欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    因式分解教案

    時(shí)間:2023-04-02 08:22:57 教案 投訴 投稿

    因式分解教案

      作為一名默默奉獻(xiàn)的教育工作者,時(shí)常會(huì)需要準(zhǔn)備好教案,借助教案可以有效提升自己的教學(xué)能力。教案應(yīng)該怎么寫呢?下面是小編整理的因式分解教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

    因式分解教案

    因式分解教案1

      第1課時(shí)

      1.使學(xué)生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

      2.讓學(xué)生會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提公因式法進(jìn)行因式分解.

      自主探索,合作交流.

      1.通過與因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想.

      2.通過對(duì)因式分解的教學(xué),培養(yǎng)學(xué)生“換元”的意識(shí).

      【重點(diǎn)】 因式分解的概念及提公因式法的應(yīng)用.

      【難點(diǎn)】 正確找出多項(xiàng)式中各項(xiàng)的公因式.

      【教師準(zhǔn)備】 多媒體.

      【學(xué)生準(zhǔn)備】 復(fù)習(xí)有關(guān)乘法分配律的知識(shí).

      導(dǎo)入一:

      【問題】 一塊場地由三個(gè)長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.

      解法1:這塊場地的面積=×+×+×=++==2.

      解法2:這塊場地的面積=×+×+×=×=×4=2.

      從上面的解答過程看,解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡單一些.這個(gè)事實(shí)說明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是將多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.

      [設(shè)計(jì)意圖] 讓學(xué)生通過利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

      導(dǎo)入二:

      【問題】 計(jì)算×15-×9+×2采用什么方法?依據(jù)是什么?

      解法1:原式=-+==5.

      解法2:原式=×(15-9+2)=×8=5.

      解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡單一些.這個(gè)事實(shí)說明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是把多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.

      [設(shè)計(jì)意圖] 讓學(xué)生通過利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

      一、提公因式法分解因式的概念

      思路一

      [過渡語] 上一節(jié)我們學(xué)習(xí)了什么是因式分解,那么怎樣進(jìn)行因式分解呢?我們來看下面的`問題.

      如果一塊場地由三個(gè)長方形組成,這三個(gè)長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號(hào)來連接,即:a+b+c=(a+b+c).

      大家注意觀察這個(gè)等式,等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?

      分析:等式左邊的每一項(xiàng)都含有因式,等式右邊是與多項(xiàng)式a+b+c的乘積,從左邊到右邊的過程是因式分解.

      由于是左邊多項(xiàng)式a+b+c中的各項(xiàng)a,b,c都含有的一個(gè)相同因式,因此叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.

      由上式可知,把多項(xiàng)式a+b+c寫成與多項(xiàng)式a+b+c的乘積的形式,相當(dāng)于把公因式從各項(xiàng)中提出來,作為多項(xiàng)式a+b+c的一個(gè)因式,把從多項(xiàng)式a+b+c的各項(xiàng)中提出后形成的多項(xiàng)式a+b+c,作為多項(xiàng)式a+b+c的另一個(gè)因式.

      總結(jié):如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.

      [設(shè)計(jì)意圖] 通過實(shí)例的教學(xué),使學(xué)生明白什么是公因式和用提公因式法分解因式.

      思路二

      [過渡語] 同學(xué)們,我們來看下面的問題,看看同學(xué)們誰先做出來.

      多項(xiàng)式 ab+ac中,各項(xiàng)都含有相同的因式嗎?多項(xiàng)式 3x2+x呢?多項(xiàng)式b2+nb-b呢?

      結(jié)論:多項(xiàng)式中各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.

      多項(xiàng)式2x2+6x3中各項(xiàng)的公因式是什么?你能嘗試將多項(xiàng)式2x2+6x3因式分解嗎?

      結(jié)論:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.

      [設(shè)計(jì)意圖] 從讓學(xué)生找出幾個(gè)簡單多項(xiàng)式的公因式,再到讓學(xué)生嘗試將多項(xiàng)式分解因式,使學(xué)生理解公因式以及提公因式法分解因式的概念.

      二、例題講解

      [過渡語] 剛剛我們學(xué)習(xí)了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進(jìn)行因式分解吧.

      (教材例1)把下列各式因式分解:

      (1)3x+x3;

      (2)7x3-21x2;

      (3)8a3b2-12ab3c+ab;

      (4)-24x3+12x2-28x.

      〔解析〕 首先要找出各項(xiàng)的公因式,然后再提取出來.要避免提取公因式后,各項(xiàng)中還有公因式,即“沒提徹底”的現(xiàn)象.

      解:(1)3x+x3=x3+xx2=x(3+x2).

      (2)7x3-21x2=7x2x-7x23=7x2(x-3).

      (3)8a3b2-12ab3c+ab

      =ab8a2b-ab12b2c+ab1

      =ab(8a2b-12b2c+1).

      (4)-24x3+12x2-28x

      =-(24x3-12x2+28x)

      =-(4x6x2-4x3x+4x7)

      =-4x(6x2-3x+7).

      【學(xué)生活動(dòng)】 通過剛才的練習(xí),大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問題.

      總結(jié):提取公因式的步驟:(1)找公因式;(2)提公因式.

      容易出現(xiàn)的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項(xiàng)提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號(hào)時(shí),沒有把后面的因式中的每一項(xiàng)都變號(hào).

