欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    因式分解教案

    時(shí)間:2023-04-06 11:41:18 教案 投訴 投稿

    因式分解教案范文合集5篇

      作為一名教師,通常會(huì)被要求編寫教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那要怎么寫好教案呢?下面是小編為大家收集的因式分解教案5篇,歡迎閱讀與收藏。

    因式分解教案范文合集5篇

    因式分解教案 篇1

      學(xué)習(xí)目標(biāo)

      1、了解因式分解的意義以及它與正式乘法的關(guān)系。

      2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

      學(xué)習(xí)重點(diǎn):能用提公因式法分解因式。

      學(xué)習(xí)難點(diǎn):確定因式的公因式。

      學(xué)習(xí)關(guān)鍵,在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來提公因式。

      學(xué)習(xí)過程

      一.知識(shí)回顧

      1、計(jì)算

      (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

      (3)、m(a+b)(4)、2ab(x-2y+1)

      二、自主學(xué)習(xí)

      1、閱讀課文P72-73的內(nèi)容,并回答問題:

      (1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的__________的形式叫做____________,也叫做把這個(gè)多項(xiàng)式__________。

      (2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

      ma+mb+mc=m(a+b+c)

      我們來分析一下多項(xiàng)式ma+mb+mc的特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的'_________。如果把這個(gè)_________提到括號(hào)外面,這樣

      ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

      2、練一練。P73練習(xí)第1題。

      三、合作探究

      1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

      2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

      3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

      (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

      (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

      4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

      (1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

      例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

      (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

      四、展示提升

      1、填空(1)a2b-ab2=ab(________)

      (2)-4a2b+8ab-4b分解因式為__________________

      (3)分解因式4x2+12x3+4x=__________________

      (4)__________________=-2a(a-2b+3c)

      2、P73練習(xí)第2題和第3題

      五、達(dá)標(biāo)測(cè)試。

      1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

      (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

      (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

      (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

      2.課本P77習(xí)題8.5第1題

      學(xué)習(xí)反思

      一、知識(shí)點(diǎn)

      二、易錯(cuò)題

      三、你的困惑

    因式分解教案 篇2

      知識(shí)點(diǎn):

      因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

      教學(xué)目標(biāo):

      理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡單多項(xiàng)式分解因式。

      考查重難點(diǎn)與常見題型:

      考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

      教學(xué)過程:

      因式分解知識(shí)點(diǎn)

      多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

     。1)提公因式法

      如多項(xiàng)式

      其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的.公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

     。2)運(yùn)用公式法,即用

      寫出結(jié)果。

      (3)十字相乘法

      對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

      a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

     。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

      分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

     。5)求根公式法:如果有兩個(gè)根X1,X2,那么

      2、教學(xué)實(shí)例:學(xué)案示例

      3、課堂練習(xí):學(xué)案作業(yè)

      4、課堂:

      5、板書:

      6、課堂作業(yè):學(xué)案作業(yè)

      7、教學(xué)反思:

    因式分解教案 篇3

      教學(xué)目標(biāo)

      1、進(jìn)一步鞏固因式分解的概念;

      2、鞏固因式分解常用的三種方法

      3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解

      4、應(yīng)用因式分解來解決一些實(shí)際問題

      5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

      教學(xué)重點(diǎn)

      靈活運(yùn)用因式分解解決問題

      教學(xué)難點(diǎn):

      靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3

      教學(xué)過程

      一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

      利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

      二、知識(shí)回顧

      1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

      判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

      (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

      (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

      (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

      (7).2πR+2πr=2π(R+r)因式分解

      2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

      分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

      (2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

      3、因式分解的方法

      提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

      公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

      4、強(qiáng)化訓(xùn)練

      教學(xué)引入

      師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形。現(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

      動(dòng)畫演示:

      場(chǎng)景一:正方形折疊演示

      師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的`關(guān)系。請(qǐng)大家測(cè)量各邊的長度、各角的大小、對(duì)角線的長度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長度。

      [學(xué)生活動(dòng):各自測(cè)量。]

      鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

      講授新課

      找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

      動(dòng)畫演示:

      場(chǎng)景二:正方形的性質(zhì)

      師:這些性質(zhì)里那些是矩形的性質(zhì)?

