欧美日韩中文字幕专区一二三,国产精品视频永久免费播放,久久精品国产二区,中文字幕在线观看第一页

    因式分解教案

    時(shí)間:2023-04-20 16:58:09 教案 投訴 投稿

    因式分解教案范文匯總5篇

      作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。教案要怎么寫呢?下面是小編收集整理的因式分解教案5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

    因式分解教案范文匯總5篇

    因式分解教案 篇1

      第6.4因式分解的簡(jiǎn)單應(yīng)用

      背景材料:

      因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來(lái)證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的`計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡(jiǎn)單應(yīng)用。

      教材分析:

      本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗(yàn)。

      教學(xué)目標(biāo):

      1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。

      2、會(huì)應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

      3、體驗(yàn)數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。

      4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。

      教學(xué)重點(diǎn):

      學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡(jiǎn)單一元二次方程。

      教學(xué)難點(diǎn):

      應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

      設(shè)計(jì)理念:

      根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

      教學(xué)過程:

      一、創(chuàng)設(shè)情境,復(fù)習(xí)提問

      1、將正式各式因式分解

     。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

     。3)2 a2b-8a2b (4)4x2-9

      [四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]

      教師訂正

      提出問題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)

      二、導(dǎo)入新課,探索新知

      (先讓學(xué)生思考上面所提出的問題,教師從旁啟發(fā))

      師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來(lái)的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。

      (2 a2b-8a2b)÷(4a-b)

      =-2ab(4a-b)÷(4a-b)

      =-2ab

     。ㄗ寣W(xué)生自己比較哪種方法好)

      利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算

      (4x2-9)÷(3-2x)

      學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)

     。ㄈw學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表?yè)P(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]

      練習(xí)計(jì)算

     。1)(a2-4)÷(a+2)

     。2)(x2+2xy+y2)÷(x+y)

      (3)[(a-b)2+2(b-a)] ÷(a-b)

      三、合作學(xué)習(xí)

      1、以四人為一組討論下列問題

      若A?B=0,下面兩個(gè)結(jié)論對(duì)嗎?

      (1)A和B同時(shí)都為零,即A=0且B=0

     。2)A和B至少有一個(gè)為零即A=0或B=0

      [合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語(yǔ)言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]

      2、你能用上面的結(jié)論解方程

     。1)(2x+3)(2x-3)=0 (2)2x2+x=0

      解:

      ∵(2x+3)(2x-3)=0

      ∴2x+3=0或2x-3=0

      ∴方程的解為x=-3/2或x=3/2

      解:x(2x+1)=0

      則x=0或2x+1=0

      ∴原方程的解是x1=0,x2=-1/2

      [讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

      3、練習(xí),解下列方程

     。1)x2-2x=0 4x2=(x-1)2

      四、小結(jié)

     。1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。

     。2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來(lái)解。

      設(shè)計(jì)理念:

      根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

    因式分解教案 篇2

      【教學(xué)目標(biāo)】

      1、了解因式分解的概念和意義;

      2、認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

      【教學(xué)重點(diǎn)、難點(diǎn)】

      重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

      【教學(xué)過程】

      ㈠、情境導(dǎo)入

      看誰(shuí)算得快:(搶答)

      (1)若a=101,b=99,則a2-b2=___________;

      (2)若a=99,b=-1,則a2-2ab+b2=____________;

      (3)若x=-3,則20x2+60x=____________。

     、、探究新知

      1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

      (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

      (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

      2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的.左邊是一個(gè)什么式子,右邊又是什么形式?)

      3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

      板書課題:§6.1 因式分解

      因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

      ㈢、前進(jìn)一步

      1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

      2、因式分解與整式乘法的關(guān)系:

      因式分解

      結(jié)合:a2-b2 (a+b)(a-b)

      整式乘法

      說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

      結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

     、、鞏固新知

      1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

      (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

      (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

      (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

      2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

      ㈤、應(yīng)用解釋

      例 檢驗(yàn)下列因式分解是否正確:

      (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

      分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

      練習(xí) 計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)

      (1)872+87×13

      (2)1012-992

      ㈥、思維拓展

      1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

      2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

     、、課堂回顧

      今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。

     、臁⒉贾米鳂I(yè)

      作業(yè)本(1) ,一課一練

     。ň牛┙虒W(xué)反思:

    因式分解教案 篇3

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      了解因式分解的意義,以及它與整式乘法的關(guān)系.

      2.過程與方法

      經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

      3.情感、態(tài)度與價(jià)值觀

      在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):了解因式分解的意義,感受其作用.