      教師提醒:

      (1)各項(xiàng)都含有的字母的最低次冪的積是公因式的字母部分;

      (2)因式分解后括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同;

      (3)若多項(xiàng)式的首項(xiàng)為“-”,則先提取“-”號(hào),然后再提取其他公因式;

      (4)將分解因式后的式子再進(jìn)行整式的乘法運(yùn)算,其積應(yīng)與原式相等.

      [設(shè)計(jì)意圖] 經(jīng)歷用提公因式法進(jìn)行因式分解的過程,在教師的啟發(fā)與指導(dǎo)下,學(xué)生自己歸納出提公因式的步驟及提取公因式時(shí)容易出現(xiàn)的類似問題,為提取公因式積累經(jīng)驗(yàn).

      1.提公因式法分解因式的一般形式,如:

      a+b+c=(a+b+c).

      這里的字母a,b,c,可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.

      2.提公因式法分解因式的關(guān)鍵在于發(fā)現(xiàn)多項(xiàng)式的公因式.

      3.找公因式的一般步驟:

      (1)若各項(xiàng)系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);

      (2)取各項(xiàng)中相同的字母,字母的指數(shù)取最低的;

      (3)所有這些因式的乘積即為公因式.

      1.多項(xiàng)式-6ab2+18a2b2-12a3b2c的公因式是( )

      A.-6ab2cB.-ab2

      C.-6ab2D.-6a3b2c

      解析:根據(jù)確定多項(xiàng)式各項(xiàng)的公因式的方法,可知公因式為-6ab2.故選C.

      2.下列用提公因式法分解因式正確的是( )

      A.12abc-9a2b2=3abc(4-3ab)

      B.3x2-3x+6=3(x2-x+2)

      C.-a2+ab-ac=-a(a-b+c)

      D.x2+5x-=(x2+5x)

      解析:A.12abc-9a2b2=3ab(4c-3ab),錯(cuò)誤;B.3x2-3x+6=3(x2-x+2),錯(cuò)誤;D.x2+5x-=(x2+5x-1),錯(cuò)誤.故選C.

      3.下列多項(xiàng)式中應(yīng)提取的公因式為5a2b的是( )

      A.15a2b-20a2b2

      B.30a2b3-15ab4-10a3b2

      C.10a2b-20a2b3+50a4b

      D.5a2b4-10a3b3+15a4b2

      解析:B.應(yīng)提取公因式5ab2,錯(cuò)誤;C.應(yīng)提取公因式10a2b,錯(cuò)誤;D.應(yīng)提取公因式5a2b2,錯(cuò)誤.故選A.

      4.填空.

      (1)5a3+4a2b-12abc=a( );

      (2)多項(xiàng)式32p2q3-8pq4的公因式是 ;

      (3)3a2-6ab+a= (3a-6b+1);

      (4)因式分解:+n= ;

      (5)-15a2+5a= (3a-1);

      (6)計(jì)算:21×3.14-31×3.14= .

      答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

      5.用提公因式法分解因式.

      (1)8ab2-16a3b3;

      (2)-15x-5x2;

      (3)a3b3+a2b2-ab;

      (4)-3a3-6a2+12a.

      解:(1)8ab2(1-2a2b).

      (2)-5x(3+x).

      (3)ab(a2b2+ab-1).

      (4)-3a(a2+2a-4).

      第1課時(shí)

      一、教材作業(yè)

      【必做題】

      教材第96頁隨堂練習(xí).

      【選做題】

      教材第96頁習(xí)題4.2.

      二、課后作業(yè)

      【基礎(chǔ)鞏固】

      1.把多項(xiàng)式4a2b+10ab2分解因式時(shí),應(yīng)提取的公因式是 .

      2.(20xx淮安中考)因式分解:x2-3x= .

      3.分解因式:12x3-18x22+24x3=6x .

      【能力提升】

      4.把下列各式因式分解.

      (1)3x2-6x;

      (2)5x23-25x32;

      (3)-43+162-26;

      (4)15x32+5x2-20x23.

      【拓展探究】

      5.分解因式:an+an+2+a2n.

      6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請(qǐng)你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來.

      【答案與解析】

      1.2ab

      2.x(x-3)

      3.(2x2-3x+42)

      4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

      5.解:原式=an1+ana2+anan=an(1+a2+an).

      6.解:由題中給出的幾個(gè)式子可得出規(guī)律:n2+n=n(n+1).

      本節(jié)運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過程中,使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由提公因數(shù)到提公因式,由整式乘法的逆運(yùn)算到提公因式法的概念,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解.

      在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問.

      由于因式分解的主要目的是對(duì)多項(xiàng)式進(jìn)行恒等變形,它的作用更多的是應(yīng)用于多項(xiàng)式的計(jì)算和化簡,比如在以后將要學(xué)習(xí)的分式運(yùn)算、解分式方程等中都要用到因式分解的知識(shí),因此應(yīng)該注重因式分解的概念和方法的教學(xué).

      隨堂練習(xí)(教材第96頁)

      解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

      習(xí)題4.2(教材第96頁)

      1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

      2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

      3.解:(1)不正確,因?yàn)樘崛〉墓蚴讲粚?duì),應(yīng)為n(2n--1). (2)不正確,因?yàn)樘崛」蚴?b后,第三項(xiàng)沒有變號(hào),應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因?yàn)樽詈蟮慕Y(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).

