xí)難點:確定因式的公因式。

      學(xué)習(xí)關(guān)鍵,在確定多項式各項公因式時,應(yīng)抓住各項的公因式來提公因式。

      學(xué)習(xí)過程

      一.知識回顧

      1、計算

      (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

      (3)、m(a+b)(4)、2ab(x-2y+1)

      二、自主學(xué)習(xí)

      1、閱讀課文P72-73的內(nèi)容,并回答問題:

      (1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。

      (2)、知識點二:由m(a+b+c)=ma+mb+mc可得

      ma+mb+mc=m(a+b+c)

      我們來分析一下多項式ma+mb+mc的特點;它的'每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣

      ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

      2、練一練。P73練習(xí)第1題。

      三、合作探究

      1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

      2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

      3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

      (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

      (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

      4、準(zhǔn)確地確定公因式時提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

      (1)確定公因式的數(shù)字因數(shù),當(dāng)各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

      例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

      (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

      四、展示提升

      1、填空(1)a2b-ab2=ab(________)

      (2)-4a2b+8ab-4b分解因式為__________________

      (3)分解因式4x2+12x3+4x=__________________

      (4)__________________=-2a(a-2b+3c)

      2、P73練習(xí)第2題和第3題

      五、達(dá)標(biāo)測試。

      1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

      (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

      (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

      (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

      2.課本P77習(xí)題8.5第1題

      學(xué)習(xí)反思

      一、知識點

      二、易錯題

      三、你的困惑

    因式分解教案 篇5

      教學(xué)設(shè)計思想:

      本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運用公式進(jìn)行多項式的因式分解。第一課時的內(nèi)容是用平方差公式對多項式進(jìn)行因式分解,首先提出新問題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨立去做例題、練習(xí)中的題目,并對結(jié)果通過展示、解釋、相互點評,達(dá)到能較好的運用平方差公式進(jìn)行因式分解的目的。第二課時利用完全平方公式進(jìn)行多項式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

      教學(xué)目標(biāo)

      知識與技能:

      會用平方差公式對多項式進(jìn)行因式分解;

      會用完全平方公式對多項式進(jìn)行因式分解;

      能夠綜合運用提公因式法、平方差公式、完全平方公式對多項式進(jìn)行因式分解;

      提高全面地觀察問題、分析問題和逆向思維的能力。

      過程與方法:

      經(jīng)歷用公式法分解因式的探索過程,進(jìn)一步體會這兩個公式在因式分解和整式乘法中的不同方向,加深對整式乘法和因式分解這兩個相反變形的`認(rèn)識,體會從正逆兩方面認(rèn)識和研究事物的方法。

      情感態(tài)度價值觀:

      通過學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識間有著密切的聯(lián)系。

      教學(xué)重點和難點

      重點:①運用平方差公式分解因式;②運用完全平方式分解因式。

      難點:①靈活運用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運用完全平方公式分解因式

      關(guān)鍵:把握住因式分解的基本思路,觀察多項式的特征,靈活地運用換元和劃歸思想。

    因式分解教案 篇6

      教學(xué)目標(biāo)

      教學(xué)知識點

      使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關(guān)系。

      潛力訓(xùn)練要求。

      透過觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語言概括潛力。

      情感與價值觀要求。

      透過觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。

      教學(xué)重點

      1、理解因式分解的好處。

      2、識別分解因式與整式乘法的關(guān)系。

      教學(xué)難點透過觀察,歸納分解因式與整式乘法的'關(guān)系。

      教學(xué)方法觀察討論法

      教學(xué)過程

      Ⅰ、創(chuàng)設(shè)問題情境,引入新課

      導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

      Ⅱ、講授新課

      1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

      993-99=99×98×100

      2、議一議

      你能嘗試把a(bǔ)3-a化成n個整式的乘積的形式嗎?與同伴交流。

      3、做一做

     。1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

     、3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

     。2)根據(jù)上面的算式填空:

     、3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

      ④y2-6y+9=()2。⑤a3-a=()()。

      定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。

      4。想一想

      由a(a+1)(a-1)得到a3-a的變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類似的例子加以說明嗎?

      下面我們一齊來總結(jié)一下。

      如:m(a+b+c)=ma+mb+mc(1)

      ma+mb+mc=m(a+b+c)(2)

      5、整式乘法與分解因式的聯(lián)系和區(qū)別

      ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

      6。例題下列各式從左到右的變形,哪些是因式分解?

     。1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

     。3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

      Ⅲ、課堂練習(xí)

      P40隨堂練習(xí)

      Ⅳ、課時小結(jié)

      本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。

    因式分解教案 篇7

      教學(xué)目標(biāo)

      1、 會運用因式分解進(jìn)行簡單的多項式除法。

      2、 會運用因式分解解簡單的方程。

      二、教學(xué)重點與難點教學(xué)重點:

      教學(xué)重點

      因式分解在多項式除法和解方程兩方面的應(yīng)用。

      教學(xué)難點:

      應(yīng)用因式分解解方程涉及較多的推理過程。

      三、教學(xué)過程

      (一)引入新課

      1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

      (二)師生互動,講授新課

      1、運用因式分解進(jìn)行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

      一個小問題 :這里的x能等于3/2嗎 ?為什么?

      想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)

      合作學(xué)習(xí)

      想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論!)事實上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0

      試一試:你能運用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個時,常用帶足標(biāo)的字母表示,比如:x1 ,x2

      等練習(xí):課本P162課內(nèi)練習(xí)2

      做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?

      教師總結(jié):運用因式分解解方程的.基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項,把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

      (三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:

     。1)運用因式分解進(jìn)行多項式除法

     。2)運用因式分解解簡單的方程

      (四)布置課后作業(yè)

      作業(yè)本6、42、課本P163作業(yè)題(選做)

    因式分解教案 篇8

      【教學(xué)目標(biāo)】

      1、了解因式分解的概念和意義;

      2、認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

      【教學(xué)重點、難點】

      重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。

      【教學(xué)過程】

     、濉⑶榫硨(dǎo)入

      看誰算得快:(搶答)

      (1)若a=101,b=99,則a2-b2=___________;

      (2)若a=99,b=-1,則a2-2ab+b2=____________;

      (3)若x=-3,則20x2+60x=____________。

      ㈡、探究新知

      1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

      (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

      (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

      2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

      3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

      板書課題:§6.1 因式分解

      因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

     、纭⑶斑M(jìn)一步

      1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

      2、因式分解與整式乘法的.關(guān)系:

      因式分解

      結(jié)合:a2-b2 (a+b)(a-b)

      整式乘法

      說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

      結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

     、、鞏固新知

      1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

      (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

      (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

      (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

      2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。

     、、應(yīng)用解釋

      例 檢驗下列因式分解是否正確:

      (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

      分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

      練習(xí) 計算下列各題,并說明你的算法:(請學(xué)生板演)

      (1)872+87×13

      (2)1012-992

     、、思維拓展

      1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

      2.機(jī)動題:(填空)x2-8x+m=(x-4)( ),且m=

     、、課堂回顧

      今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。

     、臁⒉贾米鳂I(yè)

      作業(yè)本(1) ,一課一練

     。ň牛┙虒W(xué)反思:

    【因式分解教案】相關(guān)文章:

    因式分解教案04-02

    人教版因式分解教案01-04

    因式分解復(fù)習(xí)教案08-25

    精選因式分解教案3篇03-13

    實用的因式分解教案四篇08-02

    【推薦】因式分解教案三篇02-21

    【必備】因式分解教案4篇02-20

    【精華】因式分解教案三篇01-26

    因式分解教案模板7篇03-08