      2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

      3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

      教學(xué)方法

      采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

      教學(xué)過程

      一、創(chuàng)設(shè)情境,激趣導(dǎo)入

      【問題牽引】

      請(qǐng)同學(xué)們探究下面的2個(gè)問題:

      問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>

      問題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

      二、豐富聯(lián)想,展示思維

      探索:你會(huì)做下面的填空嗎?

      1.ma+mb+mc=( )( );

      2.x2-4=( )( );

      3.x2-2xy+y2=( )2.

      【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

      三、小組活動(dòng),共同探究

      【問題牽引】

     。1)下列各式從左到右的變形是否為因式分解:

     、伲▁+1)(x-1)=x2-1;

      ②a2-1+b2=(a+1)(a-1)+b2;

     、7x-7=7(x-1).

     。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

     、9x2(______)+y2=(3x+y)(_______);

     、趚2-4xy+(_______)=(x-_______)2.

      四、隨堂練習(xí),鞏固深化

      課本練習(xí).

      【探研時(shí)空】計(jì)算:993-99能被100整除嗎?

      五、課堂總結(jié),發(fā)展?jié)撃?/strong>

      由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

      1.什么叫因式分解?

      2.因式分解與整式運(yùn)算有何區(qū)別?

      六、布置作業(yè),專題突破

      選用補(bǔ)充作業(yè).

      板書設(shè)計(jì)

      15.4.1 因式分解

      1、因式分解 例:

      練習(xí):

      15.4.2 提公因式法

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

      2.過程與方法

      使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

      2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

      3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的'系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

      教學(xué)方法

      采用“啟發(fā)式”教學(xué)方法.

      教學(xué)過程

      一、回顧交流,導(dǎo)入新知

      【復(fù)習(xí)交流】

      下列從左到右的變形是否是因式分解,為什么?

      (1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

      (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

     。5)x2-2xy+y2=(x-y)2.

      問題:

      1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

      2.多項(xiàng)式4x2-x和xy2-yz-y呢?

      請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說(shuō)明理由.

      【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

      概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

      二、小組合作,探究方法

      【教師提問】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

      【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

      三、范例學(xué)習(xí),應(yīng)用所學(xué)

      【例1】把-4x2yz-12xy2z+4xyz分解因式.

      解:-4x2yz-12xy2z+4xyz

      =-(4x2yz+12xy2z-4xyz)

      =-4xyz(x+3y-1)

      【例2】分解因式,3a2(x-y)3-4b2(y-x)2

      【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

      解法1:3a2(x-y)3-4b2(y-x)2

      =-3a2(y-x)3-4b2(y-x)2

      =-[(y-x)23a2(y-x)+4b2(y-x)2]

      =-(y-x)2 [3a2(y-x)+4b2]

      =-(y-x)2(3a2y-3a2x+4b2)

      解法2:3a2(x-y)3-4b2(y-x)2

      =(x-y)23a2(x-y)-4b2(x-y)2

      =(x-y)2 [3a2(x-y)-4b2]

      =(x-y)2(3a2x-3a2y-4b2)

      【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

      【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

      解:0.84×12+12×0.6-0.44×12

      =12×(0.84+0.6-0.44)

      =12×1=12.

      【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

      四、隨堂練習(xí),鞏固深化

      課本P167練習(xí)第1、2、3題.

      【探研時(shí)空】

      利用提公因式法計(jì)算:

      0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

      五、課堂總結(jié),發(fā)展?jié)撃?/strong>

      1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

      2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.

      六、布置作業(yè),專題突破

      課本P170習(xí)題15.4第1、4(1)、6題.

      板書設(shè)計(jì)

      15.4.2 提公因式法

      1、提公因式法 例:

      練習(xí):

      15.4.3 公式法(一)

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

      2.過程與方法

      經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):利用平方差公式分解因式.

      2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.

      3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).

      教學(xué)方法

      采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.

      教學(xué)過程

      一、觀察探討,體驗(yàn)新知

      【問題牽引】

      請(qǐng)同學(xué)們計(jì)算下列各式.

     。1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

      【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

     。1)(a+5)(a-5)=a2-52=a2-25;

     。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

      【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

      1.分解因式:a2-25; 2.分解因式16m2-9n.

      【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

      (1)a2-25=a2-52=(a+5)(a-5).

     。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

      【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

      平方差公式:a2-b2=(a+b)(a-b).

      評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

      二、范例學(xué)習(xí),應(yīng)用所學(xué)

      【例1】把下列各式分解因式:(投影顯示或板書)

     。1)x2-9y2; (2)16x4-y4;

     。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

      (5)m2(16x-y)+n2(y-16x).