      提公因式法是本章的第2小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷從乘法分配律的逆運(yùn)算到提公因式的過程,讓學(xué)生體會(huì)數(shù)學(xué)中的一種主要思想——類比思想.運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由整式乘法的逆運(yùn)算到提公因式法的概念,就利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解,進(jìn)而使學(xué)生進(jìn)一步理解因式分解與整式乘法運(yùn)算之間的互逆關(guān)系.

      已知方程組求7(x-3)2-2(3-x)3的值.

      〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個(gè)因式,再根據(jù)方程組整體代入,使計(jì)算簡便.

      解:7(x-3)2-2(3-x)3

      =(x-3)2[7+2(x-3)]

      =(x-3)2(7+2x-6)

      =(x-3)2(2x+).

      由方程組可得原式=12×6=6.

    因式分解教案2

      15.1.1 整式

      教學(xué)目標(biāo)

      1.單項(xiàng)式、單項(xiàng)式的定義.

      2.多項(xiàng)式、多項(xiàng)式的次數(shù).

      3、理解整式概念.

      教學(xué)重點(diǎn)

      單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

      教學(xué)難點(diǎn)

      單項(xiàng)式及多項(xiàng)式的有關(guān)概念.

      教學(xué)過程

     、瘢岢鰡栴},創(chuàng)設(shè)情境

      在七年級(jí),我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題

      1.要表示△ABC的周長需要什么條件?要表示它的面積呢?

      2.小王用七小時(shí)行駛了Skm的路程,請(qǐng)問他的平均速度是多少?

      結(jié)論:

      1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

      2.小王的平均速度是 .

      問題:這些式子有什么特征呢?

      (1)有數(shù)字、有表示數(shù)字的字母.

      (2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號(hào)連接.

      歸納:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.

      判斷上面得到的三個(gè)式子:a+b+c、 ch、 是不是代數(shù)式?(是)

      代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.

      Ⅱ.明確和鞏固整式有關(guān)概念

     。ǔ鍪就队埃

      結(jié)論:(1)正方形的周長:4x.

     。2)汽車走過的路程:vt.

     。3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.

     。4)n的相反數(shù)是-n.

      分析這四個(gè)數(shù)的特征.

      它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運(yùn)算符號(hào).還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.

      請(qǐng)同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.

      根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).

      結(jié)論:4x、vt、6a2、a3、-n、 ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、 ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.

      問題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?

      結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.

      生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?

      寫出下列式子(出示投影)

      結(jié)論:(1)t-5.(2)3x+5y+2z.

     。3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.

     。4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

      我們可以觀察下列代數(shù)式:

      a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的'和,能不能叫多項(xiàng)式?

      這樣推理合情合理.請(qǐng)看投影,熟悉下列概念.

      根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).

      a+b+c的項(xiàng)分別是a、b、c.

      t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).

      3x+5y+2z的項(xiàng)分別是3x、5y、2z.

      ab-3.12r2的項(xiàng)分別是 ab、-3.12r2.

      x2+2x+18的項(xiàng)分別是x2、2x、18. 找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.

      這節(jié)課,通過探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號(hào)的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.

     、螅S堂練習(xí)

      1.課本P162練習(xí)

     、簦n時(shí)小結(jié)

      通過探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號(hào)感.

      Ⅴ.課后作業(yè)

      1.課本P165~P166習(xí)題15.1─1、5、8、9題.

      2.預(yù)習(xí)“整式的加減”.

      課后作業(yè):《課堂感悟與探究》

      15.1.2 整式的加減(1)

      教學(xué)目的:

      1、解字母表示數(shù)量關(guān)系的過程,發(fā)展符號(hào)感。

      2、會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及語言表達(dá)能力。

      教學(xué)重點(diǎn):

      會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理。

      教學(xué)難點(diǎn):

      正確地去括號(hào)、合并同類項(xiàng),及符號(hào)的正確處理。

      教學(xué)過程:

      一、課前練習(xí):

      1、填空:整式包括 和

      2、單項(xiàng)式 的系數(shù)是 、次數(shù)是

      3、多項(xiàng)式 是 次 項(xiàng)式,其中二次項(xiàng)

      系數(shù)是 一次項(xiàng)是 ,常數(shù)項(xiàng)是

      4、下列各式,是同類項(xiàng)的一組是( )

     。ˋ) 與 (B) 與 (C) 與

      5、去括號(hào)后合并同類項(xiàng):

      二、探索練習(xí):

      1、如果用a 、b分別表示一個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)兩位數(shù)可以表示為 交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字后得到的兩位數(shù)為

      這兩個(gè)兩位數(shù)的和為

      2、如果用a 、b、c分別表示一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,那么這個(gè)三位數(shù)可以表示為 交換這個(gè)三位數(shù)的百位數(shù)字和個(gè)位數(shù)字后得到的三位數(shù)為

      這兩個(gè)三位數(shù)的差為

      ●議一議:在上面的兩個(gè)問題中,分別涉及到了整式的什么運(yùn)算?

      說說你是如何運(yùn)算的?