      [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

      動(dòng)畫演示:

      場(chǎng)景三:矩形的性質(zhì)

      師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

      [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

      動(dòng)畫演示:

      場(chǎng)景四:菱形的性質(zhì)

      師:這說明正方形具有矩形和菱形的全部性質(zhì)。

      及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

      師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

      [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

      師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

      學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

      “有一組鄰邊相等的矩形叫做正方形!

      “有一個(gè)角是直角的菱形叫做正方形!

      “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

      [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

      師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

      試一試把下列各式因式分解:

      (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

      (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

      三、例題講解

      例1、分解因式

      (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

      (3)(4)y2+y+

      例2、分解因式

      1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

      4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

      例3、分解因式

      1、72-2(13x-7)22、8a2b2-2a4b-8b3

      三、知識(shí)應(yīng)用

      1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

      3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

      4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

      四、拓展應(yīng)用

      1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

      2、20042+20xx被20xx整除嗎?

      3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

      五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

    因式分解教案 篇4

     。ㄒ唬學(xué)習(xí)目標(biāo)

      1、會(huì)用因式分解進(jìn)行簡單的多項(xiàng)式除法

      2、會(huì)用因式分解解簡單的方程

      (二)學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的應(yīng)用。

      難點(diǎn):應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點(diǎn)。

      (三)教學(xué)過程設(shè)計(jì)

      看一看

      1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的.一般步驟:

     、賍_______________②__________

      2.應(yīng)用因式分解解簡單的一元二次方程.

      依據(jù)__________,一般步驟:__________

      做一做

      1.計(jì)算:

      (1)(-a2b2+16)÷(4-ab);

      (2)(18x2-12xy+2y2)÷(3x-y).

      2.解下列方程:

      (1)3x2+5x=0;

      (2)9x2=(x-2)2;

      (3)x2-x+=0.

      3.完成課后練習(xí)題

      想一想

      你還有哪些地方不是很懂?請(qǐng)寫出來。

      ____________________________________

      (四)預(yù)習(xí)檢測(cè)

      1.計(jì)算:

      2.先請(qǐng)同學(xué)們思考、討論以下問題:

      (1)如果A×5=0,那么A的值

      (2)如果A×0=0,那么A的值

      (3)如果AB=0,下列結(jié)論中哪個(gè)正確( )

     、貯、B同時(shí)都為零,即A=0,

      且B=0;

     、贏、B中至少有一個(gè)為零,即A=0,或B=0;

      (五)應(yīng)用探究

      1.解下列方程

      2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

      (六)拓展提高:

      解方程:

      1、(x2+4)2-16x2=0

      2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

      (七)堂堂清練習(xí)

      1.計(jì)算

      2.解下列方程

      ①7x2+2x=0

     、趚2+2x+1=0

      ③x2=(2x-5)2

     、躼2+3x=4x

    因式分解教案 篇5

      一、教材分析

      1、教材的地位與作用

      “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的'形式,選擇正確的分解方法。

      因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

      2、教學(xué)目標(biāo)

     。1)會(huì)推導(dǎo)乘法公式

      (2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

     。3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

      (4)了解因式分解的一般步驟。

      (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

      3、重點(diǎn)、難點(diǎn)和關(guān)鍵

      重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

      難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

      關(guān)鍵:正確理解乘法公式和因式分解的意義。

      二、本單元教學(xué)的方法和策略:

      1.注重知識(shí)形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識(shí),在領(lǐng)悟過程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識(shí)體系的更新和知識(shí)的正向遷移.

      2.知識(shí)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識(shí)結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.

      3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).

      4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

      三、課時(shí)安排:

      2.1平方差公式 1課時(shí)

      2.2完全平方公式 2課時(shí)

      2.3用提公因式法進(jìn)行因式分解 1課時(shí)

      2.4用公式法進(jìn)行因式分解 2課時(shí)

    【因式分解教案】相關(guān)文章:

    因式分解教案04-02

    因式分解教案12-08

    因式分解復(fù)習(xí)教案08-25

    人教版因式分解教案01-04

    精選因式分解教案3篇03-13

    因式分解教案設(shè)計(jì)04-18

    因式分解優(yōu)秀教案(精選14篇)02-20

    因式分解教案模板8篇01-31

    【精華】因式分解教案三篇01-26

    因式分解教案模板7篇03-08

    Copyright©2013-2024duanmeiwen.com版權(quán)所有