      【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

      【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

      【學(xué)生活動(dòng)】分四人小組,合作探究.

      解:(1)x2-9y2=(x+3y)(x-3y);

      (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

     。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

     。4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

     。5)m2(16x-y)+n2(y-16x)

      =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

      三、隨堂練習(xí),鞏固深化

      課本P168練習(xí)第1、2題.

      【探研時(shí)空】

      1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).

      2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.

      四、課堂總結(jié),發(fā)展?jié)撃?/strong>

      運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通常考慮應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡(jiǎn),二是分解因式時(shí),每個(gè)因式都要分解徹底.

      五、布置作業(yè),專題突破

      課本P171習(xí)題15.4第2、4(2)、11題.

      板書設(shè)計(jì)

      15.4.3 公式法(一)

      1、平方差公式: 例:

      a2-b2=(a+b)(a-b) 練習(xí):

      15.4.3 公式法(二)

      教學(xué)目標(biāo)

      1.知識(shí)與技能

      領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

      2.過程與方法

      經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

      3.情感、態(tài)度與價(jià)值觀

      培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

      重、難點(diǎn)與關(guān)鍵

      1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

      2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

      3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

      教學(xué)方法

      采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

      教學(xué)過程

      一、回顧交流,導(dǎo)入新知

      【問題牽引】

      1.分解因式:

     。1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

     。3) x2-0.01y2.

    因式分解教案 篇4

     。ㄒ唬學(xué)習(xí)目標(biāo)

      1、會(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法

      2、會(huì)用因式分解解簡(jiǎn)單的方程

      (二)學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的`應(yīng)用。

      難點(diǎn):應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點(diǎn)。

     。ㄈ教學(xué)過程設(shè)計(jì)

      看一看

      1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的一般步驟:

      ①________________②__________

      2.應(yīng)用因式分解解簡(jiǎn)單的一元二次方程.

      依據(jù)__________,一般步驟:__________

      做一做

      1.計(jì)算:

      (1)(-a2b2+16)÷(4-ab);

      (2)(18x2-12xy+2y2)÷(3x-y).

      2.解下列方程:

      (1)3x2+5x=0;

      (2)9x2=(x-2)2;

      (3)x2-x+=0.

      3.完成課后練習(xí)題

      想一想

      你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。

      ____________________________________

      (四)預(yù)習(xí)檢測(cè)

      1.計(jì)算:

      2.先請(qǐng)同學(xué)們思考、討論以下問題:

      (1)如果A×5=0,那么A的值

      (2)如果A×0=0,那么A的值

      (3)如果AB=0,下列結(jié)論中哪個(gè)正確( )

     、貯、B同時(shí)都為零,即A=0,

      且B=0;

     、贏、B中至少有一個(gè)為零,即A=0,或B=0;

      (五)應(yīng)用探究

      1.解下列方程

      2.化簡(jiǎn)求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

      (六)拓展提高:

      解方程:

      1、(x2+4)2-16x2=0

      2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

      (七)堂堂清練習(xí)

      1.計(jì)算

      2.解下列方程

     、7x2+2x=0

      ②x2+2x+1=0

     、踴2=(2x-5)2

     、躼2+3x=4x

    因式分解教案 篇5

      知識(shí)點(diǎn):

      因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

      教學(xué)目標(biāo):

      理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

      考查重難點(diǎn)與常見題型:

      考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

      教學(xué)過程:

      因式分解知識(shí)點(diǎn)

      多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的`積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

      (1)提公因式法

      如多項(xiàng)式

      其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

      (2)運(yùn)用公式法,即用

      寫出結(jié)果。

      (3)十字相乘法

      對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

      a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

     。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

      分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

      (5)求根公式法:如果有兩個(gè)根X1,X2,那么

      2、教學(xué)實(shí)例:學(xué)案示例

      3、課堂練習(xí):學(xué)案作業(yè)

      4、課堂:

      5、板書:

      6、課堂作業(yè):學(xué)案作業(yè)

      7、教學(xué)反思:

    【因式分解教案】相關(guān)文章:

    因式分解教案04-02

    人教版因式分解教案01-04

    因式分解復(fù)習(xí)教案08-25

    因式分解教案設(shè)計(jì)04-18

    精選因式分解教案3篇03-13

    因式分解優(yōu)秀教案(精選14篇)02-20

    因式分解教案模板8篇01-31

    因式分解教案匯編5篇02-26

    【精華】因式分解教案三篇01-26

    實(shí)用的因式分解教案四篇08-02