      ▲整式的加減運(yùn)算實(shí)質(zhì)就是

      運(yùn)算的結(jié)果是一個(gè)多項(xiàng)式或單項(xiàng)式。

      三、鞏固練習(xí):

      1、填空:(1) 與 的差是

      (2)、單項(xiàng)式 、 、 、 的和為

     。3)如圖所示,下面為由棋子所組成的三角形,

      一個(gè)三角形需六個(gè)棋子,三個(gè)三角形需

     。 )個(gè)棋子,n個(gè)三角形需 個(gè)棋子

      2、計(jì)算:

     。1)

      (2)

     。3)

      3、(1)求 與 的和

      (2)求 與 的差

      4、先化簡,再求值: 其中

      四、提高練習(xí):

      1、若A是五次多項(xiàng)式,B是三次多項(xiàng)式,則A+B一定是

     。ˋ)五次整式 (B)八次多項(xiàng)式

     。–)三次多項(xiàng)式 (D)次數(shù)不能確定

      2、足球比賽中,如果勝一場記3a分,平一場記a分,負(fù)一場

      記0分,那么某隊(duì)在比賽勝5場,平3場,負(fù)2場,共積多

      少分?

      3、一個(gè)兩位數(shù)與把它的數(shù)字對(duì)調(diào)所成的數(shù)的和,一定能被14

      整除,請(qǐng)證明這個(gè)結(jié)論。

      4、如果關(guān)于字母x的二次多項(xiàng)式 的值與x的取值無關(guān),

      試求m、n的值。

      五、小結(jié):整式的加減運(yùn)算實(shí)質(zhì)就是去括號(hào)和合并同類項(xiàng)。

      六、作業(yè):第8頁習(xí)題1、2、3

      15.1.2整式的加減(2)

      教學(xué)目標(biāo):1.會(huì)進(jìn)行整式加減的運(yùn)算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達(dá)能力。

      2.通過探索規(guī)律的問題,進(jìn)一步符號(hào)表示的意義,發(fā)展符號(hào)感,發(fā)展推理能力。

      教學(xué)重點(diǎn)整式加減的運(yùn)算。

      教學(xué)難點(diǎn):探索規(guī)律的猜想。

      教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。

      教學(xué)用具:投影儀

      教學(xué)過程:

      I探索練習(xí):

      擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要 枚棋子,擺第3個(gè)需要 枚棋子。按照這樣的方式繼續(xù)擺下去。

     。1)擺第10個(gè)這樣的“小屋子”需要 枚棋子

     。2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問題嗎?小組討論。

      二、例題講解:

      三、鞏固練習(xí):

      1、計(jì)算:

     。1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

      (3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

      2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A (2)A-3B

      3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么

     。1)第一個(gè)角是多少度?

     。2)其他兩個(gè)角各是多少度?

      四、提高練習(xí):

      1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項(xiàng)式?

      2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

     。▂+3)2=0,且B-2A=a,求A的值。

      3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

      試化簡:│a│-│a+b│+│c-a│+│b+c│

      小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

      作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

    因式分解教案3

      教學(xué)目標(biāo):

      1.知識(shí)與技能:掌握運(yùn)用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問題的能力.

      2.過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學(xué)生研討問題的方法,通過猜測、推理、驗(yàn)證、歸納等步驟,得出因式分解的方法.

      3.情感態(tài)度與價(jià)值觀:通過因式分解的學(xué)習(xí),使學(xué)生體會(huì)數(shù)學(xué)美,體會(huì)成功的自信和團(tuán)結(jié)合作精神,并體會(huì)整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想.

      教學(xué)重、難點(diǎn):用提公因式法和公式法分解因式.

      教具準(zhǔn)備:多媒體課件(小黑板)

      教學(xué)方法:活動(dòng)探究法

      教學(xué)過程:

      引入:在整式的變形中,有時(shí)需要將一個(gè)多項(xiàng)式寫成幾個(gè)整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?

      知識(shí)詳解

      知識(shí)點(diǎn)1 因式分解的定義

      把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.

      【說明】 (1)因式分解與整式乘法是相反方向的變形.

      例如:

      (2)因式分解是恒等變形,因此可以用整式乘法來檢驗(yàn).

      怎樣把一個(gè)多項(xiàng)式分解因式?

      知識(shí)點(diǎn)2 提公因式法

      多項(xiàng)式ma+mb+mc中的`各項(xiàng)都有一個(gè)公共的因式m,我們把因式m叫做這個(gè)多項(xiàng)式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個(gè)因式乘積的形式,其中一個(gè)因式是各項(xiàng)的公因式m,另一個(gè)因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

      探究交流

      下列變形是否是因式分解?為什么?

      (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

      (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

      典例剖析 師生互動(dòng)

      例1 用提公因式法將下列各式因式分解.

      (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

      分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.

      小結(jié) 運(yùn)用提公因式法分解因式時(shí),要注意下列問題:

      (1)因式分解的結(jié)果每個(gè)括號(hào)內(nèi)如有同類項(xiàng)要合并,而且每個(gè)括號(hào)內(nèi)不能再分解.

      (2)如果出現(xiàn)像(2)小題需統(tǒng)一時(shí),首先統(tǒng)一,盡可能使統(tǒng)一的個(gè)數(shù)少。這時(shí)注意到(a-b)n=(b-a)n(n為偶數(shù)).

      (3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式.

      學(xué)生做一做 把下列各式分解因式.

      (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

      知識(shí)點(diǎn)3 公式法

      (1)平方差公式:a2-b2=(a+b)(a-b).即兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這個(gè)數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

      (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

      探究交流

      下列變形是否正確?為什么?

      (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

      例2 把下列各式分解因式.

      (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

      分析:本題旨在考查用完全平方公式分解因式.

      學(xué)生做一做 把下列各式分解因式.

      (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

      綜合運(yùn)用

      例3 分解因式.

      (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

      分析:本題旨在考查綜合運(yùn)用提公因式法和公式法分解因式.

      小結(jié) 解因式分解題時(shí),首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項(xiàng),則考慮能否用平方差公式分解因式. 是三項(xiàng)式考慮用完全平方式,最后,直到每一個(gè)因式都不能再分解為止.

      探索與創(chuàng)新題

      例4 若9x2+kxy+36y2是完全平方式,則k= .

      分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個(gè)數(shù)乘積的2倍的和(或差).

      學(xué)生做一做 若x2+(k+3)x+9是完全平方式,則k= .

      課堂小結(jié)

      用提公因式法和公式法分解因式,會(huì)運(yùn)用因式分解解決計(jì)算問題.

      各項(xiàng)有"公"先提"公",首項(xiàng)有負(fù)常提負(fù),某項(xiàng)提出莫漏"1",括號(hào)里面分到"底"。

      自我評(píng)價(jià) 知識(shí)鞏固

      1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )

      A.3 B.-5 C.7. D.7或-1

      2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

      A.2 B.4 C.6 D.8

      3.分解因式:4x2-9y2= .

      4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

      5.把多項(xiàng)式1-x2+2xy-y2分解因式

      思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

    因式分解教案4

      學(xué)習(xí)目標(biāo)

      1、 學(xué)會(huì)用公式法因式法分解

      2、綜合運(yùn)用提取公式法、公式法分解因式

      學(xué)習(xí)重難點(diǎn) 重點(diǎn):

      完全平方公式分解因式.

      難點(diǎn):綜合運(yùn)用兩種公式法因式分解

      自學(xué)過程設(shè)計(jì)

      完全平方公式:

      完全平方公式的逆運(yùn)用:

      做一做:

      1.(1)16x2-8x+_______=(4x-1)2;

      (2)_______+6x+9=(x+3)2;

      (3)16x2+_______+9y2=(4x+3y)2;

      (4)(a-b)2-2(a-b)+1=(______-1)2.

      2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

      3.下列因式分解正確的是( )

      A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

      C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

      4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

      5.計(jì)算:20062-40102006+20052=___________________.

      6.若x+y=1,則 x2+xy+ y2的.值是_________________.

      想一想

      你還有哪些地方不是很懂?請(qǐng)寫出來。

      ____________________________________________________________________________________ 預(yù)習(xí)展示一:

      1.判別下列各式是不是完全平方式.

      2、把下列各式因式分解:

      (1)-x2+4xy-4y2

      (2)3ax2+6axy+3ay2

      (3)(2x+y)2-6(2x+y)+9

      應(yīng)用探究:

      1、用簡便方法計(jì)算

      49.92+9.98 +0.12

      拓展提高:

      (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

      (2)4x2+y2-4xy-12x+6y+9=0

      求x、y關(guān)系

      (3)分解因式:m4+4

      教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來說會(huì)難一些。

    因式分解教案5

      教材分析

      因式分解是代數(shù)式的一種重要恒等變形!稊(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的.途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

      學(xué)情分析

      通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

      教學(xué)目標(biāo)

      1、在分解因式的過程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

      2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

      3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

      4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。

      難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

    因式分解教案6

      教學(xué)目標(biāo):

      1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問題。

      2、經(jīng)歷探究分解因式方法的過程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

      3、通過對(duì)公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問題。

      4、通過探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問題,并根據(jù)公式自己解決問題的過程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識(shí)。

      教學(xué)重點(diǎn):

      應(yīng)用平方差公式分解因式.

      教學(xué)難點(diǎn):

      靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

      教學(xué)過程:

      一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課

      1、什么是因式分解?判斷下列變形過程,哪個(gè)是因式分解?

      ①(x+2)(x-2)= ②

     、

      2、我們已經(jīng)學(xué)過的因式分解的方法有什么?將下列多項(xiàng)式分解因式。

      x2+2x

      a2b-ab

      3、根據(jù)乘法公式進(jìn)行計(jì)算:

      (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

      二、合作探究 學(xué)習(xí)新知

      (一) 猜一猜:你能將下面的多項(xiàng)式分解因式嗎?

     。1)= (2)= (3)=

      (二)想一想,議一議: 觀察下面的.公式:

     。剑╝+b)(a—b)(

      這個(gè)公式左邊的多項(xiàng)式有什么特征:_____________________________________

      公式右邊是__________________________________________________________

      這個(gè)公式你能用語言來描述嗎? _______________________________________

      (三)練一練:

      1、下列多項(xiàng)式能否用平方差公式來分解因式?為什么?

      ① ② ③ ④

      2、你能把下列的數(shù)或式寫成冪的形式嗎?

      (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

     。ㄋ模┳鲆蛔觯

      例3 分解因式:

      (1) 4x2- 9 (2) (x+p)2- (x+q)2

     。ㄎ澹┰囈辉嚕

      例4 下面的式子你能用什么方法來分解因式呢?請(qǐng)你試一試。

      (1) x4- y4 (2) a3b- ab

     。┫胍幌耄

      某學(xué)校有一個(gè)邊長為85米的正方形場地,現(xiàn)在場地的四個(gè)角分別建一個(gè)邊長為5米的正方形花壇,問場地還剩余多大面積供學(xué)生課間活動(dòng)使用?

    因式分解教案7

      一、運(yùn)用平方差公式分解因式

      教學(xué)目標(biāo)1、使學(xué)生了解運(yùn)用公式來分解因式的意義。

      2、使學(xué)生理解平方差公式的意義,弄清平方差公式的形式和特點(diǎn);使學(xué)生知道把乘法公式反過來就可以得到相應(yīng)的因式分解。

      3、掌握運(yùn)用平方差公式分解因式的方法,能正確運(yùn)用平方差公式把多項(xiàng)式分解因式(直接用公式不超過兩次)

      重點(diǎn)運(yùn)用平方差公式分解因式

      難點(diǎn)靈活運(yùn)用平方差公式分解因式

      教學(xué)方法對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀

      教師活動(dòng)學(xué)生活動(dòng)

      情景設(shè)置:

      同學(xué)們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的?

      (學(xué)生或許還有其他不同的`解決方法,教師要給予充分的肯定)

      新課講解:

      從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學(xué)過的哪一個(gè)乘法公式?

      首先我們來做下面兩題:(投影)

      1.計(jì)算下列各式:

      (1)(a+2)(a-2)=;

      (2)(a+b)(a-b)=;

      (3)(3a+2b)(3a-2b)=.

      2.下面請(qǐng)你根據(jù)上面的算式填空:

      (1)a2-4=;

      (2)a2-b2=;

      (3)9a2-4b2=;

      請(qǐng)同學(xué)們對(duì)比以上兩題,你發(fā)現(xiàn)什么呢?

      事實(shí)上,像上面第2題那樣,把一個(gè)多項(xiàng)式寫成幾個(gè)整式積的形式叫做多項(xiàng)式的因式分解。(投影)

      比如:a2–16=a2–42=(a+4)(a–4)

      例題1:把下列各式分解因式;(投影)

      (1)36–25x2;(2)16a2–9b2;

      (3)9(a+b)2–4(a–b)2.

      (讓學(xué)生弄清平方差公式的形式和特點(diǎn)并會(huì)運(yùn)用)

      例題2:如圖,求圓環(huán)形綠化區(qū)的面積

      練習(xí):第87頁練一練第1、2、3題

      小結(jié):

      這節(jié)課你學(xué)到了什么知識(shí),掌握什么方法?

      教學(xué)素材:

      A組題:

      1.填空:81x2-=(9x+y)(9x-y);=

      利用因式分解計(jì)算:=。

      2、下列多項(xiàng)式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

      (1)1-16a2(2)9a2x2-b2y2

      (3).49(a-b)2-16(a+b)2

      B組題:

      1分解因式81a4-b4=

      2若a+b=1,a2+b2=1,則ab=;

      3若26+28+2n是一個(gè)完全平方數(shù),則n=.

      由學(xué)生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學(xué)生)補(bǔ)充.

      學(xué)生回答1:

      992-1=99×99-1=9801-1

      =9800

      學(xué)生回答2:992-1就是(99+1)(99-1)即100×98

      學(xué)生回答:平方差公式

      學(xué)生回答:

      (1):a2-4

      (2):a2-b2

      (3):9a2-4b2

      學(xué)生輕松口答

      (a+2)(a-2)

      (a+b)(a-b)

      (3a+2b)(3a-2b)

      學(xué)生回答:

      把乘法公式

      (a+b)(a-b)=a2-b2

      反過來就得到

      a2-b2=(a+b)(a-b)

      學(xué)生上臺(tái)板演:

      36–25x2=62–(5x)2

      =(6+5x)(6–5x)

      16a2–9b2=(4a)2–(3b)2

      =(4a+3b)(4a–3b)

      9(a+b)2–4(a–b)2

      =[3(a+b)]2–[2(a–b)]2

      =[3(a+b)+2(a–b)]

      [3(a+b)–2(a–b)]

      =(5a+b)(a+5b)

      解:352π–152π

      =π(352–152)

      =(35+15)(35–15)π

      =50×20π

      =1000π(m2)

      這個(gè)綠化區(qū)的面積是

      1000πm2

      學(xué)生歸納總結(jié)

    因式分解教案8

      第6.4因式分解的簡單應(yīng)用

      背景材料:

      因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡單應(yīng)用。

      教材分析:

      本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗(yàn)。

      教學(xué)目標(biāo):

      1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。

      2、會(huì)應(yīng)用因式分解解簡單的一元二次方程。

      3、體驗(yàn)數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。

      4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。

      教學(xué)重點(diǎn):

      學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡單一元二次方程。

      教學(xué)難點(diǎn):

      應(yīng)用因式分解解簡單的一元二次方程。

      設(shè)計(jì)理念:

      根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

      教學(xué)過程:

      一、創(chuàng)設(shè)情境,復(fù)習(xí)提問

      1、將正式各式因式分解

     。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

      (3)2 a2b-8a2b (4)4x2-9

      [四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]

      教師訂正

      提出問題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)

      二、導(dǎo)入新課,探索新知

     。ㄏ茸寣W(xué)生思考上面所提出的'問題,教師從旁啟發(fā))

      師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。

     。2 a2b-8a2b)÷(4a-b)

      =-2ab(4a-b)÷(4a-b)

      =-2ab

     。ㄗ寣W(xué)生自己比較哪種方法好)

      利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算

     。4x2-9)÷(3-2x)

      學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)

      (全體學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表揚(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]

      練習(xí)計(jì)算

      (1)(a2-4)÷(a+2)

     。2)(x2+2xy+y2)÷(x+y)

     。3)[(a-b)2+2(b-a)] ÷(a-b)

      三、合作學(xué)習(xí)

      1、以四人為一組討論下列問題

      若A?B=0,下面兩個(gè)結(jié)論對(duì)嗎?

     。1)A和B同時(shí)都為零,即A=0且B=0

     。2)A和B至少有一個(gè)為零即A=0或B=0

      [合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]

      2、你能用上面的結(jié)論解方程

     。1)(2x+3)(2x-3)=0 (2)2x2+x=0

      解:

      ∵(2x+3)(2x-3)=0

      ∴2x+3=0或2x-3=0

      ∴方程的解為x=-3/2或x=3/2

      解:x(2x+1)=0

      則x=0或2x+1=0

      ∴原方程的解是x1=0,x2=-1/2

      [讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

      3、練習(xí),解下列方程

     。1)x2-2x=0 4x2=(x-1)2

      四、小結(jié)

      (1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。

      (2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來解。

      設(shè)計(jì)理念:

      根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

    因式分解教案9

      學(xué)習(xí)目標(biāo)

      1、了解因式分解的意義以及它與正式乘法的關(guān)系。

      2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

      學(xué)習(xí)重點(diǎn):能用提公因式法分解因式。

      學(xué)習(xí)難點(diǎn):確定因式的公因式。

      學(xué)習(xí)關(guān)鍵,在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來提公因式。

      學(xué)習(xí)過程

      一.知識(shí)回顧

      1、計(jì)算

      (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

      (3)、m(a+b)(4)、2ab(x-2y+1)

      二、自主學(xué)習(xí)

      1、閱讀課文P72-73的內(nèi)容,并回答問題:

      (1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的__________的形式叫做____________,也叫做把這個(gè)多項(xiàng)式__________。

      (2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

      ma+mb+mc=m(a+b+c)

      我們來分析一下多項(xiàng)式ma+mb+mc的特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的'_________。如果把這個(gè)_________提到括號(hào)外面,這樣

      ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

      2、練一練。P73練習(xí)第1題。

      三、合作探究

      1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

      2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

      3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

      (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

      (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

      4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

      (1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

      例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

      (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

      四、展示提升

      1、填空(1)a2b-ab2=ab(________)

      (2)-4a2b+8ab-4b分解因式為__________________

      (3)分解因式4x2+12x3+4x=__________________

      (4)__________________=-2a(a-2b+3c)

      2、P73練習(xí)第2題和第3題

      五、達(dá)標(biāo)測試。

      1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

      (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

      (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

      (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

      2.課本P77習(xí)題8.5第1題

      學(xué)習(xí)反思

      一、知識(shí)點(diǎn)

      二、易錯(cuò)題

      三、你的困惑

    因式分解教案10

      學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運(yùn)算性質(zhì)的過程,能用代數(shù)式和文字正確地表述,并會(huì)熟練地進(jìn)行計(jì)算。通過由特殊到一般的猜想與說理、驗(yàn)證,發(fā)展推理能力和有條理的表達(dá)能力.

      學(xué)習(xí)重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.

      學(xué)習(xí)過程:

      一、創(chuàng)設(shè)情境引入新課

      復(fù)習(xí)乘方an的意義:an表示個(gè)相乘,即an=.

      乘方的結(jié)果叫a叫做,n是

      問題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?

      列式為,你能利用乘方的意義進(jìn)行計(jì)算嗎?

      二、探究新知:

      探一探:

      1根據(jù)乘方的意義填空

      (1)23×24=(2×2×2)×(2×2×2×2)=2();

      (2)55×54=_________=5();

      (3)(-3)3×(-3)2=_________________=(-3)();

      (4)a6a7=________________=a().

      (5)5m5n

      猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?

      說一說:你能用語言敘述同底數(shù)冪的乘法法則嗎?

      同理可得:amanap=(m、n、p都是正整數(shù))

      三、范例學(xué)習(xí):

      【例1】計(jì)算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

      1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

      2.計(jì)算:

      (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

      【例2】:把下列各式化成(x+y)n或(x-y)n的`形式.

      (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

      (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

      四、學(xué)以致用:

      1.計(jì)算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

      ⑷-4444=⑸22n22n+1=⑹y5y2y4y=

      2.判斷題:判斷下列計(jì)算是否正確?并說明理由

     、臿2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

     、萢a7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

      3.計(jì)算:

      (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

      (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

      (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

      4.解答題:

      (1)已知xm+nxm-n=x9,求m的值.

      (2)據(jù)不完全統(tǒng)計(jì),每個(gè)人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個(gè)水分子,那么,每個(gè)人每年要用去多少個(gè)水分子?

    因式分解教案11

      知識(shí)點(diǎn):

      因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

      教學(xué)目標(biāo):

      理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡單多項(xiàng)式分解因式。

      考查重難點(diǎn)與常見題型:

      考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

      教學(xué)過程:

      因式分解知識(shí)點(diǎn)

      多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

     。1)提公因式法

      如多項(xiàng)式

      其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的.公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

      (2)運(yùn)用公式法,即用

      寫出結(jié)果。

      (3)十字相乘法

      對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

      a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

     。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

      分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

     。5)求根公式法:如果有兩個(gè)根X1,X2,那么

      2、教學(xué)實(shí)例:學(xué)案示例

      3、課堂練習(xí):學(xué)案作業(yè)

      4、課堂:

      5、板書:

      6、課堂作業(yè):學(xué)案作業(yè)

      7、教學(xué)反思:

    因式分解教案12

      一、教材分析

      1、教材的地位與作用

      “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的.基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

      因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

      2、教學(xué)目標(biāo)

     。1)會(huì)推導(dǎo)乘法公式

     。2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

     。3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

      (4)了解因式分解的一般步驟。

     。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

      3、重點(diǎn)、難點(diǎn)和關(guān)鍵

      重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

      難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

      關(guān)鍵:正確理解乘法公式和因式分解的意義。

      二、本單元教學(xué)的方法和策略:

      1.注重知識(shí)形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識(shí),在領(lǐng)悟過程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識(shí)體系的更新和知識(shí)的正向遷移.

      2.知識(shí)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識(shí)結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.

      3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).

      4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

      三、課時(shí)安排:

      2.1平方差公式 1課時(shí)

      2.2完全平方公式 2課時(shí)

      2.3用提公因式法進(jìn)行因式分解 1課時(shí)

      2.4用公式法進(jìn)行因式分解 2課時(shí)

    因式分解教案13

      教學(xué)目標(biāo):

      1、進(jìn)一步鞏固因式分解的概念;

      2、鞏固因式分解常用的三種方法

      3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來解決一些實(shí)際問題

      5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

      教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

      教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

      教學(xué)過程:

      一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值

      利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

      二、知識(shí)回顧

      1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

      判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

      (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

     。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

      (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

     。7)、2πR+2πr=2π(R+r)因式分解

      2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

      分解因式要注意以下幾點(diǎn):

     。1)。分解的對(duì)象必須是多項(xiàng)式。

      (2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。

     。3)。要分解到不能分解為止。

      3、因式分解的方法

      提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

      公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

      4、強(qiáng)化訓(xùn)練

      教學(xué)引入

      師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

      動(dòng)畫演示:

      場景一:正方形折疊演示

      師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測量各邊的長度、各角的大小、對(duì)角線的長度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長度。

      [學(xué)生活動(dòng):各自測量。]

      鼓勵(lì)學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

      講授新課

      找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

      動(dòng)畫演示:

      場景二:正方形的性質(zhì)

      師:這些性質(zhì)里那些是矩形的性質(zhì)?

      [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

      動(dòng)畫演示:

      場景三:矩形的性質(zhì)

      師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

      [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

      動(dòng)畫演示:

      場景四:菱形的性質(zhì)

      師:這說明正方形具有矩形和菱形的全部性質(zhì)。

      及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

      師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

      [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

      師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

      學(xué)生應(yīng)能夠向出十種左右的'定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

      “有一組鄰邊相等的矩形叫做正方形!

      “有一個(gè)角是直角的菱形叫做正方形!

      “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

      [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

      師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

      試一試把下列各式因式分解:

      (1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

     。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

      三、例題講解

      例1、分解因式

     。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

      (3)(4)y2+y+

      例2、分解因式

      1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

      4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

      例3、分解因式

      1、72—2(13x—7)22、8a2b2—2a4b—8b3

      四、知識(shí)應(yīng)用

      1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

      3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

      4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

      五、拓展應(yīng)用

      1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

      2、20042+20xx被20xx整除嗎?

      3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

      五、課堂小結(jié)

      今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

    因式分解教案14

      教學(xué)設(shè)計(jì)思想:

      本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的.逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

      教學(xué)目標(biāo)

      知識(shí)與技能:

      會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;

      會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

      能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

      提高全面地觀察問題、分析問題和逆向思維的能力。

      過程與方法:

      經(jīng)歷用公式法分解因式的探索過程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。

      情感態(tài)度價(jià)值觀:

      通過學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。

      難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式

      關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。

    因式分解教案15

      第十五章 整式的乘除與因式分解

      根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的.項(xiàng)和次數(shù).

      15.1.2 整式的加減

     。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

      四、提高練習(xí):

      1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項(xiàng)式?

      2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

      3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

      試化簡:│a│-│a+b│+│c-a│+│b+c│

      小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

      作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

      《課堂感悟與探究》

    【因式分解教案】相關(guān)文章:

    因式分解教案12-08

    因式分解復(fù)習(xí)教案08-25

    人教版因式分解教案01-04

    因式分解教案設(shè)計(jì)04-18

    精選因式分解教案3篇03-13

    因式分解教案模板7篇03-08

    【推薦】因式分解教案三篇02-21

    因式分解教案匯編5篇02-26

    【必備】因式分解教案4篇02-20

    Copyright©2013-2024duanmeiwen.com版權(quán)所有